Here are two sample final exams.
Final Exam Fall 2000

1. (25) Find all values of the parameter a for which the following system of equations has a solution.

$$
\begin{aligned}
x+3 y+3 z & =1 \\
x+y+6 z & =a \\
-x+y-9 z & =a
\end{aligned}
$$

2. (25) A matrix \mathbf{A} is said to be skew-symmetric if $\mathbf{A}^{\mathrm{T}}=-\mathbf{A}$. Exhibit a basis for the vector space of all n by n skew-symmetric matrices and calculate the dimension of this vector space.
3. (25) Let P denote the plane spanned by the vectors $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$.
a. Determine the matrix \mathbf{R} for the orthogonal projection onto P.
b. Determine the matrix \mathbf{H} for the (orthogonal) reflection across P.
4. (25) Calculate the eigenvalues and eigenvectors of $\mathbf{A}=\left(\begin{array}{ccc}1 & 0 & 1 \\ -2 & 2 & 2 \\ -1 & 0 & 3\end{array}\right)$. Is \mathbf{A} similar to a diagonal matrix?
5. (25) On the first hour test we saw that for every n by n matrix \mathbf{A}, there is a polynomial $q(x)$ of degree at most n^{2} such that $q(\mathbf{A})=\mathbf{0}$ (the identically 0 matrix). We later proved the Cayley-Hamilton Theorem, which states that if \mathbf{A} is any n by n matrix, and p denotes its characteristic polynomial, then $p(\mathbf{A})=\mathbf{0}$. The characteristic polynomial, or course, has degree n.

The minimal polynomial of \mathbf{A} is defined to be the polynomial m with leading coefficient 1 of smallest degree for which $m(\mathbf{A})=\mathbf{0}$.
a. Calculate the characteristic and minimal polynomials of $\mathbf{A}=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$.
b. Prove that if \mathbf{A} and \mathbf{B} are similar matrices, then \mathbf{A} and \mathbf{B} have the same minimal polynomial.
6. (25) The condition number of a matrix \mathbf{A} is defined to be $c(\mathbf{A})=\|\mathbf{A}\| \mathbf{A}^{-1} \|$, and it provides a measure of the sensitivity (inherent and due to round-off error) of $\mathbf{A} \mathbf{x}=\mathbf{b}$. Although the condition number is usually only estimated, in this problem we'll ask you to actually calculate two of them.
a. Using $\mid \mathbf{C} \|_{2}$ for all matrices, show that the condition number of any orthogonal matrix is 1 .
b. The n by n Hilbert matrix arises from the normal equations for least-squares polynomial approximation, and is given by $\mathbf{H}=\left(h_{i, j}\right)$ with
$h_{i, j}=\frac{1}{i+j-1}, \quad 1 \leq i, j \leq n$.
Write down the 4 by 4 Hilbert matrix, and compute its condition number, using |C $\|_{\infty}$ for all matrices. The inverse of this matrix is

$$
\left(\begin{array}{cccc}
16 & -120 & 240 & -140 \\
-120 & 1200 & -2700 & 1680 \\
240 & -2700 & 6480 & -4200 \\
-140 & 1680 & -4200 & 2800
\end{array}\right)
$$

7. (25) Suppose $\mathbf{A}=\left(a_{i, j}\right)$ is a matrix with $a_{i, j}>0$ for all i, j, and $\mathbf{v}=\left(\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right)$ is a nonzero vector with $v_{j} \geq 0$ for all j. Show that all coordinates of $\mathbf{A} \mathbf{v}$ are strictly positive.

Final Exam Summer 2001

1. For the matrix $\mathbf{A}=\left(\begin{array}{cccc}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right)$
a. Find the $\mathbf{L} \mathbf{U}$ factorization for \mathbf{A}.
b. Use the $\mathbf{L U}$ factorization to solve $\mathbf{A} \mathbf{x}=\left(\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right)$.
2. Determine
a. A basis for the column space, and
b. A basis for the nullspace

$$
\text { of the matrix } \mathbf{B}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & 2 \\
1 & 1 & 2 & 3 & 4 \\
-1 & 2 & 1 & -1 & -2 \\
1 & 1 & 2 & 2 & 3
\end{array}\right) \text {. }
$$

3. Calculate the least squares solution of $\left(\begin{array}{cc}1 & 0 \\ -2 & 1 \\ 1 & 0 \\ 1 & 1\end{array}\right) x=\left(\begin{array}{c}-4 \\ -7 \\ 4 \\ 6\end{array}\right)$.
4. Either find the matrices requested, or explain why no such matrices exists.
a. A matrix \mathbf{S} and a real diagonal matrix \mathbf{D} such that $\mathbf{S}^{-1} \mathbf{A} \mathbf{S}=\mathbf{D}$, where

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & -1 & 2 \\
0 & 0 & 1
\end{array}\right) .
$$

b. An orthogonal matrix \mathbf{Q} and a real diagonal matrix \mathbf{D} such that $\mathbf{Q}^{\mathbf{T}} \mathbf{A} \mathbf{Q}=\mathbf{D}$, again for

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & -1 & 2 \\
0 & 0 & 1
\end{array}\right)
$$

c. A matrix \mathbf{S} and a real diagonal matrix \mathbf{D} such that $\mathbf{S}^{-1} \mathbf{A} \mathbf{S}=\mathbf{D}$, where

$$
\mathbf{A}=\left(\begin{array}{cccc}
1 & 1 & -1 & -1 \\
1 & 0 & -1 & 1 \\
1 & 1 & -1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

5. a. Prove that if \mathbf{U} and \mathbf{V} are unitary, then $\mathbf{A}=\mathbf{U}^{\mathbf{H}} \mathbf{V} \mathbf{U}$ is also unitary.
b. Prove that if a matrix is both upper triangular and unitary, then it is diagonal.
c. Use your results from parts a and b, together with Schur's Lemma (see the index) to prove that every unitary matrix can be diagonalized by a unitary matrix. I.e., show that if \mathbf{A} is unitary, then there exists a unitary matrix \mathbf{U} such that $\mathbf{U}^{\mathbf{H}} \mathbf{A} \mathbf{U}=\mathbf{D}$ is diagonal.
d. Can the matrix \mathbf{D} in part c be chosen to have real entries?
6. The function

$$
f(x, y, z)=2 x^{2}-6 x+2 x y-8 y+3 y^{2}+3 z y-3 z+x y z-x z+7
$$

has a critical posint at $(1,1,0)$. Determine whether the function has a local maximum, local minimum, or saddle point at ($1,1,0$).
7. For the linear system

$$
\begin{aligned}
2 x-y+z= & -1 \\
2 x+2 y+2 z= & 4 \\
-x-y+2 z= & -5
\end{aligned}
$$

a. Find the Jacobi matrix for this system and compute its spectral radius.
b. Find the Gauss-Seidel matrix for this system and compute its spectral radius.
c. What conclusions can you draw from parts a and b ?

