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Introduction

Meanders have been studied since 1912 [3], and it is still unknown
how to enumerate them; however we know it grows exponentially.
In our research we prove some properties of meanders and prove
that at least a subset of the meander graph is connected. This subset
also grows exponentially.

Definitions

1. A meander is a closed curve crossing a horizontal line
2n times that does not intersect itself.

2. A non-crossing perfect matching (NCPM) of order n is
a set of n arcs. Each arc corresponds to a unique pair
(x, y) with x, y 2 {1, 2, . . . , 2n}, x < y. Given a hori-
zontal line with 2n points labeled in increasing order left
to right, the arcs can be drawn above the line, connecting
the points from their pair such that no two arcs intersec-
tion and every point is the endpoint of an arc.

3. Each NCPM corresponds to a sequence of As and Bs
with A at the beginning of each arc and B at the ending.
Note that this is a ballot sequence.

4. A parent-child is a pair of arcs (i, `) and (j, k) with no
arc (m, n) where i < m < j and k < n < l.

5. Two arcs (i, j) and (k, `) are siblings if k = j + 1 .
6. A local move on a NCPM replaces siblings (i, j) and

(k, `) with parent child arcs (i, `) and (j, k) or vice versa.
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7. A local move on a meander consists of a local move on
the NCPM above the horizontal line and an independent
local move on the NCPM below the line, provided the
result is a meander.

8. The state space graph of NCPMs is the graph whose ver-
tices are NCPMs of order n and there is an edge between
two NCPMs if one can be transformed into the other via
a single local move. The state space graph of meanders
is defined similarly.

Non-Crossing Perfect Matchings

State Space Graph

Distance between NCPMs to Form a Meander is

� n� 1

Draw the same NCPM on the top and bottom of a
horizontal forming n curves. Now do moves that only
merge curves strictly on the bottom until a meander is
formed. We will need to do at least n� 1 local moves to
form a single curve because n� (n� 1) = 1.

s-Value

For an arc (x, y) define its s-value as s(x, y) = y�x�1
2 .

Given a NCPM � = {(x1, y1), . . . , (xn
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Define an even NCPM as a NCPM with an even s-value
and an odd NCPM as a NCPM with an odd s-value.

The state space graph of NCPMs is bipartite and

connected.

Bipartite: Group NCPMs with even s-values into one
class and those with odd s-values into another. We will
show that all edges run between these classes. For some
arbitrary NCPM �, make a local move.
Suppose the move is a sibling move on the arcs (x, y) and
(y + 1, z). When the local move occurs, �

0 results with
(x, y) and (y + 1, z) replaced by (x, z) and (y, y + 1).
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If the move was a parent-child move, then s

0
�

= s

�

� 1.

Connectedness: Given a NCPM, make sibling to
parent-child moves, increasing the s-value. Continue
making these moves until there are no longer any siblings,
resulting in the rainbow which has the maximum s-value.

Rainbow

State Space Graph of Meanders

The state space graph of meanders is bipartite.

For odd order n: a meander is composed of two odd or
two even NCPMs. A local move changes the parities of
both s-values of the NCPMs. Hence, odd

odd

$ even

even

.
For even order n: a meander is composed of an even and
odd NCPM. Similarly, odd

even

$ even

odd

.

Degree of Meanders

The degree of a meander is the number of neighbors it has
in the meander state space graph.
Below are two important meanders and their degrees.

Paw

[Deg = 3n� 5]

Pangolin

[Deg = n

2+5n�24
2 ]

For a meander m, let x(m) be the flip over a horizontal
line of m and y(m) a flip across a vertical line. If a
meander n is a neighbor of m, then x(n) is a neighbor of
x(m) and y(n) is a neighbor of y(m). All symmetries of
m have the same degree.

m x(m) y(m)

Local Moves on Meanders

Given a meander, any local move on the top will result

in two closed curves

A local move affecting two arcs from separate curves

will merge them

Not all local moves done on top has a corresponding

move on the bottom to merge two curves

The difficulty of proving connectedness of the meander
graph is evident in the above example.

Connectivity of Kreweras Complements

Draw the same NCPM on the bottom shifted one position
to the right. Replace arc (x, 2n + 1) with (1, x).

Right Complement

The total number of complements is 2 1
n+1
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There are 1
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⇣
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⌘
right complement meanders. A similar

calculation for the left complements can be done
(including a correction for the paw).
Any complement meander can be transformed into the
paw which is also a complement using two types of
moves.
Type 1:
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Algorithm to Tranform Complements into Paw

1. Make the left most type 1 move before the top arch
(i, 2n). Repeat until no more type 1 moves are available
in the range.

2. Make the left most type 1 move under the top arch (i, 2n).
Repeat until no more type 1 moves are available in the
range.

3. Then do the appropriate number of type 2 moves to get
[1, 2n] as ABAB...AB.

Step 1 Step 2

Step 3

Note: After each type of move the resulting meander
remains a complement.
The left complement is shifted one position to the left.
Replace arc (0, x) with (x, 2n).
y(left complement) = right complement. The same
algorithm can be applied to obtain the paw.

Future Research

• Show the meander graph is connected.

•Define a Markov Chain by our local moves on meanders.

•Determine if it is rapidly mixing and use it to estimate
the number of meanders.
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