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Abstract – We find an explicit expression for the long time evolution and stationary speed
distribution of N point particles in 2D moving under the action of a weak external field E,
and undergoing elastic collisions with either a fixed periodic array of convex scatterers, or
with virtual random scatterers. The total kinetic energy of the N -particles is kept fixed by a
Gaussian thermostat which induces an interaction between the particles. We show analytically
and numerically that for weak fields this distribution is universal, i.e., independent of the position
or shape of the obstacles, as far as they form a dispersing billiard with finite horizon, or the nature
of the stochastic scattering. Our results are nonperturbative. They exploit the existence of two
time scales; the velocity directions become uniformized in times of order unity while the speeds
change only on a time scale of O(|E|−2).

editor’s  choice Copyright c� EPLA, 2013

Introduction. – Our understanding of nonequilib-
rium stationary states (NESS) of multi-particle systems,
arguably the simplest nonequilibrium systems, is very
incomplete at present. In particular, there are no cases
(we know of) where one has an explicit expression for the
NESS of an interacting system of particles with positions
and velocities [1,2]. In this paper we derive an analytic
expression for a nontrivial NESS having a certain univer-
sality. While our proof requires some technical assump-
tions the arguments are physically clear and convincing [3].
The results are furthermore checked by very extensive
computer simulations.
The model we consider is a variation of the Drude-

Lorentz model of electrical conduction in two dimen-
sions [4]. The system consists of N -particles (electrons)
moving under the action of a constant external field E
among a periodic array of fixed convex scatterers (Sinai
billiard) with which they collide elastically. In order to
produce a stationary current-carrying state it is necessary
to have a mechanism which will absorb the heat produced
by the field E. This is modeled here by a Gaussian ther-
mostat which keeps the total kinetic energy of the system
constant [5–9]. This leads to a time evolution and a
NESS whose properties we study here for weak fields. We

find explicit expressions for both the speed distribution
and current when E is small. The current is given by a
Green-Kubo formula [10]. As in the Drude-Lorentz model
we neglect direct interactions between the particles. We
expect that the effect of such weak interaction will only
slightly modify the property of our system for small but
nonvanishing fields [3].

Dynamics. – The equations of motion for the system
on the unit two-dimensional torus, which corresponds to
an infinite system with periodic scatterers and periodic
initial conditions are, taking the mass of each particle to
be one, [9,11,12]

�
q̇i = vi, i= 1, . . . , N,

v̇i =Fi =E− E ·JU vi+Fi,
(1)

where

J=

N�

i=1

vi, U =

N�

i=1

|vi|2 (2)

and Fi is the “force” exerted on the i-th particle by
collisions with the fixed scatterers. These collisions only
change the direction but not the speed of the particle.
It is easy to see that due to the Gaussian thermostat,
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∂W (Q,V, t)

∂t
= −

N�

i=1

vi
∂W (Q,V, t)

∂qi
−
N�

i=1

∂

∂vi

��
E− (E · j)vi

�
W (Q,V, t)

�

+

N�

i=1

1

2

�

(v�i·n̂)<0
λ(qi)(v

�
i · n̂)
�
W (Q,V�i, t;E)−W (Q,V, t;E)

�
dn̂

= AW +E BW + CW, (4)

Table A Table B Table C

Fig. 1: (Colour on-line) Tables used for the simulations.

represented by the (E ·J)vi/U term, the total kinetic
energy of the system is constant, i.e., ddtU = 0.
This system was first introduced, for the case N = 1,

by Moran and Hoover [5] where it was found numerically
that the NESS had a fractal structure. This was shown
rigorously in [13], where it was proven that this system
has a unique singular SRB (Sinai-Ruelle-Bowen) measure
for small E which satisfies Ohm’s law. The N = 1 system
was further investigated both numerically and analytically
in [11,14].
In the prsent work we investigate the behavior of the

multi-particle system, N > 1, which is considerably more
complicated [12]. There is now an effective interaction
between the particles caused by the thermostat: if one
particle increases (decreases) its speed due to the external
field E the others have to decrease (increase) their speed
to keep the total kinetic energy fixed. To study this system
analytically we also make use of a stochastic version of the
dynamics in which the collisions with the fixed obstacles
are replaced by “virtual” collisions or scatterings [12].
These collisions, like the fixed scatterers, conserve energy
and tend to make the angular distribution uniform.
We find analytically an autonomous equation for the

N -particle speed distribution in the limit E→ 0: exactly
the same for the stochastic and deterministic models. This
implies ipso facto that this distribution is the same for
every chaotic (dispersing) billiard table and thus it is
independent of the shape and position of the scatterers.
It is a “universal” function whose exact shape in the
NESS we determine explicitly. Using highly accurate
numerical simulations the result seems to remain valid
up to substantial values of |E|. Just how large E can be
depends on the shape of the table; see fig. 1. The new
element in our analysis is the exploitation of a time scale
separation which occurs for small |E|.

We also find analytically the first order (in E) correction
to the invariant distribution which, unlike the speed
distribution, depends on the shape of the table, but only
through some properties which can be obtained from the
N = 1 solution of the problem. We have checked this
expression numerically by computing, with high precision,
the invariant measure for Table B in fig. 1. We also
find analytically and verify numerically a simple explicit
expression for the asymptotic N � 1 form of the speed
distribution.

Analysis. – We shall consider first the stochastic
model where the computations are simpler and essentially
rigorous. The system now consists of N point particles in
the unit 2D torus which move according to (1) between
collisions (without the term Fi). In addition each parti-
cle independently has a (virtual) collision with a Poisson
rate equal to λ(qi)|vi| for some position dependent rate
λ(q)> 0, i.e., the weighted mean free path between colli-

sions
� t
0
λ(q(t))|q̇(t)|dt is an exponential random variable

with mean one. The collision changes the angle which v
makes with the x axis from θ� to θ according to some
transition kernel K(θ, θ�) dθ. The exact form of K will
turn out not to matter as long as K(θ, θ�) =K(θ�, θ) and
there is enough spreading to the direction of the velocity so
that dq dθ/2π is the unique invariant distribution for the
system with one particle (N = 1) and E = 0. The scatter-
ing “closest” to that caused by collisions with fixed discs
and the one we used in the simulations is the following: v�

changes to v according to the rule

v= v�− 2n̂(n̂ ·v�), (3)

where n̂ is a unit vector in the direction of the momentum
transfer from v� to v. The direction of n̂ is chosen
randomly with probability density −(n̂ · v̂�)/2, where v̂� =
v�/|v�|, subject to the constraint (n̂ ·v�)< 0.
The “master” equation describing the time evolution

of the N -particle velocity distribution function is, for the
above rule, given by

see eq. (4) above

where j= J/U as in (2), Q= (q1, . . . ,qN ), V=
(v1, . . . ,vi, . . . ,vN ), V�i = (v1, . . . ,v

�
i, . . . ,vN ), and

v�i is given in terms of vi by (3). In the last term E is
the magnitude of E, i.e., E=Ee for a unit vector e.
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Finally, C =�Ni=1 Ci and A=
�N
i=1Ai are the sums of

collision and streaming terms which act independently
and do not depend on E. We shall assume that λ(q) is
such that (4) has a unique steady-state solution for every
E �= 0. A sufficient, but not necessary, condition is that
C−1 � λ(q)�C for some positive C.
Let us consider now what happens when E is small. We

note first that when E = 0 the speed of any particle does
not change with time but the collisions (deterministic or
stochastic) randomize the direction of the velocity of each
particle. The distribution of speeds would then remain
unchanged in time. When E is small the appropriate time
scale for the change in the speed of the particle will be of
order E−2. Now on that time scale each particle will have
undergone many collisions and so one may then assume
that the direction of the velocity and the position of each
particle will be uniformly distributed. We can thus expect
to have an autonomous equation for the distribution of the
speeds. Let us set vi = ri(cos(θi), sin(θi)) where ri = |vi|
and the angle θi is taken with respect to the field direction
which we can assume is in the x-direction. Moreover, we
set R= (r1, . . . , rN ) and Θ= (θ1, . . . , θN ). We then carry
out a van Hove (weak-coupling) limit [15,16], rescaling

the time by letting t= τ/E2 and set �W (Q,V, τ ;E) =
W (Q,V, tE−2;E). �W satisfies the rescaled equation

∂�W (Q,V, τ ;E)
∂τ

=

E−2(A+ C)�W (Q,V, τ ;E)+E−1B�W (Q,V, τ ;E)
(5)

We now assume that

�W (Q,V, τ ;E) = �W (0)(Q,V, τ)+E�W (1)(Q,V, τ)
+E2�W (2)(Q,V, τ)+ o(E2). (6)

This is a very strong assumption, in fact stronger than
necessary for the following conclusions. It will be better
justified with a more detailed analysis [3].
Substituting (6) into (5) we get the following set of

equations

0 = (A+ C)�W (0)(Q,V, τ) (7)

0 = (A+ C)�W (1)(Q,V, τ)

+B�W (0)(Q,V, τ) (8)

∂�W (0)(Q,V, τ)
∂τ

= (A+ C)�W (2)(Q,V, τ)

+B�W (1)(Q,V, τ). (9)

Equation (7) implies that �W (0)(Q,V, τ) depends only
on R, i.e., �W (0)(Q,V, τ) =�W (0)(R, τ). Since BF (V) is
orthogonal to the functions that depend only on R if F
depends only on R, it follows that EQ,ΘB�W (0)(R, τ) = 0,

where EQ,Θ is the average on Q and Θ. Thanks to our
hypotheses on λ and K we have that (A+ C)F (Q,V) = 0
if and only if F (Q,V) is a function of R alone so that
�W (1)(Q,V, τ) =−(A+ C)−1B�W (0)(R, τ) is well defined.
We now insert this expression into (9) and average over
Θ and Q. This does not effect the left-hand side since
�W (0) depends only on R but it makes the first term on
the right-hand side vanish leading to

∂�W (0)(R, τ)
∂τ

=−EΘ,QB(A+ C)−1B�W (0)(R, τ), (10)

which is indeed an autonomous equation for �W (0)(R, τ).
It describes the effective dynamics on the scale τ in the
limit E→ 0, [15].
Equation (10) can be written out explicitly as

D−1
∂�W (0)(R, τ)

∂τ
=

N�

i=1

N�

j=1

∂2

∂ri∂rj

�
Mij(R)�W (0)(R, τ)

�

+

N�

i=1

∂

∂ri

�
Ai(R)�W (0)(R, τ)

�
, (11)

where the components of the N ×N matrix M are given
by

Mij(R) =

N�

k=1

bik(R)bjk(R)

rk
=
1

r i
δij−

ri+ rj
U

+
rirj

U2

N�

k=1

rk

(12)
and

Ai(R) =−
ri

U

N�

k=1

1

rk
+
ri

U2

N�

k=1

rk, bik = δik −
rirk

U
.

(13)
The diffusion constant D in (11) is just the integral of the
velocity autocorrelation in the field direction e when the
magnitude of the field E = 0 and the speed is one, i.e.,
D= e ·De, where

D=

� ∞

0

�v1⊗v1(t)� dt=
� ∞

0

�v1⊗ e(A1+C1)tv1�dt,
(14)

and �·� stands for averages with respect to the uniform
measure dq dθ/(2π) that is stationary for E = 0.
D is in fact the only term in (11) which depends on

the collision kernel C in (4). For a spatially uniform and
isotropic scattering, i.e., when λ(q) is a constant and
K(θ�, θ) =K(θ�− θ), we get D=DI with

D =
1

2πλ

� 2π

0

dθ

� ∞

0

[cos θ cos θ(t)] dt

=
1

2πλ

� ∞

0

dt

� 2π

0

dθ cos(θ)etC1 cos(θ). (15)

For the specific model used in (4), D= 3/(4λ). In the case
of the deterministic billiardsD will depend on the shape of
the table. Note, however, that the NESS corresponding to
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the stationary solution of (11) is independent of D which
really just sets a time scale (τ � t/(DE2)).
We note that

M = SS∗ with Sij(R) =
bij(R)√
rj

(16)

which implies that (11) corresponds to a stochastic time
evolution described by the Itô stochastic differential equa-
tion

dri =−DAi(R) dt+
N�

j=1

√
D
√
2Sij(R)dBi, (17)

where Bi are N -independent Brownian motions. One can
in fact first derive (17) and then obtain (11) [3].
Using some general theory [17], it follows from (11)

that there is a unique solution of (11) which approaches,

in the limit τ →∞, a stationary state �W (0)(R). Let
now �W (Q,V;E) be the stationary solution of (4) which
also exists and is unique by the Döblin condition. Aver-
aging �W (Q,V;E) on Q and Θ to get �W (R;E) and
then taking the limE→0�W (R;E) we get the stationary
solution of (11), �W (0)(R) which coincides with �W (0)(R)
and is independent of D. To compute it we observe
that if W (Q,V, t;E) solves (4) so does W �(Q,V, t;E) =
h(U)W (Q,V, t;E) every positive function h. Moreover (4)
is invariant under the rescaling

V→ ρV, t→ ρ−1t, E→ ρ2E. (18)

This suggests to look for �W0 of the form
�W (0)(R) = h(U)F0(R), (19)

where F0(ρR) = ρ
2N−1F0(R) and h(U) assures that �W0

has integral 1. With this assumption we get that F0
satisfies the equation

N�

i=1

�
1

ri

∂2F0

∂r2i
+
2

U

∂F0

∂ri

�
= 0. (20)

This equation can be easily solved and we get, when the
initial state is such that U =N ,

�W (0)(R) = 1
Z
δ(U −N)

� N�

i=1

r3i

�− 2N−13
= δ(U −N)F0(R),

(21)
where Z is just the normalization

Z =

�
�
r2i=N

� N�

i=1

r3i

�− 2N−13 N�

i=1

ri dri. (22)

To get the one-particle marginal speed distribution
f0(r;N) one has to integrate (21) over the variables
r2, . . . , rN . When N →∞ this yield the parameter-free
universal distribution [12,18]

lim
N→∞

f0(r;N) =C exp(−cr3), (23)

where

C =
3Γ
�
4
3

�

2πΓ
�
2
3

�2 ≈ 0.2325, c=

�
Γ
�
4
3

�

Γ
�
2
3

�
� 3
2

≈ 0.5355.

(24)
This of course is very far from any Maxwellian distribu-
tion.
Going beyond the limit E→ 0 we find the first-order

correction (in E) to the stationary solution of (4):

�W (R,Θ;E) =�W (0)(R)+E�W (1)(R,Θ)+ o(E), (25)

where

�W (1)(R,Θ) = (A+ C)−1B�W (0)(R) =

δ(U −N)F1(R)
N�

i=1

ric(qi, θi) (26)

with F1(R) = (2N − 1)
��N

i=1 r
3
i

�− 2N+23
and

c(qi, θi) =

� ∞

0

et(Ai+Ci) cos θidt=−(Ai+ Ci)−1 cos θi;
(27)

Ci and Ai are the collision and streaming operators defined
on the right-hand side of (4). Note that, for N = 1, the
invariant solution to (4) is simply

�W (q,v;E) = δ(|v|− 1)
�
1

2πr
+
E

r3
c(q, θ)+ o(E)

�
(28)

so that c(q, θ) is simply related to the N = 1 problem. The
NESS current �j� obtained from (11) is in agreement with
that given by the Green-Kubo formula using �W (0) as a
reference measure.

Deterministic billiard. – The master (Liouville)
equation for the deterministic model is given by

∂Wd(Q,V, t)

∂t
=AWd+E BWd+ CdWd (29)

with CdWd representing the collisions with the fixed
convex obstacles. In this case, when E= 0, rapid (expo-
nential) approach to a stationary state which depends
only on R (in the spatial domain T outside the obsta-
cles) is due to the obstacle being convex [13]. In the
presence of E �= 0, the stationary state is not absolutely
continuous with respect to the Lebesgue measure, i.e., it
will not have a smooth density �Wd(Q,V;E), see [9,13].
On the other hand, starting with an initial smooth
density Wd(Q,V, 0;E), it will have a smooth density
Wd(Q,V, t;E) satisfying (29) for all finite time t. Let
µtE(dQ, dV) =Wd(Q,V, t;E)dQ dV and set

µ̂E(dQ, dV) = lim
t→∞

µtE(dQ, dV). (30)

For N = 1 we know that µ̂E(dq, dv) exists and its
projection on the energy surface |v|= 1, can be written
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µ̂E(dQ, dV) = δ(U −N)
�
F0(R)d̃Q dV+EF1(R)

�

i

r2i δµ1(dqi, dθi)d̃Q
i dVi+ o(E)

�
, (31)

as µ̂E(dq, dθ) = dq dθ/(2π)+Eδµ1(dq, dθ)+ o(E), with
δµ1 singular with respect to dqdθ. We note that the
property (18) remains true for any solutionWd(Q,V, t;E)
of (29). The expansion (25) can be generalized to the
deterministic billiard by replacing c(q, θ) with δµ1(dq, dθ).
More precisely we have

see eq. (31) above

where d̃Q=
�
i d̃qi, with d̃q the normalized restriction of

the Lebesgue measure to T2\obstacles, dQi =�j �=i d̃qj ,
dVi =

�
j �=i dvj and F1(R) is defined after (26).

The above expression implies that µ̂N (dQ, dV) =
limE→0 µ̂E,N (dQ, dV) is absolutely continuous with
respect to the Lebesgue measure on the energy sphere
and depends only on the speeds. We cannot prove
this statement rigorously but it is well verified by our
numerical simulations involving the full billiard table or
just a portion of it.

Numerical results. – We have concentrated our
numerical simulation on the deterministic billiard system
using the billiard tables depicted in fig. 1. Table A is
the same used in [12]. Table B has the central obstacle
moved down to break the symmetry but remaining rather
close to Table A. Table C instead was chosen to be as
asymmetric and as far from Table A as possible.
We computed the one-particle marginal of the speed

distribution for all 3 tables. To obtain an accurate and
reliable result we ran a very long trajectory recording
the speed of particle 1 every time of the order of E−2.
In this way we can assume that the data we collected
form a random sample from the distribution f0,d(r,N).
This allows us to use the Kolmogorov-Smirnov test to
check whether f0,d(r,N) = f0(r,N) described after (21),
see [19,20].
In fig. 2 we plot the marginal distribution for all

three tables when E= 0.015625(cos(φ), sin(φ)) with φ=
π/2 and N = 512 together with the theoretical predic-
tion coming from (23). The P -value of the KS test for
the cases shown in these figures was greater than 23%
giving a strong evidence that our hypothesis on the distri-
bution of the observed data is indeed correct. A more
extensive report on these simulations can be found at
http://www.math.uab.edu/∼khu/g/gt/speed.html.
To check whether the full distribution in (31) is valid for

the deterministic billiard we chose N = 3 and fixed U = 3
so that we can take r23 = 3− r21 − r22. Fixing δr =

√
3/30,

let ∆i,j(r1, r2) be the characteristic function of the
square of side δr centered at ((i+0.5)δr, (j+0.5)δr). We
ran 1000 trajectories of average length 2 · 108 system
time units for Table B with E= 0.04(cos(φ), sin(φ))
with φ= π/3. The results are in good agreement
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Fig. 2: (Colour on-line) Comparison between the one-particle
speed marginals of the three different tables and also (23) with
512 particles.

with the prediction of (11). See http://www.math.
uab.edu/∼khu/g/gt/speed.html, where plots of the
results of these simulations can be found.

Concluding remarks. – Our main results are the
derivation of the universal equations (11), (21) and
(26) and the verification of the latter by very extensive
controlled numerical simulations. We believe that the
multi-scale analysis of this model system will find many
applications in the study of nonequilibrium systems. In
particular, the equivalence of the dynamics to that of a
stochastic differential equation is similar to that obtained
in [21].
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