
Mapping Class Group

Mod(Sg ) = Homeo(Sg ) ⁄ homotopy 
  
ᵔ: Mod(Sg ) → Sp(2g, ℤ) induced by the action 
on H1(Sg )

Rotation ϵ Elements of SMod(S2)

Theorem (Davis-Stordy-Zhou)
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Question

What is the image of SMod(S2) in Sp(4, ℤ)?

Note: ᵔ(SMod(S2)) ⊆  NSp(4, ℤ)(<ᵔ(ϵ)>)

A Dehn twist about a in S0,4 lifts to a composition 
of Dehn twists about three curves in S2, denoted 
TA.

The half twist about b lifts to B. The composition 
of half twists about c and d lifts to C.

Strategy

ᵔ(ϵ) =

SMod(S2) is the homotopy classes of fiber-preserving 
homeomorphisms of S2.

Symmetric Mapping Class Group

b

c d

ᵔ(SMod(S2)) = NSp(4,ℤ)(<ᵔ(ϵ)>)

ϵ = 2π/3 

Step 1: Calculate NSp(4, ℤ)(<ᵔ(ϵ)>) in MATLAB
Output: 12 infinite families of matrices

Step 2: Find ᵔ(gi ) for gi generators of SMod(S2). 
Ghaswala-Winarski give the generators as lifts of 
homeomorphisms in S0,4.

Step 3: Find a product of matrices in ᵔ(SMod(S2)) 
for each element of the  normalizer.

M = ᵔ(B ○ TA
x ○ C)

 M = 

Example:

a


