Music, Time-Frequency Shifts, and Linear Independence

Research Horizons Seminar
Wednesday, April 20, 2011 - 12:00
1 hour (actually 50 minutes)
Skiles 006
School of Mathematics - Georgia Institute of Technology

Hosts: Amey Kaloti and Ricardo Restrepo

Fourier series provide a way of writing almost any signal as a superposition of pure tones, or musical notes.  But this representation is not local, and does not reflect the way that music is actually generated by instruments playing individual notes at different times.  We will discuss time-frequency representations, which are a type of local Fourier representation of signals.  This gives us a mathematical model for representing music.  While the model is crude for music, it is in fact apowerful mathematical representation that has appeared widely throughout mathematics (e.g., partial differential equations), physics (e.g., quantum mechanics), and engineering (e.g., time-varying filtering).  We ask one very basic question: are the notes in this representation linearly independent?  This seemingly trivial question leads to surprising mathematical difficulties.