Introduction

• A line arrangement \mathcal{A} is a finite collection of *n* lines in \mathcal{RP}^2 . A line arrangement is simple if every intersection point is made by two unique lines. Denote by p_{μ} the number of k-sided faces in the cell complex defined by \mathcal{A} .

Georgia Tech College of Sciences

 Roudneff proved in [1] that for every line \mathcal{L} of \mathcal{A} , there are at least three 4-gons or 5-gons having an edge on \mathcal{L} , which implies:

 $4p_4 + 5p_5 \ge 3n$

Conjecture Improving the **Bound**

- Let \mathcal{A} be a simple arrangement of $n \ge 5$ lines. Then, $4p_{4} + 5p_{5} \ge 4n$. More precisely, for every line \mathcal{L} of \mathcal{A} , there exist at least four 4-gons and/or 5-gons having an edge on \mathcal{L} .
- The conjecture is proven when there only exist 3, 4, and/or 5 gons in A. It is unknown whether the conjecture is still true in other cases.

Let T be a face of A, L and \mathcal{L} 'be the lines of \mathcal{A} defined by two edges of \mathcal{F} . The face \mathcal{F} and the two lines \mathcal{L}' and \mathcal{L}' define four closed regions of \mathcal{RP}^2 . Let \mathcal{E} be either \mathcal{E}_{1} or \mathcal{E}_{2} .

Roudneff proved in [1] that if $s(\mathcal{E}) \ge 2$, there exists at least one 4-gon or 5-gon of \mathcal{E} having an edge on \mathcal{L} . We *conjectured* that if $s(\mathcal{E}) \ge 3$, there exist at least two 4-gons and/or 5-gons of \mathcal{E} having an edge on \mathcal{L} . However, we found counterexamples to this guess.

A Conjecture on the Number of Quadrilaterals and Pentagons in Simple Line Arrangements

Catherine Chen¹, Nhu Do², Devraj Duggal¹ Georgia Institute of Technology¹, Mount Holyoke College²

Main Idea

Let $s(\mathcal{E})$ be the number of edges on \mathcal{L} (equivalently \mathcal{L}') that are included in \mathcal{E} .

Counterexample

For any arbitrary large *n*, there are infinitely many cases when $s(\mathcal{E}) \ge n$ and there exist only one 4-gon or 5-gon of \mathcal{E} having an edge on \mathcal{L} .

[1] Roudneff, J. P. (1987). Quadrilaterals and pentagons in arrangements of lines. Geometriae Dedicata, 23(2), 221-227.

Further Research

- Prove or disprove whether the conjecture holds true when there exists one or more k-sided face(s) in \mathcal{A} , where $k \ge 6$
- Find other relationships among the k-gons (i.e. other inequalities among the p_{k} 's)

Applications

- Line arrangements in Architecture
- Oriented matroids
- Classification of structures in Computer Vision

Acknowledgements

We would like express our gratitude to Professor Josephine Yu for advising us during this project. Additionally, we would like to acknowledge James Anderson, Cvetelina Hill and Charles Wang for help and inspiration.

