Improving RNA Secondary Structure

Prediction Accuracy

Jason Kolbush & Taylor Strickland

IMPACT REU

jkolbush3@gatech.edu
tstrickland@agnesscott.edu

Introduction

RNA has risen to the forefront in molecular biology research [1].

The four nucleotides in RNA follow the Watson-Crick pairings of (A)
paired to (U) and (C) paired to (G). RNA itself is single stranded,
but it has the ability to fold on itself to give many possible structures.
Predicting the structure of an RNA sequence is
important because its structure determines its =
function. B

e As of now the predominant method for predict-
ing RNA secondary structures uses free energy
minimization (MFE) [2].

e Thermodynamic optimization like other meth-
ods does not produce high accuracies for sec-

ondary structure foldings.

Recent research has shown that the introduc-
tion of SHAPE data into prediction programs
improves secondary structure prediction consid-
erably [4].

(b) s

e SHAPE data is a thermodynamic representa- Figure 1:
tion of the reactivity of a nucleotide. SHAPE Value
e The overlap in distribution of SHAPE data for P%)bablhty
: : . ensity
different nucleotide states creates ambiguity in Function[4].

folding prediction algorithms.
e Alternative methods for incorporating SHAPE
data into predicting RNA secondary structures may improve predic-

tion accuracies |4/.

Main Objective

Design a Hidden Markov Model that can be used with

experimental SHAPE data to create separation between
overlapping SHAPE data distributions. This new SHAPE

data can then be used with a MFE folding algorithm to
produce more accurate secondary structure predictions.
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Figure 2: Hidden Markov Model Structure Example

e A Hidden Markov Model has promise to predict nucleotide states
correctly because it takes into account not just the value of a given
SHAPE value, but the values of its neighbors.

e The chosen Markov Model contains 16 paired states and 16 unpaired
states. This allows us to directly take into account the exact proba-
bilities of specific substring lengths occurring.

Methodology

e Analyzed an equally weighted set of tRNA and 55 rRNA in order to
cather length distribution for paired and unpaired subsequences and
used these distributions to create our transition matrix between our
32 state matrix.

e Discretized SHAPE probability distribution functions found in 4] by
subdividing the functions in 0.1 intervals and used this discretization
as emission probabilities for our Hidden Markov Model.

e Simulated 1000 sets of SHAPE data for a test tRNA sequence, ran
data sets through the Viterbi algorithm of our HMM, observed it’s
accuracy in correctly predicting nucleotide states.
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Figure 3: tRNA nucleotide position vs. inaccuracy of predicted state.
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e Chose to emit new SHAPE values based on parabolic function. Ran
optimization to determine best parameters.

e Ran the Viterbi algorithm of our HMM on simulated SHAPE data
from a set of 16s rRNA sequences and assigned new SHAPE val-
ues based on optimized parabolic function. Calculated accuracy of
folding prediction.

Emitted SHAPE Values: Parabola Function

S:a;(x L2_1>2+M (1)

Note: When L=1 S=FE
M: Min/Max SHAPE Value

S: Emitted SHAPE Value
L: Length of Sequence
4B - M) ) E: Edge SHAPE Value
“= (1— L) (2) x: Position Along Sequence
a

Horizontal Stretch of Parabola

Results

Simulated Shape Data Accuracy vs. Cleaned Shape Data Accuracy
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Figure 4: Accuracy ranges for 1000 simulated SHAPE data (blue), accuracy ranges
for 1000 simulated “cleaned” SHAPE data (orange), and non-directed sequence ac-
curacy (gray lines).

e For the ten 16s rRNA sequences our HMM was approximately 76%
correct.

e Of the ten 16s TRNA sequences tested only one (FE.Coli) showed
Improvement.

e Median accuracies for all “cleaned” sequences maintained accuracies
above that of non-directed sequences.

e On average the change in median accuracy was -8.139%.

Conclusions & Future Research

e Despite decrease in median accuracy the method of using a HMM
and “cleaned” SHAPE values shows promise for improving RNA sec-
ondary structure prediction accuracy as shown in (Results).

e Potential methods to improve our model include: changing hidden
state structure, including different RNA training sets, and altering
the function that assigns “cleaned” SHAPE values.
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