Stochastic facilitation and selection in systems with non-smooth dynamics

School of Mathematics Colloquium
Thursday, February 11, 2016 - 16:05
1 hour (actually 50 minutes)
Skiles 005
University of British Columbia
There have been many recent advances for analyzing the complex deterministic behavior of systems with discontinuous dynamics. With the identification of new types of nonlinear phenomena exploding in this realm, one gets the feeling that almost anything can happen. There are many open questions about noise-driven and noise-sensitive phenomena in the non-smooth context, including the observation that noise can facilitate or select "regular" dynamics, thus clarifying the picture within the seemingly endless sea of possibilities. Familiar concepts from smooth systems such as escapes, resonances, and bifurcations appear in unexpected forms, and we gain intuition from seemingly unrelated canonical models of biophysics, mechanics, finance, and climate dynamics. The appropriate strategy is often not immediately obvious from the area of application or model type, requiring an integration of multiple scales techniques, probabilistic models, and nonlinear methods.