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Motivation

Linear compressive sensing involves dimension re-
duction on a high dimensional vector set on which
you apply a short, fat Gaussian matrix to the vector
x.
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In one-bit sensing, we replace the vectors Zx with
Bmx = sign(Zx).

One-bit sensing is an extreme form of non-linearity,
one that has many practical applications.

Question

Can one-bit sensing effectively distinguish points
with only a few bit measurements?

Background

•The Hamming cube is Hm = {0, 1}m.
•SN−1 is the unit sphere ∈ RN .

• In one-bit, we can only know the direction of x,
not the length.

Restricted Isometry Property

Let 0 < δ < 1
2, forX ⊂ SN−1, Bm satisfies δ-RIP

for all pairs x, y ∈ X if:
|dHm

(Bmx,Bmy)− dgeo(x, y)| ≤ δ.

Linear Johnson-Lindenstrauss Lemma

Let 0 < δ < 1
2, for X ⊂ RN , if m > lnn

δ2 (1 + 4δ), there exists a linear map A: RN → Rm such that for all
x, y ∈ X, | ‖Ax−Ay‖ − ‖x− y‖ | < δ ‖x− y‖ .

One-bit Johnson-Lindenstrauss Lemma

Let 0 < δ < 1
2, X ⊂ SN−1, if m > lnn+ln 2

δ2 , there exists a map Bm: SN−1→ Hm which is δ-RIP.
This bound closely resembles the linear case.

Differences in Metrics

Phase Transition Theorems

1. If X ⊂ SN−1 is n pairwise orthogonal unit vectors, Bm is one-to-one with probability 1 − e−k when
m ≥ 2 log2 n + k.

2. Let X ⊂ SN−1 be n pairwise orthogonal unit vectors. Set Π(δ,m) = P(Bm is δ -RIP),Mδ,k = lnn
δ2 + ln k

δ2 .

Π(δ,m) ≥ 1− e−k for all m > Mδ,k + O
ln(n + k) + ln ln(n+k)

δ2



Π(δ,m) ≤ 1− e−k for all m < Mδ,k − O
ln(n + k) + ln ln(n+k)

δ2

 .

The δ−RIP Simulations

Figure 1: This is the special case of the 1
2-RIP. Figure 2: This is a visual representation of Theorem 2.The red

and green curves effectively bound the probability curve.

The Wedge Properties

Wx,y

The wedge Wx,y is defined as: {θ ∈ SN−1 : sgn(x ·
θ) 6= sgn(y · θ)}. These are the θ which distinguish
between points x and y under Bm.
Important fact:

P (Wx,y) = cos−1(x · y)
π

= dgeo(x, y).
These observations allow us to use delicate prop-
erties of Bernoulli distributions to prove the main
results.

Conclusions

The bounds in the one-bit case are the same as
the bounds in the linear case, even though the
one-bit case uses less information. The proba-
bility that Bm satisfies δ-RIP passes through a
phase transition. It changes from zero to one in a
tight window of m. Thus, we can conclude that
it is possible to distinguish between points in a
one-bit context, and preserve pairwise distances
with only a few measurements.
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