Instructions:

1. Please do all 4 problems. Be sure to explain your work.
2. Closed book, calculators may be used.
3. Let $A=\left(\begin{array}{ccccc}1 & 2 & 0 & -3 & 1 \\ 2 & 1 & 3 & 0 & 0 \\ 1 & 1 & 1 & -1 & 0\end{array}\right)$.
a. Find all solutions to $\mathbf{A x}=\mathbf{0}$.
b. Find bases for the nullspace of \mathbf{A} and the column space of \mathbf{A}.
4. Let A be an $n \times n$ matrix. Prove that the set $\left\{I, A, A^{2}, \ldots, A^{n^{2}}\right\}$ is linearly dependent, and deduce that there exists a polynomial $q(\lambda)=a_{0}+a_{1} \lambda+\ldots+a_{n^{2}} \lambda^{n^{2}}$ of degree n^{2} such that $q(A)=a_{0} I+a_{1} A+\ldots+a_{n^{2}} A^{n^{2}}$ is the zero matrix.
5. Find matrices for the linear transformations
a. $\mathrm{R}=$ rotation of \mathbf{R}^{3} about the z-axis by 90 degrees, clockwise as viewed from the positive z-axis.
b. $\mathrm{S}=$ reflection of \mathbf{R}^{3} across the $y-z$ plane.
c. $\mathrm{P}=$ orthogonal projection of \mathbf{R}^{3} onto the $x-z$ plane.
d. R followed by S followed by P
6. a. (By applying the Gram-Schmidt process to the columns of A) find an orthogonal matrix Q and an upper triangular matrix R such that $\mathrm{A}=\mathrm{QR}$, where

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 2 & 4
\end{array}\right)
$$

b. Use your result from part a to find the least squares solution to the system of equations

$$
\begin{aligned}
a & =4 \\
a+b+c & =0 \\
a-b+c & =12 \\
a+2 b+4 c & =20
\end{aligned}
$$

Answers.

1. a. $\left(\begin{array}{c}-s-2 t \\ t+2 s \\ t \\ s \\ 0\end{array}\right)$ b. Basis for nullspace $\left\{\left(\begin{array}{c}-2 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-1 \\ 2 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}$. Basis for column space

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}
$$

2. Hint: What is the dimension of the space of n by n matrices?
3. a. $R=\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ b. $S=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ c. $P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
d. $\left(\begin{array}{ccc}0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
4. a. $Q=\frac{1}{2}\left(\begin{array}{ccc}1 & \frac{-1}{\sqrt{5}} & -1 \\ 1 & \frac{1}{\sqrt{5}} & -1 \\ 1 & \frac{-3}{\sqrt{5}} & 1 \\ 1 & \frac{-3}{\sqrt{5}} & 1\end{array}\right) \quad R=\left(\begin{array}{ccc}2 & 1 & 3 \\ 0 & \sqrt{5} & \sqrt{5} \\ 0 & 0 & 2\end{array}\right), \quad$ b. $\left(\begin{array}{c}1 \\ -5 \\ 7\end{array}\right)$
