Dynamics of Mapping Class Groups
Ian Katz, Yandi Wu, Yihan Zhou
Advisors: Dan Margalit, Balázs Strenner
Georgia Institute of Technology

Background

How efficient is this taffy puller?

n-armed taffy pulling action ↔ homeomorphism of an n-punctured plane

Nielsen-Thurston Classification Theorem → to every homeomorphism of a surface we can attach a real number called the stretch factor

Setup:
- \(c \) = curve,
- \(f \) = homeomorphism,
- \(a \) = reference arc.

Stretch Factor = growth rate of \(i(f^n(c), a) \)

Margalit-Strenner-Yurttas: Quadratic time algorithm that computes the stretch factor.

Our Project: Implement the algorithm.

Example

\[f(c) \]

\[f^2(c) \]

Stretch Factor = \(\phi^2 \approx 2.618 \)

The General Case

Challenge: How can we compute \(f^n(c) \) for arbitrary \(f, n, \) and \(c \)?

Representing curves as measured train tracks:

A basis of train tracks:

Image of a train track under a homeomorphism:

Unzip \(h(t) \) to obtain a basis train track:

In progress work: Generalize across all surfaces, homeomorphisms, and curves.