Instructions:

- 1. Please do all four problems.
- 2. Closed book, calculators may be used, except on problem 4.
- 3. Be sure to explain your work.
- 1. (25) Determine whether the function

 $f(x, y, z) = 2x^{2} + 2xy + 3y^{2} - 4yz + 2z^{2} + 4$

has a maximum, minimum, or saddle point at (0,0,0).

- 2. (25) The matrix $\mathbf{B} = \begin{cases} 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 0 & 3 \end{cases}$, being symmetric, has real eigenvalues.
 - a. Use the pivots of B to determine how many negative eigenvalues B has.
 - b. Use the Gershgorin Circles Theorem to find real numbers and such that every eigenvalue of**B**satisfies .

3. (25) a. With the Euclidean norm $\|\mathbf{x}\|_2 = (x_i^2)^{\nu_2}$ used for vectors, let the norm of a matrix **A** be defined by $\|\mathbf{A}\| = \max \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}$: $\mathbf{x} = \mathbf{0}$.

- b. Give an example of a matrix A for which | | < ||A|| for *every* eigenvalue of A.
- c. Does there exist a symmetric matrix with | | < ||A|| for *every* eigenvalue of A?
- 4. (25) Starting with $\mathbf{x}_0 = \frac{0}{0}$, compute the first two Jacobi iterates \mathbf{x}_1 and \mathbf{x}_2 for the equation $\mathbf{A} \mathbf{x} = \mathbf{b}$, with $\mathbf{A} = \frac{5}{1} \frac{1}{2}$ and $\mathbf{b} = \frac{10}{6}$. How do you know the Jacobi iterates will converge to the solution of $\mathbf{A} \mathbf{x} = \mathbf{b}$?

Answers.

1. minimum

2. a. **B** has one negative eigenvalue. b. -1 5 3. a. If Ax = x, then ||Ax|| = ||x|| = |||x|| so if ||x|| = 1, $|| = ||Ax|| \max\{||Ay|| : ||y|| = 1\} = ||A||$ b. $\begin{array}{c} 0 & 1 \\ 0 & 0 \end{array}$ c. No 4. $x_1 = \begin{array}{c} 2 \\ 3 \end{array}$, $x_2 = \begin{array}{c} \frac{7}{5} \\ 2 \end{array}$