Math 4305 Andrew

Instructions: 1. You may use your text by Strang and one sheet of notes. Calculators may also be used.

- 2. Show your work and explain your answers and reasoning.
- 3. Do any 6 of the 7 problems. Clearly indicate the problem you *do not want graded* on the table below.
- 1. (25) Find all values of the parameter *a* for which the following system of equations has a solution.

$$x + 3y + 3z = 1$$

 $x + y + 6z = a$
 $-x + y - 9z = a$

- 2. (25) A matrix **A** is said to be *skew-symmetric* if $\mathbf{A}^{\mathbf{T}} = -\mathbf{A}$. Exhibit a basis for the vector space of all n by n skew-symmetric matrices and calculate the dimension of this vector space.
- 3. (25) Let P denote the plane spanned by the vectors 0 and 2. $-1 \qquad 0$
 - a. Determine the matrix \mathbf{R} for the orthogonal projection onto P.
 - b. Determine the matrix **H** for the (orthogonal) reflection across *P*.
- 4. (25) Calculate the eigenvalues and eigenvectors of $\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 2 & 2 \\ -1 & 0 & 3 \end{bmatrix}$ to a diagonal matrix?

5. (25) On the first hour test we saw that for every n by n matrix \mathbf{A} , there is a polynomial q(x) of degree at most n^2 such that $q(\mathbf{A}) = \mathbf{0}$ (the identically 0 matrix). We later proved the Cayley-Hamilton Theorem, which states that if \mathbf{A} is any n by n matrix, and p denotes its characteristic polynomial, then $p(\mathbf{A}) = \mathbf{0}$. The characteristic polynomial, or course, has degree n.

The *minimal polynomial* of **A** is defined to be the polynomial m with leading coefficient 1 of smallest degree for which $m(\mathbf{A}) = \mathbf{0}$.

- a. Calculate the characteristic and minimal polynomials of $\mathbf{A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$
- b. Prove that if $\bf A$ and $\bf B$ are similar matrices, then $\bf A$ and $\bf B$ have the same minimal polynomial.
- 6. (25) The *condition number* of a matrix **A** is defined to be $c(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\|$, and it provides a measure of the sensitivity (inherent and due to round-off error) of $\mathbf{A} \mathbf{x} = \mathbf{b}$. Although the condition number is usually only estimated, in this problem we'll ask you to actually calculate two of them.
 - a. Using $\|\mathbf{C}\|_2$ for all matrices, show that the condition number of any orthogonal matrix is 1.
 - b. The *n* by *n Hilbert matrix* arises from the normal equations for least-squares polynomial approximation, and is given by $\mathbf{H} = (h_{i,j})$ with

$$h_{i,j} = \frac{1}{i+j-1}, \quad 1 \quad i,j \quad n.$$

Write down the 4 by 4 Hilbert matrix, and compute its condition number, using $\|\mathbf{C}\|$ for all matrices. The inverse of this matrix is

7. (25) Suppose $\mathbf{A} = (a_{i,j})$ is a matrix with $a_{i,j} > 0$ for all i,j, and $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \end{pmatrix}$ is a nonzero vector with v_j 0 for all j. Show that all coordinates of \mathbf{A} \mathbf{v} are strictly positive.

Answers

- 1. The system has a solution if and only if $a = \frac{1}{3}$.
- 2. Let $\mathbf{B}_{i\,j}$ be the n by n matrix with a 1 in position ij and -1 in position ji. Then the collection of matrices $\mathbf{B}_{i\,j}$ with i < j is a basis for the space of skew-symmetric matrices. Thus the dimension is $\frac{n(n-1)}{2}$.

- 4. = 2, 2, 2. Two linearly independent eigenvectors are $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. The matrix is not diagonalizable.
- 5. a. The characteristic polynomial is $(-2)^3$. The minimal polynomial is $(-2)^2$.
 - b. Start by showing that if $\mathbf{A} = \mathbf{S}^{-1}\mathbf{B}\mathbf{S}$, then $p(\mathbf{A}) = \mathbf{S}^{-1}p(\mathbf{B})\mathbf{S}$.
- 6. a. If **Q** is orthogonal, then $\|\mathbf{Q}\|_2 = \sqrt{\text{maxeigenvalueof }\mathbf{Q}^T\mathbf{Q}} = 1$ since $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$, and \mathbf{Q}^{-1} is also orthogonal.
 - b. Use the fact that $\|C\|$ is the maximum absolute row sum of C.
- 7. Please see your class notes.