One-bit Sensing: Phase Transitions for the RIP Property

Amadou Bah, Bryson Kagy, Emily Smith

Georgia State Perimeter College, Georgia Institute of Technology, Agnes Scott College

Motivation

Linear compressive sensing involves dimension reduction on a high dimensional vector set on which you apply a short, fat Gaussian matrix to the vector x.

In one-bit sensing, we replace the vectors $Z x$ with

$$
\mathbf{B}_{m} x=\operatorname{sign}(Z x) .
$$

One-bit sensing is an extreme form of non-linearity, one that has many practical applications.

26,519 likes, 423,640 dislikes

Question

Can one-bit sensing effectively distinguish points with only a few bit measurements?

Background

- The Hamming cube is $\mathbb{H}_{m}=\{0,1\}^{m}$.
- \mathbb{S}^{N-1} is the unit sphere $\in \mathbb{R}^{N}$.
- In one-bit, we can only know the direction of x, not the length

Restricted Isometry Property
Let $0<\delta<\frac{1}{2}$, for $\mathbf{X} \subset \mathbb{S}^{N-1}, \mathbf{B}_{m}$ satisfies δ-RIP for all pairs $x, y \in \mathbf{X}$ if:
$\left|d_{\mathbb{H}_{m}}\left(\mathbf{B}_{m} x, \mathbf{B}_{m} y\right)-d_{\text {geo }}(x, y)\right| \leq \delta$.

Linear Johnson-Lindenstrauss Lemma

Let $0<\delta<\frac{1}{2}$, for $\mathbf{X} \subset \mathbb{R}^{N}$, if $m>\frac{\ln n}{\delta^{2}}(1+4 \delta)$, there exists a linear map $\mathbf{A}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{m}$ such that for all $x, y \in \mathbf{X}, \left\lvert\, \| \AA$| $\mathbf{A} x-\mathbf{A} y\\|-\\| x-y\\|\mid<\delta\\| x-y \\|$. |
| :---: |\right.

One-bit Johnson-Lindenstrauss Lemma

Let $0<\delta<\frac{1}{2}, \mathbf{X} \subset \mathbb{S}^{N-1}$, if $m>\frac{\ln n+\ln 2}{\delta^{2}}$, there exists a map $\mathbf{B}_{m}: \mathbb{S}^{N-1} \rightarrow \mathbb{H}_{m}$ which is δ-RIP. This bound closely resembles the linear case.

Differences in Metrics

Phase Transition Theorems

1. If $\mathbf{X} \subset \mathbb{S}^{N-1}$ is n pairwise orthogonal unit vectors, \mathbf{B}_{m} is one-to-one with probability $1-e^{-k}$ when $m \geq 2 \log _{2} n+k$.
2. Let $\mathbf{X} \subset \mathbb{S}^{N-1}$ be n pairwise orthogonal unit vectors. Set $\Pi(\delta, m)=\mathbb{P}\left(\mathbf{B}_{m}\right.$ is δ-RIP $), M_{\delta, k}=\frac{\ln n}{\delta^{2}}+\frac{\ln h}{\delta^{2}}$. $\Pi(\delta, m) \geq 1-e^{-k}$ for all $m>M_{\delta, k}+\mathrm{O}\left(\ln (n+k)+\frac{\ln \ln (n+k)}{\delta^{2}}\right)$
$\Pi(\delta, m) \leq 1-e^{-k}$ for all $m<M_{\delta, k}-\mathrm{O}\left(\ln (n+k)+\frac{\ln \ln \left(\frac{\delta^{2}}{\delta^{2}+k}\right)}{\left.\underset{\delta^{2}}{ }\right)}\right.$
The δ-RIP Simulations

Figure 1: This is the special case of the $\frac{1}{2}$-RIP

Figure 2: This is a visual representation of Theorem 2.The red and green curves effectively bound the probability curve.

The Wedge Properties

The wedge $W_{x, y}$ is defined as: $\left\{\theta \in \mathbb{S}^{N-1}: \operatorname{sgn}(x\right.$ $\theta) \neq \operatorname{sgn}(y \cdot \theta)\}$. These are the θ which distinguish between points x and y under \mathbf{B}_{m}. Important fact:

$$
\begin{aligned}
\mathbb{P}\left(W_{x, y}\right) & =\frac{\cos ^{-1}(x \cdot y)}{\pi} \\
& =d_{\text {geo }}(x, y) .
\end{aligned}
$$

These observations allow us to use delicate properties of Bernoulli distributions to prove the main results.

Conclusions

The bounds in the one-bit case are the same as the bounds in the linear case, even though the one-bit case uses less information. The probability that B_{m} satisfies δ-RIP passes through phase transition. It changes from zero to one in a tight window of m. Thus, we can conclude that it is possible to distinguish between points in a one-bit context, and preserve pairwise distances with only a few measurements.

Acknowledgements

- Special thanks to Doctors: Michael Lacey, Robert Kesler, and Scott Spencer for their guidance and support.
- We would also like to thank Georgia Institute of Technology, and the School of Mathematics for providing us with resources that helped perform the research

This research was funded in part by the National Science Foundation.

