Name				

2 May 2005 Final Exam Page 1 of 3

Instructions:

Math 3215 Andrew

- 1. You may use the assigned text by Hogg and Tanis, except that you may not use the answers section. Calculators may be used.
- 2. If you use a table in the text to, state which table you are using and the page on which it appears. If you use a built in function on your calculator instead of referring to a table in the text, state which function, and the calculator model number.
- 3. Please do all problems. Problems count equally.
- 4. Be sure to show your work and explain your reasoning.
- 1. (25) a. A gambler rolls two dice and counts the sums of the spots. What's the probability that the sum of the spots is 5, given that it is either 5 or 7?
 - b. Orders for pastrami sandwiches on rye bread are placed at a delicatessen according to a Poisson process with mean 4 orders per hour. What's the probability that during a 3 hour period at least 10, but no more than 20 orders for these sandwiches are placed?
 - c. Cards are drawn from a standard deck. Compute the probability that the sixth time a spade is drawn occurs on the 13th draw if (i) the cards are drawn with replacement and (ii) without replacement.
- 2. (25) A large bin at a popular garden center contains numerous bags of tulip bulbs. 75% of the bags are "Dutch Uncle" brand and contain five red and ten yellow bulbs, while the remaining bags are "Dutch Aunt" brand and contain fifteen red and ten yellow. A bag is selected at random, and one bulb is chosen from the bag. Find
 - a. The probability the bulb selected is red.
 - b. The probability the bulb selected is yellow.
 - c. The probability that the bag selected is "Dutch Aunt" brand, given that the bulb is red.

2 May 2005 Final Exam Page 2 of 3

Math 3215 Andrew

3. (25) Suppose X has exponential distribution with mean $\theta = 30$.

a. Compute
$$P(10 < X < 20)$$

- b. Compute P(30 < X)
- c. Compute P(X > 50 | X > 20)
- d. If X_1 , X_2 , K X_{10} are a random sample from this distribution, approximate $P(X_1 + \cdots + X_{10}) > 350$.
- 4. (25) Random variables X and Y have joint probability density function $f(x,y) = \frac{5y}{2} \text{ for } \{(x,y) | 0 \le x \le 1 \text{ and } x^2 \le y \le 1 \}.$
 - a. Compute the marginal probability density functions $f_1(x)$ and $f_2(y)$.
 - b. Compute the means μ_{x} and μ_{y} .
 - c. Compute P(X < Y).
- 5. (25) Suppose a random sample of n from a normal distribution with unknown mean and unknown variance produces a sample mean $\overline{X} = 75.31$ and sample variance $S_X^2 = 210$.
 - a. Find the endpoints and length of a 90% confidence interval for the unknown variance σ^2 , assuming n = 12. Please express your answers in decimals.
 - b. Find the endpoints and length of a 90% confidence interval for the unknown variance σ^2 , assuming n = 30. Please express your answers in decimals.
- 6. (25) An advertiser for "Crust Gumpaste" (first advertised in the December 1958 $Mad\ Magazine$) claims that 75% of dentists recommends "Crust" for their patients having no teeth. A popular Atlanta consumer advocate doubts this claim, and tests the hypothesis $H_0: p=.75$ against the alternative $H_0: p<.75$. He finds that 261 dentists in a sample of 370 recommend "Crust" for their toothless patients. Which hypothesis is accepted for significance level

a.
$$\alpha = .05$$

b.
$$\alpha = .01$$

Math 3215 Andrew

Answers.

1. a.
$$\frac{4}{10}$$

1. a.
$$\frac{4}{10}$$
 b. .746 c. i. $\binom{12}{5} \left(\frac{1}{4}\right)^6 \left(\frac{3}{4}\right)^7$ ii. $\binom{\binom{13}{5}\binom{39}{7}}{\binom{52}{12}} \left(\frac{8}{40}\right)$

2. a.
$$\frac{2}{5}$$
 b. $\frac{3}{5}$ c. $\frac{3}{8}$

b.
$$\frac{3}{5}$$

c.
$$\frac{3}{8}$$

3. a.
$$e^{-\frac{1}{3}} - e^{-\frac{2}{3}}$$
 b. e^{-1} c. e^{-1} d. .2991

b.
$$e^{-1}$$

c.
$$e^{-1}$$

4. a.
$$f_1(x) = \frac{5}{4}(1-x^4)$$
 $f_2(y) = \frac{5}{2}y^{\frac{3}{2}}$ b. $\mu_X = \frac{5}{12}$, $\mu_Y = \frac{5}{7}$

b.
$$\mu_x = \frac{5}{12}$$
, $\mu_y = \frac{5}{7}$

c.
$$\frac{5}{6}$$

6. We reject H_0 at the .05 level. We do not reject H_0 at the .01 level.