

Motivation

Linear compressive sensing involves dimension reduction on a high dimensional vector set on which you apply a short, fat Gaussian matrix to the vector \mathcal{X} .

In one-bit sensing, we replace the vectors Zx with $\mathbf{B}_m x = sign(Zx).$

One-bit sensing is an extreme form of non-linearity, one that has many practical applications.

26,519 likes, 423,640 dislikes

Question

Can one-bit sensing effectively distinguish points with only a few bit measurements?

Background

- The Hamming cube is $\mathbb{H}_m = \{0, 1\}^m$.
- \mathbb{S}^{N-1} is the unit sphere $\in \mathbb{R}^N$.
- In one-bit, we can only know the direction of x, not the length.

Restricted Isometry Property

Let $0 < \delta < \frac{1}{2}$, for $\mathbf{X} \subset \mathbb{S}^{N-1}$, \mathbf{B}_m satisfies δ -RIP for all pairs $x, y \in \mathbf{X}$ if: $|d_{\mathbb{H}_m}(\mathbf{B}_m x, \mathbf{B}_m y) - d_{geo}(x, y)| \le \delta.$

One-bit Sensing: Phase Transitions for the RIP Property

Amadou Bah, Bryson Kagy, Emily Smith

Georgia State Perimeter College, Georgia Institute of Technology, Agnes Scott College

Linear Johnson-Lindenstrauss Lemma

Let $0 < \delta < \frac{1}{2}$, for $\mathbf{X} \subset \mathbb{R}^N$, if $m > \frac{\ln n}{\delta^2}(1+4\delta)$, there exists a linear map \mathbf{A} : $\mathbb{R}^N \to \mathbb{R}^m$ such that for all $x, y \in \mathbf{X}, |\|\mathbf{A}x - \mathbf{A}y\| - \|x - y\|| < \delta \|x - y\|$.

One-bit Johnson-Lindenstrauss Lemma

Let $0 < \delta < \frac{1}{2}$, $\mathbf{X} \subset \mathbb{S}^{N-1}$, if $m > \frac{\ln n + \ln 2}{\delta^2}$, there exists a map \mathbf{B}_m : $\mathbb{S}^{N-1} \to \mathbb{H}_m$ which is δ -RIP. This bound closely resembles the linear case.

Differences in Metrics

Phase Transition Theorems

1. If $\mathbf{X} \subset \mathbb{S}^{N-1}$ is *n* pairwise orthogonal unit vectors, **B** $m \ge 2\log_2 n + k.$

2. Let $\mathbf{X} \subset \mathbb{S}^{N-1}$ be *n* pairwise orthogonal unit vectors. Set $\Pi(\delta,m) \ge 1 - e^{-k}$ for all $m > M_{\delta,k} + O\left(\ln(n+k) + \frac{\ln\ln(n+k)}{\delta}\right)$ $\Pi(\delta, m) \le 1 - e^{-k} \text{ for all } m < M_{\delta,k} - O\left[\ln(n+k) + \frac{\ln\ln(n+k)}{\delta^2}\right].$

Figure 1: This is the special case of the $\frac{1}{2}$ -RIP.

$$\mathbf{B}_m$$
 is one-to-one with probability $1 - e^{-k}$ when

$$\underbrace{\operatorname{Pet} \Pi(\delta, m) = \mathbb{P}(\mathbf{B}_m \text{ is } \delta \operatorname{-RIP}), M_{\delta,k} = \frac{\ln n}{\delta^2} + \frac{\ln k}{\delta^2}}_{(n+k)}}_{(n+k)}$$

Important fact:

results.

The bounds in the one-bit case are the same as the bounds in the linear case, even though the one-bit case uses less information. The probability that B_m satisfies δ -RIP passes through a phase transition. It changes from zero to one in a tight window of m. Thus, we can conclude that it *is* possible to distinguish between points in a one-bit context, and preserve pairwise distances with only a few measurements.

- support.

The Wedge Properties

The wedge $W_{x,y}$ is defined as: $\{\theta \in \mathbb{S}^{N-1} : \operatorname{sgn}(x \cdot$ $\theta \neq \operatorname{sgn}(y \cdot \theta)$. These are the θ which distinguish between points x and y under \mathbf{B}_m .

 $\mathbb{P}(W_{x,y}) = \frac{\cos^{-1}(x \cdot y)}{\pi}$ $= d_{geo}(x,y).$

These observations allow us to use delicate properties of Bernoulli distributions to prove the main

Conclusions

Acknowledgements

• Special thanks to Doctors: Michael Lacey, Robert Kesler, and Scott Spencer for their guidance and

• We would also like to thank Georgia Institute of Technology, and the School of Mathematics for providing us with resources that helped perform the research.

• This research was funded in part by the National Science Foundation.