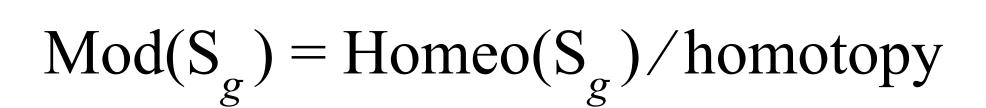
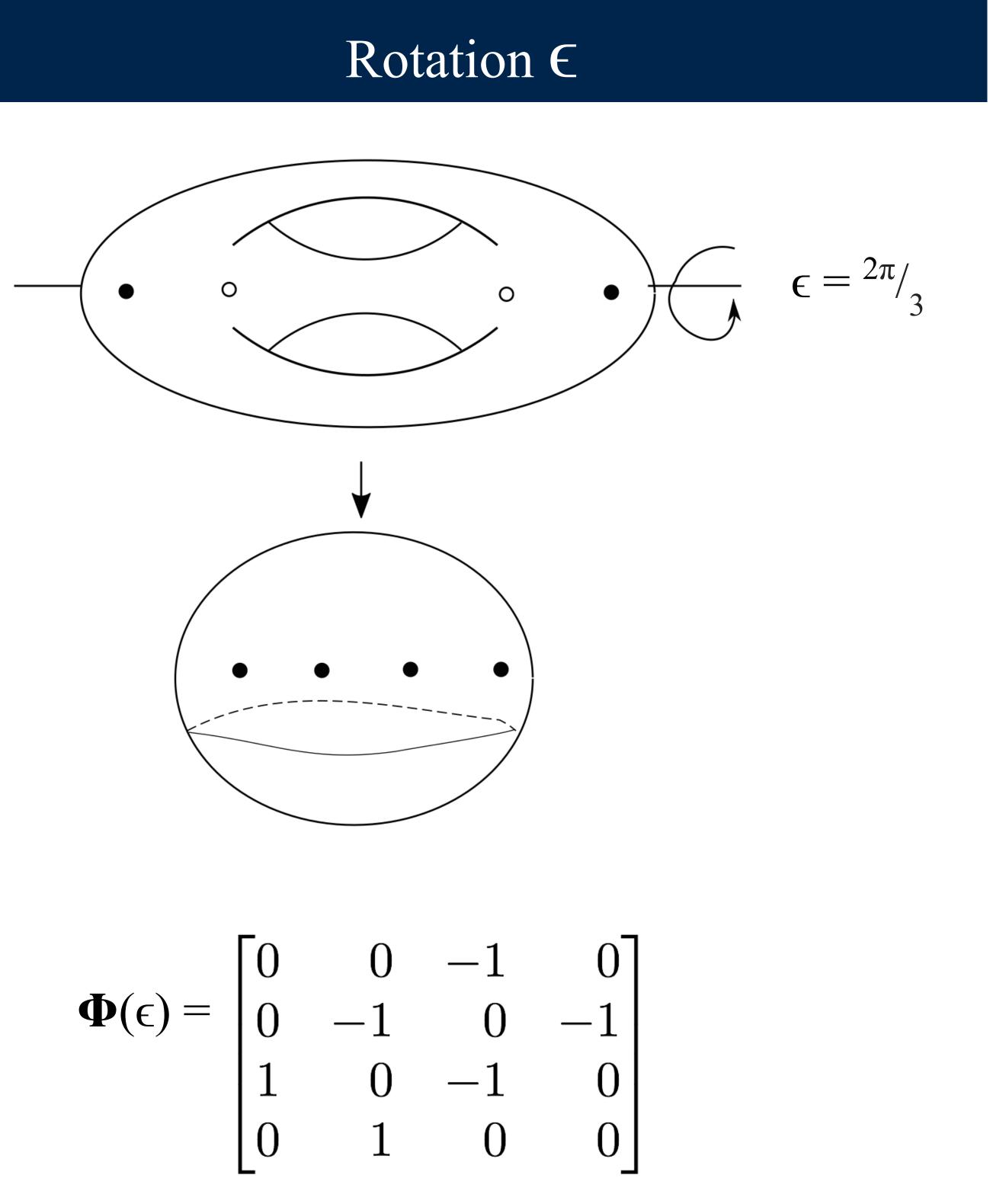


Mapping Class Group



 $\Phi: Mod(S_g) \rightarrow Sp(2g, \mathbb{Z})$ induced by the action on $H_1(S_{\sigma})$



Symmetric Mapping Class Group

 $SMod(S_2)$ is the homotopy classes of fiber-preserving homeomorphisms of S_2 .

Mapping Class Groups, Covering Spaces, and Symplectic Matrices

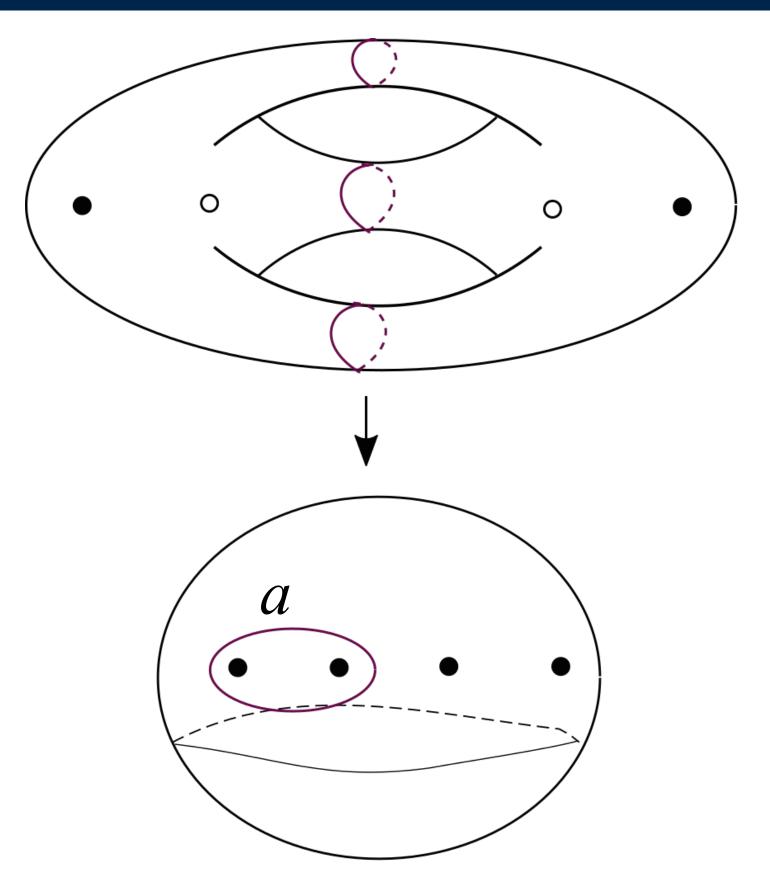
Sarah Davis, Laura Stordy, Ziyi (Queena) Zhou

Question

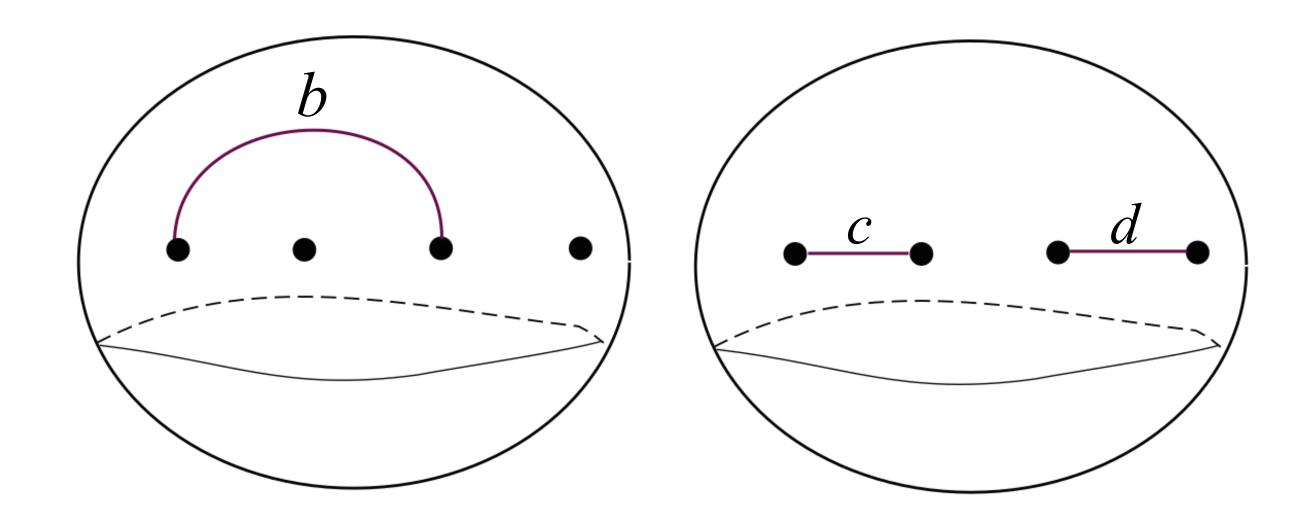
What is the image of $SMod(S_2)$ in $Sp(4, \mathbb{Z})$?

Note:
$$\Phi(SMod(S_2)) \subseteq N$$

Elements of $SMod(S_2)$



A Dehn twist about *a* in $S_{0,4}$ lifts to a composition of Dehn twists about three curves in S₂, denoted [•] A[•]

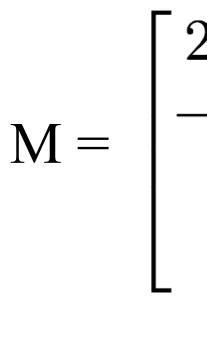


The half twist about *b* lifts to B. The composition of half twists about *c* and *d* lifts to C.

- $N_{Sp(4, \mathbb{Z})}(\langle \Phi(\epsilon) \rangle)$

- homeomorphisms in S_{04} .
- for each element of the normalizer.

Example:



Theorem (Davis-Stordy-Zhou)

$\Phi(SMod(S))$

Strategy

Step 1: Calculate $N_{Sp(4, \mathbb{Z})}(\langle \Phi(\epsilon) \rangle)$ in MATLAB Output: 12 infinite families of matrices

Step 2: Find $\Phi(g_i)$ for g_i generators of SMod(S_2). Ghaswala-Winarski give the generators as lifts of

Step 3: Find a product of matrices in $\Phi(SMod(S_2))$

2x	1	-x	[0
-1	0	0	0
x	0	-2x	-1
0	0	1	0

 $\mathbf{M} = \mathbf{\Phi}(\mathbf{B} \circ \mathbf{T}_{\mathbf{A}}^{x} \circ \mathbf{C})$

$$S_2)) = N_{Sp(4,\mathbb{Z})}(\langle \Phi(\epsilon) \rangle)$$

Acknowledgments

Thanks to advisors Becca Winarski and Dan Margalit, as well as Georgia Tech and the NSF.