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We consider perturbations of the Hamiltonian flow associated with the geodesic

flow on a surface with constant negative curvature. We prove that, under a small

perturbation, not necessarily of Hamiltonian character, the Sinai-Ruelle-Bowen

measure associated with the flow exists and is analytic in the strength of the per-

turbation. An explicit example of “thermostated” dissipative dynamics is

considered. © 2007 American Institute of Physics. �DOI: 10.1063/1.2747612�

I. INTRODUCTION

In recent time, much effort has been devoted to the analysis of hyperbolic systems, in part due

to the chaotic hypothesis, introduced ten years ago in Ref. 14, which states that a many-particle

system in a nonequilibrium stationary state behaves as a uniformly hyperbolic dynamical system

�Anosov or more generally Axiom A system�, at least for the purpose of evaluating macroscopic

observables. This hypothesis can be seen as a generalization of the ergodic hypothesis to nonequi-

librium systems, at least for systems in a stationary state. Although it is very hard to prove uniform

hyperbolicity for realistic model systems, ideas connected with the chaotic hypothesis have played

an important role in analyzing the results of numerical or real experiments.

Several results have been obtained in this direction, among which is the Gallavotti-Cohen

fluctuation theorem �FT�, a result concerning the large deviation functional of the phase space

contraction rate �often identified with the entropy production rate�, that extend the fluctuation-

dissipation relation to systems in a nonequilibrium stationary state. The FT was proven rigorously

in Ref. 12 for Anosov diffeomorphisms and then in Ref. 16 for Anosov flows. Furthermore several

numerical tests have been conducted, using mathematical models of dissipative reversible systems

and the chaotic hypothesis.

Most of the results quoted above are based on the existence of the Sinai-Ruelle-Bowen �SRB�
measure. This existence was proven for a wide class of hyperbolic systems.

8,25
Unfortunately

explicit expressions for the SRB measure are quite difficult to obtain and can be worked out only

in particular cases, e.g., Anosov coupled lattice map,
3

while most of the models used in the

simulations are based on continuous time dynamics �hyperbolic flows�. We observe that, in order

to obtain models for nonequilibrium systems, one cannot consider the simplest examples of

Anosov systems that, being volume preserving, are not dissipative.

In this paper we explicitly construct the SRB measure for a family of Anosov flows that

includes dissipative cases. The flows considered are perturbations of the geodesic flow on a

surface of constant negative curvature. Such a flow can be seen as a Hamiltonian flow restricted to

a�
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the surface of unit energy. We will mainly consider perturbation arising by adding a force to the

Hamiltonian equations of motion. If the chosen force is conservative �i.e., coming from a poten-

tial�, the system remains Hamiltonian and volume preserving so that the stationary measure is not

singular with respect to the volume measure. Otherwise, if the perturbation is nonconservative, the

system is expected to have a SRB measure singular with respect to the volume measure �dissipa-

tivity�. Many of the models used in numerical works fall under this last category.

The geodesic motion on a surface with constant negative curvature is the simplest example of

continuous time Anosov system. The structural stability of these systems, namely, the existence of

the conjugation between two close flows, was first proven in Ref. 1. Later on, in Appendix A of

Ref. 19 and in Refs. 18 and 10, very general results on the regularity of the pressure, hence also

of the topological entropy and of the equilibrium states, were proven essentially using the con-

tracting mapping theorem or implicit function theorem, a point of view introduced by Moser
21

and

Mather.
20

The above papers do not discuss the regularity of the SRB state in the case of an analytic

perturbation. Although we think the above techniques might be effective also in such a situation,

we present here a direct proof in the spirit of Refs. 5, 3, and 13. It is quite natural to directly

construct the relevant dynamical quantities, such as the conjugation function, the contraction rate

of the unstable space, and the mean values of continuous observables with respect to a Gibbs state,

as the absolutely convergent perturbative expansion around the unperturbed system.

It would be very interesting to study a lattice of coupled Anosov flows as it was done for

Anosov diffeomorphisms �see Ref. 3�. In this case, coupling two flows already results in a very

difficult problem. To obtain such a coupling is enough to consider the Hamiltonian flow generated

by the Hamiltonian H��g1 ,g2�=H0�g1�+H0�g2�+�V�g1 ,g2� for a suitable potential V analytic and

� periodic in g1 and g2. The main difficulty here is that, for �=0, one has that H0�gi�, i=1,2, are

two independent conserved quantities, while for ��0 they are not conserved any more. This

implies that the coupled system cannot be uniformly hyperbolic and most of the techniques used

in this paper do not apply directly. Several works have addressed the problem of the SRB measure

for nonuniformly hyperbolic systems, see, e.g., Ref. 17. We hope to come back on this problem in

the future.

The paper is organized as follows. In Sec. II we introduce the systems we consider and state

the main results of the paper. Sections. III–V contain the proof of these results. Finally the

Appendix contains some technical computations.

II. MODEL AND MAIN RESULTS

A. The geodesic flow

The complex upper half plane C+ =
def

�z�C : Im�z��0�, endowed with the metric

g = y−2�1 0

0 1
� ,

is called the Lobachevskii plane. The isometries of this plane are given by the real, 2�2 matrices

h with det h�0, where, if z�C+, the action of h on z is

zh =

defh11z + h21

h12z + h22

� C+ for h =

def�h11 h12

h21 h22

� .

Observe that h and h�=�h, for ��0, define the same transformation so that the isometries are

naturally represented by the elements of PSL�2, R�.
A compact surface can be constructed from the Lobachevskii plane in the same way as the

torus can be obtained from the plane R
2. Given a Fuchsian subgroup ��PSL�2,R� �see Ref. 23

or 2 for the definition�, we can consider the equivalence relation generated by its action on C+,

072701-2 Amaricci, Bonetto, and Falco J. Math. Phys. 48, 072701 �2007�
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z 	 z� ⇔ ∃ � � �, 
z = z��
 .

The quotient set, indicated with �=C+ /�, is the most general compact analytic surface with

constant negative curvature.

We will consider as unperturbed dynamical system the flow generated by

H0�x,y,px,py� =

defy2

2
�px

2 + py
2� �1�

on the cotangent bundle M =
def

T*�. For any given energy E�0, the surface

ME =

def

��x,y,px,py� � M:H0�x,y,px,py� � E�

is a compact, invariant manifold. The geodesic flow on the surface � can be identified in a natural

way with the flow generated by Eq. �1� restricted to M1, see Ref. 15.

To add a conservative force to such a system, we consider an analytic �-periodic function

�V�z� ,z�C+� and the new Hamiltonian

H� = H0 + �V , �2�

which generates the equations of motion

ẋ = y2px, ṗx = − ���V/�x� ,

�3�
ẏ = y2py, ṗy = − y�px

2 + py
2� − ���V/�y� .

We can then add a nonconservative force to our system. To obtain well defined equations of

motion it has to be covariant with respect to the transformations in �. To obtain this we can

consider the automorphic function of order 1, �, defined by

��z�� = ��z�j2�z,��, ∀ � � � ,

where j�z ,h� =
def

h12z+h22, see Ref. 11. Setting

Ex =
��z� + ��z�

2
, Ey =

��z� − ��z�
2i

,

where �̄ is the complex conjugate of �, we obtain a force field which is locally conservative but

is not the differential of a function. We can still define the potential difference between two points,

z ,z0��,

U�z� − U�z0� =

def

−
1

2
�

z0

z

dw��w� −
1

2
�

z0

z

dw̄��w�

as a multivalued function.

The energy H� computed along a motion which contains the force �Ex ,Ey� tends asymptoti-

cally to increase. In order to keep it constant, we introduce a Gaussian thermostat, namely, a

momentum-dependent friction of the form 	�p�= p ·E / p2. Finally, the equations of motion for the

perturbed flow on ME
� =

def

��x ,y , px , py��M :H��x ,y , px , py��E� are

072701-3 Analyticity of the SRB measure for Anosov flows J. Math. Phys. 48, 072701 �2007�
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ẋ = y2px, ṗx = − ���V/�x� + ���Ex − 	�p�px� ,

�4�
ẏ = y2py, ṗy = − y�px

2 + py
2� − ���V/�y� + ���Ey − 	�p�py� ,

where �� is the strength of the nonconservative field. Since only notational complications would

arise from considering ����, in the following, we will restrict ourselves to the �=�� case. Under

the dynamics in Eq. �4� H� is an integral of the motion.

B. Canonical coordinates

A simpler representation of the unperturbed dynamics was introduced in Ref. 9. We consider

the canonical transformation from M \ �H0=0� to G =
def

GL�2,R� /�,

�px,py,x,y� ↔ � p1 q2

− p2 q1

� =

def

g ,

defined by

px + ipy = �i/2�det2�g�j�i,g−1�2 = �i/2��p1 + iq2�2,

�5�
x + iy = ig−1 = �p2 + iq1�/�p1 − iq2� .

This transforms the equations of motion in Eq. �3� into those generated by the new Hamil-

tonian �with slight abuse of notation, we still call H� and V the Hamiltonian and the potential as

functions of the matrix g�

H��g� =

defdet2�g�
8

+ �V�g� . �6�

Clearly H� is an analytic function of g. Introducing the matrices


0 =

def�1 0

0 1
�, 
3 =

def�1 0

0 − 1
�, 
+ =

def�0 1

0 0
�, 
− =

def�0 0

1 0
� , �7�

the Hamilton equation derived from Eq. �6� reads

ġ = −
det�g�

4
g
3 + �
x

�V

�g
�g�
y �8�

for 
x =
def

�
++
−� and 
y =
def

�
+−
−�. The nonconservative equations of motion in Eq. 4 reads

ġ = −
det�g�

4
g
3 + �
x

�V

�g
�g�
y − �c�g�g
y =

defdet�g�
4

�− g
3 + �F�g�� , �9�

where the function c�g� is

c�g� =
1

2 det2�g�

 ��ig−1�

j2�i,g−1�
+

��ig−1�
j2�− i,g−1�

� .

This is an explicit example of a nonconservative system. Moreover it is possible to prove that the

systems in Eq. �9� generically have a positive average space contraction rate, see Ref. 4.

Remark: Our techniques can be extended to a more general case. Given a Hamiltonian
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H��g� =

def

H0�g� + �V�g� , �10�

like in Eq. �6� we can consider any analytic vector field V� on M, � close to the Hamiltonian

vector field generated by H0 and tangent to the level surfaces of H�. Clearly the flow generated by

such a vector field preserves H� and the following results hold in this more general situation.

C. The conjugation

Let �t :GE→GE and �t
� :GE

�→GE
� be the flows generated by the Hamiltonian H0 and by the

dissipative system in Eq. �9�, respectively. As the first step we want to prove that these two flows

can be conjugated by a change of coordinate. In contrast to the case of Anosov diffeomorphisms,

this is not enough to map �t into �t
�, but a local rescaling of time is also required. The details are

given in the following theorem. To state it we need some notations:

GE = �g � G
H0�g� = E�, G�E = �g � G
H0�g� � E� ,

GE
� = �g � G
H��g� = E�, G�E

� = �g � G
H��g� � E� .

Theorem 1: Conjugation. Given E�0, there exists an �̄�0 such that, for any � : 
�
��̄ there

are functions h� :G�E→G�E
� , and 
� :G�E→R, Hölder continuous in g and analytic in �, such that

h� � �t = �
T

t
�

�
� h� for Tt

� =

def�
0

t

ds�
� � �s� . �11�

Furthermore, H0�H� �h�, so that h��GE�=GE
�. The proof, given in Sec. III, is based on the hyper-

bolicity of the unperturbed flow, which is discussed in the next section.

The function h� is the space conjugation, while 
� is the time conjugation. Even if h� conju-

gate the flow from GE to GE
�, the existence of a conjugation from the whole G to itself cannot be

uniform in �. Indeed, for fixed E, if E�� supg V�g�, the topology of GE
� is different from that of GE,

and no conjugation is possible.

D. Hyperbolicity

If the tangent space TgGE
� can be split into three continuous, ��-covariant, one-dimensional,

linear subspaces:

TgGE
� = Eg

+
� Eg

−
� Eg

3, �12�

where Eg
3 is parallel to the flow and there exists constants c ,��0 such that

��Tg�t
��w� � ce−�t�w� for w � Eg

−, t � 0,

�13�
��Tg�t

��w� � ce�t�w� for w � Eg
+, t � 0,

then the flow �� is hyperbolic on GE
�. Moreover Eg

+, Eg
−, and Eg

3 are called the unstable, stable and

neutral subspaces, respectively.

The unperturbed flow � is hyperbolic on GE for every E�0. The solution of Eq. �8� is

explicitly given by

�t�g� =

def

ge−�det�g�/4�t
3 mod � �14�

and it is clear that Eg
	 is generated by g
	 for 	= ± ,3 and �=�2E.

The four curves
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��
	�g� =

def

ge−�
	
mod � for 	 = 3,0, ± �15�

are the integral manifold of the vector fields wa�g� =
def

−g
a for a=0, ± ,3. We remark that �t

��t det�g�/4
3 and that �0 is orthogonal to GE.

Calling �±�g�= ±det�g� /2= ±�2H0�g� and �3�0 the Lyapunov exponents of �t and using

that the commutation relation among the matrices �
i�i=0, 3, ± are

�
3,
+� = 2
+, �
3,
−� = − 2
−, �
+,
−� = 
3, �16�

we obtain that

�t � ��
	 = �

� exp�t�	�g��
	

� �t. �17�

Theorem 2: Hyperbolicity. For any energy E�0, there exists �̄�0 such that, for any � : 
�

��̄ the flow �� on G

E�

�
is hyperbolic for every E��E. In particular, there exist vector fields

�w�
	�	=0, ± and functions ���

	�	=0, ± on G�E
� such that

T�t
�w�

	 = exp��
0

t

ds���
	

� �s
����w�

	
� �t

�� for 	 = 0, ± . �18�

Furthermore, �w�
	

�h��	=0, ± and ���
	

�h��	=0, ±, are analytic in � and Hölder continuous in g.

Notwithstanding that we called the conjugation a change of variables, since it is not differen-

tiable but only Hölder continuous, this theorem is not a direct consequence of Theorem 1. The fact

that ���
	

�h��	=0, ±, rather than ���
	�	=0, ±, are analytic in � will be important for the construction of

the SRB measure.

E. Sinai-Ruelle-Bowen distribution

For any energy E we can define the SRB measure on GE
�:

�E
��O� =

def

lim
T→�

1

T
�

0

T

dt�O � �t
���g� , �19�

provided that such a limit exists and is constant Lebesgue almost everywhere in g for every

continuous function O. Such a measure exists, unique and ergodic, if the dynamical system is

Anosov and topologically mixing, i.e., it is hyperbolic in the whole GE
� and the stable and the

unstable manifold are dense GE.

The flow � is Anosov since it is also Hamiltonian; it is easy to prove that its SRB measure is

the Lebesgue measure. Regarding ��, uniform hyperbolicity was established in Theorem 2, while

topological mixing is a direct consequence of the existence of the conjugation.

Theorem 3: Analyticity of the SRB measure. Given E�0, there exists �̄�0, such that, for

any � : 
�
��̄ the SRB measure �
E�

�
is analytic in � for every E��E, i.e., for any analytic O :G

→R, the mean value �E
��O� is analytic in �.

This is our main result. The proof will consist in an explicit construction of the SRB measure.

To summarize, for any energy E�0 and � small enough, we have constructed an hyperbolic

structure and the corresponding SRB measure on each one of the leaves �G
E�

� �E��E in G�E
� . The set

��
E�

� �E��E is an invariant measure on G�E
� .
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III. PROOF OF THEOREM 1

A. Directional derivatives

For any smooth f on G we define the directional derivative along the curves ��	�	=0, ±, 3, as

�L	f��g� =

def�d�f � ��
	�

d�
�

�=0

�g� . �20�

These derivatives satisfy the relation �L	w3�− �L3w	�=�	w	. Since the stable, unstable, and

neutral directions are tangent to GE, whereas w0 is transversal to it, we have

�L	H0��g� � 0 for 	 = 3, ± , g � GE,

�21�
�L0H0��g� � 0 for g � GE.

Given ��1 and a function f on G, we also define the directional Hölder derivative along

��	�	=0,±,3 as

�L	
� f��g� =

def

sup
�:0�
�
�1


�f � ��
	��g� − f�g�


�
�

, �22�

if the supremum is finite.

B. Construction of the conjugation

In order to find a solution of Eq. �11�, let us differentiate it with respect to t for t=0:

�L3h���g� =
�det � h���g�

det�g�

��g��w3

� h� + �F � h���g� . �23�

We will look for a solution h� and 
� of the form

h��g� = g + �
	=0, ±, 3

�h�
	�g�w	�g� = �

	=0, ±, 3

��0,	 + �h�
	�g��w	�g� ,

�24�

� = 1 + �
�,

where �	,� is the Kronecker symbol. Projecting along the directions �w	�g��	=0, ±, 3 and using the

identity following Eq. �1� yields �see the Appendix for the details�:

�L3�h�
	��g� − �	�h�

	�g� = �F	�g� + R�
	��h�

0,�h�
3,�h�

+,�h�
−,�
�� + �	,3��
��g� − 2�h�

0�g�� .

�25�

In the right-hand side of Eq. �25�, �F	 :G→R�	=0, ±, 3 are analytic functions of g, depending

neither on �he nor on �
�, while �R�
	 :R5→R�	=0, ±, 3 are analytic functions of the form

R�
	�f1, f2, f3, f4, f5� = ��

i=1

5

C	,i
R

f i + O�f2� �26�

for suitable constants �C	,i
R � i=1,. . .,5

	=0, ±, 3
; the remainder O�f2� has Taylor expansion in � starting from

0th order and Taylor expansion in the f starting from second order. The last term in Eq. �25� is

�	,3�f5−2f1�; it is � independent, but we singled it out because it is linear in f .

C. Implicit solution

We can implicitly solve Eq. �25�. For every continuous f :G→R, it is possible to invert the

operators �L3−����=±:
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�L3 − ���−1f = �
sgn�����

0

dte�L3−���tf = �
sgn�����

0

dte−��t�f � �t�, � = ± , �27�

where the exponentiallly decaying factor guarantees convergence.

The implicit solutions for the stable and unstable components of the conjugation are then

�h�
� = �

sgn����

0

dte−��t�R�
�

� �t� + ��
sgn����

0

dte−��t�F�
�

� �t�, � = ± , �28�

for R�
�

��t =
def

R�
	���h�

	
��t�	=0, ±, 3 ,�
� ��t�. The equation for �h�

3 cannot be solved in the same

way since �3�0. Nonetheless, we can choose 
� so that the right-hand side member of Eq. �25�,
for 	=3, is identically zero:

�
� = 2�h�
0 − �F3 − R�

3��h�
0,0,�h�

+,�h�
−,�
�� . �29�

Since �0�0 also, a similar problem occurs for the equation corresponding to �h�
0; in this case, it

is possible to obtain an equation for �h�
0 using that H� �h�=H0. Considering the transversality

condition in Eq. �21� and the implicit equations for the level surfaces, one can solve Eq. �25� in

terms of �h�
0 only, obtaining

�h�
0 = −

1

L0H0

H0 � h� − H0 − �

	

�L	H0� · �h�
	 + �V � h��=

def

− �
V

L0H0

− O��h�
0,�h�

3,�h�
+,�h�

−,�
�� ,

�30�

where O can be written as in Eq. �26� for certain other constants �C	,i
O � i=1,. . .,5

	=0, ±, 3
. The fact that w0

is orthogonal to the level surfaces of H0 �see Eq. �21�� guarantees that this expression is well

defined for any g�GE and � small enough.

D. Existence of the conjugation

Observe that Eqs. �28�–�30� can be naturally seen as defining a function f =
def

�f	 :GE

→R
4�	=0, ±, 3 for f0=�h�

0, f±=�h�
±, and f3=�
�. We will look for a solution of the above equations

in the Banach space B defined by the norm �f�� =
def

max	�f	��, with

�f	�� =

def

�f	� + �
�=±

�L�
� f	� + �

�=3, 0

�L�f	� ,

where �u� =
def

supg�G
u�g�
 for u :G→R.

The equation for the conjugation is given in terms of the operator

�Lf�	 =

def��L3 − �	�f	 if 	 = ±

f	 if 	 = 0,3,
�

and the function S�
	�f� the components of which are defined as

�F	 + R�
	�f0,0, f+, f−, f3� �	 = ± � ,

− ��L0H0�−1 · V + O�f0,0, f+, f−, f3� �	 = 0� ,

− ���L0H0�−1 · 2V + F3� − �2O + R�
3��f0,0, f+, f−, f3� �	 = 3� .
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Lemma 1: There exists �̄�0 such that, for any � : 
�
��̄, the equation

Lf = S��f� �31�

has a unique solution in the ball of B with radius 
�
C for a suitable C. Such a solution is analytic

in �.

Proof: We first bound the norm of L−1. From Eq. �17� it follows that

sup

�
�0


f � �t � ��
	 − f � �t



�
�
= e�t�	

sup
��0


�f � �
� exp�t�	�
	

− f� � �t



�
� exp��t�	�
� e�t�	

��L	
� f� + 2�f��;

from this, it is easy to get the bound �L−1���5/�+�1−��.
We choose C� �L−1 �max�1,4�F�� ,4��L0H0�−1V���. From Eq. �26�, there exists a �,

�-independent constant C0�1 such that, for any f , f̃ in the ball B� =
def

�f �B : �f��� 
�
C�,

�O�f� − O� f̃���, �R�
	�f� − R�

	� f̃��� � 
�
C0�f − f̃��. �32�

Indeed, it is possible to write O�f�−O� f̃�=� j=1
5 �f j − f̃ j��0

1dt�� jO� � �tf + �1− t� f̃� and similarly

for R	; furthermore, the Hölder derivative of a product of functions is bounded by the product of

the Hölder derivatives of each function. From Eq. �32� it follows

�S�
	�f� − S�

	� f̃��� � 
�
3C0�f − f̃��. �33�

By the choice of C and using Eq. �33� for f̃ �0, we have that, choosing �̄=�+��1
−�� /60C0�, L−1S� sends B� into itself. Moreover Eq. �33� implies that the application L−1S� is a

contraction in B� since, by the previous choice, �̄��+��1−�� /20C0�. Since F and V are analytic,

the solution of Eq. �31� is unique in B� and is the limit of a sequence of functions which are

analytic in ���C : 
�
��̄�. By Vitali theorem the solution is also analytic. �

This Lemma concludes the proof of Theorem 1.

IV. PROOF OF THEOREM 2

A. Unstable direction

The second step toward the construction of an analytic SRB measure consists in constructing

the perturbed unstable direction w�
+�g� and the associated Lyapunov exponent ��

+�g�. These quan-

tities are both defined in Eq. �18�.
As expected from the general theory,

1
the unstable direction of the perturbed system w�

+ is

generically not analytic in �. To construct the SRB measure we need the unstable direction

computed in the conjugated point h�, which we will see to be analytic in �.

Calling v�
+ =

def

w�
+
�h� and L� =

def

��
+
�h� =

def

�++�L�, we will compute Eq. �18� for time t replaced by

T

� and position h��g�, rather than g. Using also Eq. �11�, we obtain

�Th�
�

T
t
�

� �v�
+ = e�0

t
ds�
���s��L�

+
��s��v�

+
� �t� . �34�

B. Construction of the unstable direction

Proceeding as in the previous section, taking the time derivative of both sides of Eq. �34� at

t=0, we obtain

�Th�
�̇0

��v�
+ −

1


�

det�g�
4

�L3v�
+� = L� · v�

+. �35�
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We now write v�
+ as v�

+=w++�a=0,3,−�V�
awa. Projecting along the direction w+, calling F,+

=
def

L+F, and defining F	 such that F=�	=0,3,±F
	w	 and F	,+ such that F,+=�	=0,3,±F

	,+w	, after

some lengthy but straightforward algebra, reported in the Appendix, we get

�L� =
det�g�

4
��F+,+�g� − �
��g� − P�

+��V�
0,�V�

3,�V�
−,�L��� , �36�

while, projecting along the other directions, we get

�L3 − ��a − �+���Va�g� = �Fa,+�g� − �a,32�V�
0�g� + P�

a��V�
0,�V�

3,�V�
−,�L�� , �37�

where �P�
	�	=0,±,3 can be written as in Eq. �26�. In order to solve Eqs. �36� and �37�, as for Eq. �25�,

we first need to replace the term 2�a,3�V�
0 in the right-hand side of Eq. �37�, with the expression

obtained by implicitly solving the equation for 	=0:

�V�
0�g� = �

−�

0

dses�+

��F0,+ + P�
0� � �s,

for P�
0
��s =

def

P�
a���V�

a
��s�a=0,3,− ,�L� ��s�. Substituting into Eq. �37�, we get

�L3 − ��a − �+���Va = �F̃a,+ + P̃�
a��V�

0,�V�
3,�V�

−,�L�� �38�

for suitable �F̃a,+�a=0, which depend neither on ��V�
a�a=0,−,0,3 nor on �L�, and is linear in � and

Hölder continuous in g. Moreover, �P̃�
a�a=0,−,3 are analytic in their arguments and can be written as

in Eq. �26� for suitable constants �C̃ j,a� j=1,. . .,4
a=0,−,3

.

C. Existence of the perturbed unstable direction

Calling f0=�V�
0, f3=�V�

3, f−=�V�
−, and f+=�L�

+, we can look for a solution of Eqs. �36� and

�37� in the Banach space B introduced in Sec. III D. Again we introduce the operator:

�Mf�	 =

def� f	 if 	 = +

L3 − ��a − �+� if 	 = − ,0,3,
�

and the function

T�
	�f� =

def��
det�g�

4
F+,+ − �
�

det�g�
4

+ P�
+�f0, f3, f−, f+� �	 = + �

�F̃a,+ + P̃�
a�f0, f3, f−, f+� �	 = − ,0,3� ,

� �39�

and we prove the following lemma.

Lemma 2: There exists �̄�0 such that, for any � : 
�
��̄, the equation

Mf = T��f� �40�

has a unique solution in the ball of B of radius �C for a suitable C. Such a solution is analytic

in �.

Proof: It follows from arguments similar to those used in the proof of Lemma 1. �

Clearly the perturbed stable direction and Lyapunov exponent could be constructed in the very

same way.

072701-10 Amaricci, Bonetto, and Falco J. Math. Phys. 48, 072701 �2007�

 1
5

 J
u

ly
 2

0
2

3
 1

5
:0

9
:1

9



V. PROOF OF THEOREM 3

A. Markov partition

It is worthwhile to remark that for topologically mixing Anosov flows, the foliations E+ and

E− are not jointly integrable and therefore it is not possible to find a surface which contains a finite

piece of the stable and unstable manifold of a given point �see Ref. 22�. This is why the following

construction of the Markov partition,
7,24

is slightly different from a naive generalization of the

construction of a Markov partition for diffeomorphisms.

We first consider the unperturbed flow �. By fixing ��0, we define the local weak-stable and

weak-unstable manifolds passing through g as

W�
3,±�g� =

def

���t � ��
±��g�:
�
, 
t
 � �� ,

which are clearly C� manifolds. Let D be any closed C� disk of dimension 2 in GE, transverse in

each point to the flow �. Given two close points on D, g ,g� with d�g ,g���	1, for 	1 small

enough,

�g,g��D =

def

W�
3,−�g� � W�

3,+�g�� � D �41�

consists of a single point. We will say that T is a rectangle on D if log g ,g�RGD�T for any

g ,g��T.

The two manifolds WT
−�g�= �log g ,g�RGD :g��T� and WT

+�g�= �log g� ,gRGD :g��T� are the

projections of the stable and unstable manifolds through g on the rectangle T, which can be seen

as

T � �WT
+�g�,WT

−�g�� . �42�

Given a family of closed rectangles �T1 , . . . ,TN� on disks �D1 , . . . ,DN� such that Ti� int Di

and Ti=int Ti, we will call it a proper family of rectangles if there exists 	�0 such that GE

=� j=1
N

�t��0,	��−t�T j�; for any i� j, at least one of the sets Di� ��t��0,	��t�D j�� and

D j � ��t��0,	��t�D j�� is empty.

Let �=� j=1
N T j and define the ceiling function � :�→R+ as the smallest strictly positive time

required for �t�g� to cross � and the Poincaré map H :�→�, as H�g�=���g��g�.
Finally, the proper family of rectangles, �T1 , . . . ,TN�, is called Markov partition if it satisfies

the following condition: for any g�Ti such that H±1�g��T j one has that H±1�W��g���T j. In

particular, it is possible to show that the flow � admits a Markov partition of the rectangles

�T1 , . . . ,TN� on disks �D1 , . . . ,DN�.

B. Symbolic dynamics

Let A be the incidence matrix associated with H, i.e.,

Ai,j = �1 if int Ti � H�int T j� � 0”

0 otherwise.
�

By the results in Refs. 7 and 24, we may suppose that there exists an integer k such that the matrix

Ak has only nonzero entries. We introduce the space of sequences

�A =

def

�
� � �1, . . . ,N�Z:A
i,
i+1
= 1,i � Z� ,

the shift map, � :�A→�A, such that ��
� � j =
 j+1 and the coding map, X :�A→�, such that X�
� �

=
def

�i=−�
+�

H−i�int T
i
�; we remark that H �X=X ��. Let ��
� ,
� � be max�n�N� �0� :
i=
i�∀ i : 
i


072701-11 Analyticity of the SRB measure for Anosov flows J. Math. Phys. 48, 072701 �2007�

 1
5

 J
u

ly
 2

0
2

3
 1

5
:0

9
:1

9



�n�, if at least 
0=
0�; otherwise ��
� ,
� � =
def

−1. Endowing the space �A with the distance 

�
−
� 
=e−��
� ,
� �, the map � is continuous, and X is Hölder continuous.

Finally, the coding is inherited by all g�GE. After calling

Y =

def

��
� ,t� � �A � R+:0 � t � �� � X��
� ��

and identifying �
� , �� �X��
� �� with ��
� ,0�, let q :Y →GE be the one-to-one map defined by

q�
� , t�= ��t �X��
� �; then

��t � q��
� ,s� = q��k
� ,t�� �43�

for the unique k such that t� =
def

t+s−� j=0
k−1�� �X �� j��
� � satisfies 0� t�� �� �X ��k��g�.

C. Sinai-Ruelle-Bowen measure

Given a Hölder continuous f :�a→R, we can associate with it the equilibrium state with

potential f , i.e., a � invariant, Gibbs measure � f on �A, defined by the formal Hamiltonian

H�
� � =

def

�
j=−�

+�

f�� j
� � , �44�

see Ref. 6 for proofs and details.

Now, let �t
+�g� be the Jacobian of the linear map T�t :Eg

+
→E�t�g�

+ and let

�+�g� =

def

− �d ln �t
+�g�

dt
�

t=0

which exists and is analytic in g. Finally we define the potential f̂+ as

f̂+�g� =

def�
0

��g�

ds��+
� �s��g� .

Given a continuous function O on GE, the SRB measure �E for � is given by

�E�O� = � f̂+�X�Ô � X� ,

where

Ô�g� =

def�
0

��g�

ds�O � �s��g� ,

see Ref. 8 �Theorem 5.1�. Since � is a Hamiltonian flow, � is the Lebesgue measure.

For the perturbed, non-Hamiltonian flow �t
�, the SRB measure is generally not absolutely

continuous with respect to the Lebesgue measure. Contrary to the naive expectation, the rectangles

T̃ j
� =

def

h��T j� do not yield a Markov partition, since they are not portions of smooth disks.

We first observe that the disk Di, i=1, . . . ,N, can be seen as the intersection of a smooth disk

Di of dimension 3 in G with the energy surface GE. In this way we can define the disks Di
�

=Di�GE
�. Let now �i be the open neighbor of Di defined by �i=�t:
t
���t

��Di�. On �i=1
N �i we can

define, for � small enough, the maps s��g� as the solution of �s��g�
� �g��Di and q��g�=�s��g�

� �g�.
We can define the map p� :�i=1

N Di→�i=1
N Di

� as
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p��g� =

def

q� � h��g� ,

which is clearly analytic in � and Hölder continuous in g. It is easy to see that the sets Ti
�

= p��Ti� form a Markov partition for �� on GE
�. We can define the perturbed ceiling function

�� :�� =
def

� j=1
N T j

�
→R+ and the perturbed Poincaré map H� :��→�� as H��g� =

def

����g�
� �g�. Clearly

p� conjugates H with H�. Finally, the coding map for the perturbed flow ��, X� :�A→�� is given

by X�= p� �X.

Given a Hölder continuous function O, its average with respect to �E
� is given by

�E
��O� = � f̂

�
+

�X�
�Ô� � X�� , �45�

where f̂�
+ ,Ô� :��→R are defined as before:

f̂�
+�g� =

def�
0

���g�

ds���
+

� �s
���g�, Ô��g� =

def�
0

���g�

ds�O � �s
���g� .

We observe that ��s
�
� p���g�= ��s+�s��h���g�

�
�h���g�. Calling �̃� :� j=1

N T̃ j
�
→R+ the ceiling function for

the Hölder continuous manifold � j=1
N T̃ j

�, we also have ��� � p���g�= ��̃� �h���g�+ �s� �h� �H��g�
− �s� �h���g�. Therefore,

� f̂�
+

� p���g� = �
0

����p���g�

ds���
+

� �s
�

� p���g� = �
�s��h���g�

��̃��h���g�+�s��h��H��g�
ds���

+
� �s

�
� h���g�

=

def�
0

��̃��h���g�
ds���

+
� �s

�
� h���g� + �F̂�

+
� H��g� − F̂�

+�g� �46�

for a suitable, Hölder continuous function F̂�
+ :�→R. It is well known that, due to its cocycle

structure, the term �F̂�
+
�H��g�− F̂�

+�g� in the last line of Eq. �46� can be neglected. In the remaining

integral we perform the change of integration variable from s to s� :s=T
s�

� �g� and we use the

identities ��̃� �h���g�=T��g�
� �g� and ��

T
s
��g�

�
�h���g�= �h� ��s��g� to get

�
0

��̃��h���g�
ds���

+
� �s

�
� h���g� = �

0

��g�

ds�
� · ���
+

� h�� � �s��g� .

The last expression is clearly analytic in � due to the analyticity of 
� and of ��
+
�h��L�

+.

Observe that this integral is the potential we would have obtained considering directly the set T̃i
�

as a Markov partition.

To conclude the proof it is enough to observe that Ô� �X� is clearly analytic in � since ��

� p��g� is. This implies that � f̂
�
+

�X�
�Ô� �X�� is the average, with respect to a Gibbs state defined by

potentials analytically depending on �, of a function analytically depending on �.

The theorem follows from standard results on Gibbs states, see Ref. 13: Hölder-continuous

potentials can be converted into a many-body, exponentially vanishing interaction among spins

�ranging in �1, . . . ,N�� that are placed on the sites of the lattice Z and that are also subjected to a

“hard core” interaction �the compatibility condition associated with the matrix A�. For such a

system, the analyticity of the Gibbs measure with respect to the interaction can be obtained by

cluster expansion.
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APPENDIX: EXPLICIT COMPUTATIONS

1. Explanation of Equation „25…

Taking the time derivative in t=0, the left-hand side of the first equation in Eq. �11� gives

det�g�
4 
w3�g� + �

	=0, ±, 3

�h�
	�g��L3w	��g� + �

	=0, ±, 3

�L3�h�
	��g�w	�g�� .

Therefore Eq. �25� follows from the identity

�w3
� h���g� = w3 + �

	=0, ±, 3

�h�
	�g��L	w3��g�

and from Eq. �24�, which gives

�det � h���g�
det�g�

= 1 − 2�h�
0�g� + ��h�

0�2�g� − ��h�
3�2�g� − �h�

+�g��h�
−�g� .

2. Explanation of Equations „36… and „37…

Using the decomposition for v� after Eq. �35�, Eq. �35� reads

�L+�̇0
���g� + �

a=0, 3, −

�La�̇0
���g��Va�g� −

1


��g�
det�g�

4
�L3w+��g� −

1


��g�
det�g�

4

� �
a=0, 3, −

�Va�g��L3wa��g� −
1


��g�
det�g�

4
�

a=0, 3, −

wa�g��L3�Va��g�

= L��g�w+�g� + L��g� �
a=0, 3, −

�Va�g�wa�g� + �The�g��̇0
� − Tg�̇0

��v��g� . �A1�

From Eq. �9� we get

det�g�
4

�L+w3� +
det�g�

4
�

a=0, 3, −

�Law3��Va +
det�g�

2
w3�V0 −

1


�

det�g�
4

�L3w+�

−
1


�

det�g�
4

�
a=0, 3, −

�Va�L3wa� −
1


�

det�g�
4

�
a=0, 3, −

wa�L3�Va�

= L� · w+ + L� �
a=0, 3, −

�Vawa − �
det�g�

4
�L+F� − �

det�g�
4

�
a=0, 3, −

�LaF��Va − �
det�g�

2
F�V0

+ �The�g��̇0
� − Tg�̇0

��v��g� . �A2�

Using the identity following Eq. �20� and the decomposition L�=�++�L�, we obtain
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�
��L+w3� − �
a=0, 3, −

�L3�Va − ��a − �+��Va�wa + 2w3�V0 =
4

det
�L� · w+ − ��L+F�

+ P���V�
0,�V�

3,�V�
−,�L�� . �A3�

Projecting along the direction w+, calling F,	 =
def

L	F, defining F	 ,P	 such that F=�	=0,3,±F
	w	

and similarly for P	, and finally defining F	,� such that F,�=�	=0,3,±F
	,�w	, we get Eqs. �36� and

�37�.
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