Instructions:

1. Please do all four problems.
2. Closed book, calculators may be used, except on problem 4.
3. Be sure to explain your work.
4. (25) Determine whether the function

$$
f(x, y, z)=2 x^{2}+2 x y+3 y^{2}-4 y z+2 z^{2}+4
$$

has a maximum, minimum, or saddle point at $(0,0,0)$.
2. (25) The matrix $\mathbf{B}=\left(\begin{array}{llll}1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 0 & 3\end{array}\right)$, being symmetric, has real eigenvalues.
a. Use the pivots of B to determine how many negative eigenvalues B has.
b. Use the Gershgorin Circles Theorem to find real numbers α and β such that every eigenvalue λ of \mathbf{B} satisfies $\alpha \leq \lambda \leq \beta$.
3. (25) a. With the Euclidean norm $\boldsymbol{x} \|_{2}=\left(\sum x_{i}^{2}\right)^{1 / 2}$ used for vectors, let the norm of a matrix \mathbf{A} be defined by $|\mathbf{A}|=\max \left\{\frac{\|\mathbf{A} \mathbf{x}\|_{2}}{\|\left.\mathbf{x}\right|_{2}}: \quad \mathbf{x} \neq \mathbf{0}\right\}$.
a. Show that if λ is an eigenvalue of \mathbf{A} then $|\lambda| \leq\|\mathbf{A}\|$.
b. Give an example of a matrix \mathbf{A} for which $|\lambda|<\|\mathbf{A}\|$ for every eigenvalue λ of \mathbf{A}.
c. Does there exist a symmetric matrix with $|\lambda|<\|\mathbf{A}\|$ for every eigenvalue λ of \mathbf{A} ?
4. (25) Starting with $\mathbf{x}_{0}=\binom{0}{0}$, compute the first two Jacobi iterates \mathbf{x}_{1} and \mathbf{x}_{2} for the equation $\mathbf{A} \mathbf{x}=\mathbf{b}$, with $\mathbf{A}=\left(\begin{array}{ll}5 & 1 \\ 1 & 2\end{array}\right)$ and $\mathbf{b}=\binom{10}{6}$. How do you know the Jacobi iterates will converge to the solution of $\mathbf{A} \mathbf{x}=\mathbf{b}$?

Answers.

1. minimum
\qquad
2. a. B has one negative eigenvalue. b. $-1 \leq \lambda \leq 5$
3. a. If $A x=\lambda x$, then $\|A x\|=\|\lambda x\|=\mid \lambda\|x\|$ so if $\|x\|=1$,

$$
|\lambda|=\|A x\| \leq \max \{\|A y\|:\|y\|=1\}=\|A\|
$$

b. $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ c. No
4. $x_{1}=\binom{2}{3}, x_{2}=\binom{7 / 5}{2}$

