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Abstract: We consider solutions to the Kacmaster equation for initial conditions where
N particles are in a thermal equilibrium and M ≤ N particles are out of equilibrium.We
show that such solutions have exponential decay in entropy relative to the thermal state.
More precisely, the decay is exponential in time with an explicit rate that is essentially
independent on the particle number. This is in marked contrast to previous results which
show that the entropy production for arbitrary initial conditions is inversely proportional
to the particle number. The proof relies on Nelson’s hypercontractive estimate and the
geometric form of the Brascamp–Lieb inequalities due to Franck Barthe. Similar results
hold for the Kac–Boltzmann equation with uniform scattering cross sections.

1. Introduction

Among the models describing a gas of interacting particles, the Kac master equation
[21], due to its simplicity, occupies a special place. It is useful in illuminating vari-
ous issues in kinetic theory, e.g., providing a reasonably satisfactory derivation of the
spatially homogeneous Boltzmann equation and giving a mathematical framework for
investigating the approach to equilibrium. These issues were, in fact, the motivation for
Kac’s original work. Although it does not have a foundation in Hamiltonian mechanics,
the Kac master equation is based on simple probabilistic principles and yields a linear
evolution equation for the velocity distribution for N particles undergoing collisions.
It is in this context that Kac invented the notion of propagation of chaos and used this
notion to derive the spatially homogeneous, non-linear Kac–Boltzmann equation. Kac
also suggested various avenues to investigate the long time behaviour of the evolution
and its approach to equilibrium as the number of particles, N , becomes large. He empha-
sized that this could be done in a quantitative way if one could show, e.g., that the gap of
the generator is bounded below uniformly in N . This, known as Kac’s conjecture, was
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proved by Élise Janvresse in [20] and, as a further sign of the simplicity of the model,
the gap was computed explicitly in [9,10], see also [24]. One of the problems in using
the gap is that the approach to equilibrium is measured in terms of an L2 distance. While
this does seem to be a natural way to look at this problem, the size of the L2 norm
of approximately independent probability distributions increases exponentially with the
size of the system. Thus, the half life of the L2 norm is of order N .

A natural measure is, of course, given by the entropy, which is extensive, i.e, propor-
tional to N . There has not beenmuch success in proving exponential decay of the entropy
with good rates. In [29] Cédric Villani showed that the entropy decays exponentially,
albeit with a rate that is bounded below by a quantity that is inversely proportional to
N . This estimate was complemented by Amit Einav [14], who gave an example of a
state that has entropy production essentially of order 1/N . He chose a state in which
most of the energy is concentrated in a few particles while most of the others have very
little energy. One might surmise, based on physical intuition, that this state is physically
very improbable and still has low entropy production because most of the particles are
in some sort of equilibrium. This intuition can be made rigorous, see [14], although
by a quite difficult computation. One should add that low entropy production does not
preclude exponential decay in entropy, i.e., large entropy production for the initial state
might not be necessary for an exponential decay rate for the entropy.

A breakthrough was achieved by Mischler and Mouhot in [25,26]. They undertook a
general investigation of the Kac program for gases of hard spheres and true Maxwellian
molecules in three dimensions. Among the results of Mischler and Mouhot is a proof
that these systems relax towards equilibrium in relative entropy as well as inWasserstein
distance with a rate that is independent of the particle number. As expected, they achieve
this not for any initial condition, but rather for a natural class of chaotic states. The rate
of relaxation is, however, polynomial in time.

To summarize, there is so far no mathematical evidence that the entropy in the Kac
model in general decays exponentially with a rate that is independent of N and physical
intuition suggests that for highly “improbable” states, such as the one used by Einav,
this cannot be expected. One can restrict the class of initial conditions by considering
chaotic states as done by Mischler and Mouhot, which shifts the problem of finding
suitable initial conditions for proving exponential decay to the level of the non-linear
Boltzmann equation.

In this paper we take a different approach, one which is based on the idea of coupling
a system of particles to a reservoir. The simplest such model is a finite system inter-
acting with an infinite reservoir which is modeled by a thermostat. Recall from [7] the
master equation of M particles with velocities v = (v1, v2, . . . , vM ) interacting with a
thermostat at temperature 1/β,

∂ f

∂t
= LT f, f (v, 0) = f0(v). (1)

The operator LT is given by

LT f = μ

M∑

j=1

(Bj − I ) f,

where

Bj [ f ](v) :=
∫

R

dw
∫ π

−π

ρ(θ) dθ

√
β

2π
e−βw∗

j (θ)2/2 f (v j (θ, w)),
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v j (θ, w) = (v1, . . . , v j cos (θ) + w sin (θ), . . . , vM ) and

w∗
j (θ) = −v j sin (θ) + w cos (θ),

and ρ is a probability distribution on [−π, π ]. Thus, Bj [ f ](v) describes the effect of a
collision between particle j in the system and a particle in the thermostat. One way of
thinking about this process is that the thermostat contains infinitelymany particle each of

which has a probability
√

β
2π e−βv2/2 of having velocity v. When a collision takes place

a particle is randomly selected from the thermostat and discarded after the collision with
particle j from the system. This ensures that the thermostat stays in equilibrium. The
interaction times with the thermostat are given by a Poisson process whose intensityμ is
chosen so that the average time between two successive interactions of a given particle
with the thermostat is independent of the number of particles in the system. For the
case where ρ(θ) = (2π)−1, the entropy decays exponentially fast. In fact, abbreviating√

β/(2π)e−β/2v2 = Γβ(v), we know from [7], that

S( f (·, t)) :=
∫

RM
f (v, t) log

(
f (v, t)
Γβ(v)

)
dv ≤ e−μt/2S( f0).

Thus, one might guess that if a “small" system of M particles out of equilibrium inter-
acts with a reservoir, that is a large but finite system of N ≥ M particles in thermal
equilibrium, then the entropy decays exponentially fast in time. This intuition is also
supported by the results in [6]. There it was shown that if the thermostat is replaced by
a large but finite reservoir initially in thermal equilibrium, this evolution is close to the
evolution given by the thermostat. This result holds in various norms and, in particular,
it is uniform in time. We would like to emphasize that the reservoir, because it is finite,
will not stay in thermal equilibrium as time progresses, nevertheless it will not veer far
from it.

The precise description of a system of M particles interacting with a reservoir of
N particles is the following. We consider probability distributions F : RM+N → R+
and write F(v,w) where v = (v1, . . . , vM ) describes the particles in the small system,
whereas w = (wM+1, . . . , wN+M ) describes the particles in the large system. The Kac
master equation is given by

∂F

∂t
= LF, F(v,w, 0) = F0(v,w) = f0(v)e−π |w|2 , (2)

where

L = λS

M − 1

∑

1≤i< j≤M

(
Ri j − I

)
+

λR

N − 1

∑

M<i< j≤N+M

(
Ri j − I

)

+
μ

N

M∑

i=1

M+N∑

j=M+1

(
Ri j − I

)
,

(3)

with

(Ri j F)(v,w) =
∫ π

−π

ρ(θ) dθ F(ri j (θ)−1(v,w)),
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and ri j is given as follows. For 1 ≤ i < j ≤ M we have

ri j (θ)−1(v,w) = (v1, . . . , vi cos θ − v j sin θ, . . . , vi sin θ + v j cos θ, . . . , vM ,w),

(4)

while for M + 1 ≤ i < j ≤ N we have

ri j (θ)−1(v,w) = (v, w1, . . . , wi cos θ − w j sin θ, . . . , wi sin θ + w j cos θ, . . . , wN ) .

(5)

Finally for 1 ≤ i ≤ M < j ≤ N we have

ri j (θ)−1(v,w) = (v1, . . . , vi cos θ − w j sin θ, . . . , vM ,

w1, . . . , vi sin θ + w j cos θ, . . . , wN ) . (6)

We assume that the probability measure ρ is smooth and satisfies

∫ π

−π

ρ(θ) dθ sin θ cos θ = 0. (7)

In particular, we do not require L to be self-adjoint on L2(RN+M ), a condition known
as microscopic reversibility. The initial state of the reservoir is assumed to be a thermal
equilibrium state and we have chosen units in which the inverse temperature β = 2π .
Note that λS is the rate at which one particle from the system S will scatter with any other
particle in the system S itself and similarly for λR . Likewise, μ is the rate at which a
single particle of the system S will scatter with any particle in the reservoir R. This is due
to the factor 1/N in front of the last sum in (3). Note that the rate at which a particular
particle from the reservoir R will scatter with any particle in the system S is instead
given by μM/N . Hence, when N is large compared to M this process is suppressed
and one expects that the reservoir does not move far from its equilibrium. Indeed, it is
shown in [6] that the solution of the master equation (3) stays close to the solution of a
thermostated system in the Gabetta-Toscani-Wennberg metric,

dGTW (F,G) := sup
k �=0

|F̂(k) − Ĝ(k)|
|k|2 ,

where F̂ denotes the Fourier transform of F , see [16]. More precisely, with the initial
conditions (1) and (2), it was shown that

dGTW ( f (v, t)e−π |w|2 , F(v,w, t)) ≤ C( f0)
M

N
,

where C( f0) is a constant that depends on the initial condition but is of order one. The
distance varies inversely as N , the size of the reservoir and, moreover, this estimate holds
uniformly in time. For a detailed description of the results we refer the reader to [6]. From
this result and the fact that the entropy of the system interacting with a thermostat decays
exponentially in time, one might surmise that the entropy of the system interacting with
a finite reservoir also decays exponentially fast in time. In fact we shall show this to be
true if we consider the entropy relative to the thermal state.
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2. Results

For the solution of the master equation (2) we write

F(v,w, t) = (eLt F0)(v,w). (8)

This evolution preserves the energy and hence it is customary to consider it on
L1(SN+M−1(

√
N + M)) with the normalized surface measure. Likewise, under mild

assumption on ρ it is easy to see that the evolution is ergodic on L1(SN+M−1(
√
N + M))

in the sense that eLt F0 → 1 as t → ∞ and 1 is the only normalized equilibrium state.
So far our description matches the standard Kac master equation. For our purpose it will
be convenient to describe the evolution as an evolution in L1(RM+N ) with Lebesgue
measure. This space is fibered into spheres such that the integral of the solution over
each of them is preserved, in fact eLt F0 converges to the spherical average of F0 taken
over spheres in RM+N . As mentioned before, we choose the initial condition

F0(v,w) = f0(v)e−π |w|2 . (9)

Moreover, since we are only interested in the evolution of the system of M particles, we
integrate over the velocities of the particles in the reservoir, i.e., we consider

f (v, t) :=
∫

RN

[
eLt F0

]
(v,w) dw (10)

and we call

S( f (·, t)) :=
∫

RM
f (v, t) log

(
f (v, t)

e−π |v|2
)

dv,

the entropy of f relative to the thermal state e−π |v|2 . Our main result is the following
theorem.

Theorem 1. Let N ≥ M and let ρ be a probability distribution with an absolutely
convergent Fourier series such that (7) holds. The entropy of f relative of to the thermal
state e−π |v|2 then satisfies

S( f (·, t)) ≤
[

M

N + M
+

N

N + M
e−tμρ(N+M)/N

]
S( f0),

where

μρ = μ

∫ π

−π

ρ(θ) dθ sin2(θ),

and f0 is as introduced in (9).

Remark 1. 1. It should not come as a surprise that this entropy does not tend to zero
as t → ∞ since the entropy is measured relative to the thermal state which is a
Gaussian and which is in general not the equilibrium state. The real question should
be formulated in terms of the entropy relative to the equilibrium state which, as
mentioned before is the spherical average of the initial condition. While it is easy to
see that the entropywith respect to the equilibrium state tends to zero as t → ∞we do
not know how to quantify this fact. Our method uses inequalities that are saturated by
Gaussianswhich is the chief reason for obtaining such a clean result for thermal states.
Equivalently, instead of considering the entropy with respect to the equilibrium state
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on L1(RM+N ), one may treat the Kac master equation on L1(SN+M−1(
√
N + M))

with an initial condition F0 that is invariant under all rotations that fix the first M
coordinates. The problem is to find the rate at which the entropy of the evolved state
relative to the equilibrium state 1 decays to zero. As we said before, we do not know
how to compute this rate.

2. The decay rate is universal in the sense that it only depends on μ and the distribution
ρ. The intra-particle interactions in the system and in the reservoir do not seem to
matter.

3. The statement of the theorem becomes particularly simple as N → ∞. This corre-
sponds to the thermostat problem treated in [7] with the exact same decay rate. It is
known that for the thermostat the decay rate is optimal, see [28], and hence the decay
rate here is optimal as well.

4. Although we assume that ρ is smooth, our result also holds for the case where ρ is
a finite sum of Dirac measures. In particular Theorem 1 also holds if ρ is a delta
measure that has its mass at the angles θ = ±π/2, that is, our result does not depend
on ergodicity of the evolution.

As a consequence of (2) in Remark 1, one obtains a result for the standard Kacmodel.
Recall that the generator of the standard Kac model is given by1

Lcl = 2

N + M − 1

∑

1≤i< j≤N+M

(Ri j − I ).

We may somewhat arbitrarily split the variables into two groups (v1, . . . , vM ) and
(wM+1, . . . , wM+N ). Splitting the generator accordingly,

Lcl = 2

N + M − 1

∑

1≤i< j≤M

(Ri j − I ) +
2

N + M − 1

∑

M+1≤i< j≤N+M

(Ri j − I )

+
2

N + M − 1

M∑

i=1

N+M∑

j=M+1

(Ri j − I ),

we see that the standard Kac model can be cast in the from (3) by setting

λS = 2(M − 1)

N + M − 1
, λR = 2(N − 1)

N + M − 1
and μ = 2N

N + M − 1
.

Hence, we obtain the following Corollary.

Corollary 1. Let N ≥ M and consider the time evolution defined by Lcl with initial
condition (9). Assume that the function f0 in the initial condition has finite entropy. The
entropy of the function

f (v, t) :=
∫

RN

[
eLclt F0

]
(v,w) dw

relative to the thermal state e−π |v|2 , satisfies

S( f (·, t)) ≤
[

M

N + M
+

N

N + M
e−tμρ2(N+M)/(N+M−1)

]
S( f0),

1 Although Lcl is the generator of the standard Kac model, we look at the evolution it generates on
L1(RM+N ) instead of L1(SN+M−1(

√
N + M)), see Corollary 1 below.
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where

μρ =
∫ π

−π

ρ(θ) dθ sin2(θ)

and ρ is a probability distribution such that (7) holds.

One way to understand approach to equilibrium is through entropy production
inequalities, i.e., a bound on the ratio of the entropy dissipation and the entropy. This
was the approach taken in [29]. These methods do not work in our context. The main
reason is that the evolution of the function f (v, t) is not given by a semi group. There-
fore, our path for proving Theorem 1 is rather different. First we write the evolution
in terms of ‘collision histories’, i.e., as an average over sequences of collisions. Along
each of these we estimate how the entropy decreases. The tool to achieve this is a form
of Nelson’s hypercontractive estimate. The resulting expressions measure the buildup
of correlations between the reservoir and the system. These correlations, however, can
be estimated using a sharp version of the Brascamp–Lieb inequalities due to Barthe, see
[3].

One can extend the results to three dimensional momentum preserving collisions,
however, so far only for a caricature of Maxwellian molecules. Applying this method
in the hard sphere and true Maxwellian molecules cases is still unresolved and poses an
interesting open problem.

The plan of the paper is as follows: In Section 3 we derive a representation formula
for the Kac evolution eLt as a sum over collision histories (Theorem 2). The terms
in this sum are reminiscent of the Ornstein-Uhlenbeck semi-group. This allows us to
prove an entropy inequality based upon Nelson’s hypercontractive estimate in Section 4.
The resulting expressions estimate the buildup of correlations between the reservoir
and the system (Theorem 3). In Section 5 we show how Barthe’s sharp version of the
geometric Brascamp–Lieb inequality leads to a correlation inequality for the entropy
involving marginals, which in turn proves our main entropy inequality. The fact that
our Brascamp–Lieb datum is geometric relies on a sum rule which will be proved in
Section 6. A short proof of the geometric form of the Brascamp–Lieb inequalities is
deferred to Appendix A, as well as some technical details to ensure its applicability in
Appendix B. In Section 7 we show how our method can be applied to three-dimensional
Maxwellian collisions with a very simple angular dependence.

3. The Representation Formula

The aim of this section is to rewrite (8), that is eLt F0, in a way which is reminiscent
of the Ornstein-Uhlenbeck process. This representation will naturally lead to the next
step in the proof of Theorem 1, namely the entropy inequality that will be presented in
Theorem 3.

It is convenient to write

L = Λ(Q − I ), where Λ = λS
M

2
+ λR

N

2
+ μM,

and the operator Q is a convex combination of Ri j s, given by

Q = λS

Λ(M − 1)

∑

1≤i< j≤M

Ri j +
λR

Λ(N − 1)

∑

M<i< j≤N+M

Ri j +
μ

ΛN

M∑

i=1

M+N∑

j=M+1

Ri j ,
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i.e., Q is an average over rotation operators. The right hand side of (8) can be written as

(eLt F0)(v,w) = e−Λt
∞∑

k=0

tkΛk

k! QkF0(v,w), (11)

where

QkF0(v,w) =
∑

α1,...,αk

λα1 · · · λαk

×
∫

[−π,π ]k
ρ(θ1) dθ1 · · · ρ(θk)dθk F0

⎛

⎝
[

k∏

l=1

rαl (θl)

]−1

(v,w)

⎞

⎠ .

(12)

Here, α labels pairs of particles, that is, α = (i, j), 1 ≤ i < j ≤ M + N , rα(θ) is
defined in (5) and λα is given by the rotation corresponding to the index α, that is,

λ(i, j) = λS

Λ(M − 1)
if 1 ≤ i < j ≤ M,

λ(i, j) = λR

Λ(N − 1)
if M + 1 ≤ i < j ≤ M + N ,

λ(i, j) = μ

ΛN
if 1 ≤ i ≤ M, M + 1 ≤ j ≤ M + N .

Note that the sum over all pairs
∑

α λα = 1.
For our purpose, it is convenient towrite the function f0, introduced in (9), as f0(v) =

h0(v)e−π |v|2 . Since theGaussian function is invariant under rotations, (11) takes the form

(eLt F0)(v,w) = e−π
(|v|2+|w|2)e−Λt

∞∑

k=0

tkΛk

k! Qk (h0 ◦ P) (v,w).

We introduce the projection P : RN+M → R
M by P(v,w) = v, as a reminder that the

semigroup eLt acts on functions that depend on v as well as w. If we write

f (v, t) = e−π |v|2h(v, t),

then (10) can be written as

h(v, t) = e−Λt
∞∑

k=0

tkΛk

k! hk(v),

where the functions hk are given by

hk(v) :=
∫

RN
Qk (h0 ◦ P) (v,w)e−π |w|2 dw.

Likewise, the entropy of f is expressed as

S( f (·, t)) =
∫

RM
h(v, t) log h(v, t)e−π |v|2 dv =: S(h(·, t)).
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Expanding the function Qk(h0 ◦ P)(v,w), we find that

hk(v) =
∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ρ(θ1) dθ1 · · · ρ(θk)dθk

×
∫

RN
(h0 ◦ P)

⎛

⎝
[

k∏

l=1

rαl (θl)

]−1

(v,w)

⎞

⎠ e−π |w|2 dw, (13)

where, as before, see (12), rα(θ) rotates the plane given by the index pair α by an angle
θ while keeping the other directions fixed. Since P(v,w) = v, it is natural to write

⎡

⎣
k∏

j=1

rα j (θ j )

⎤

⎦
−1

=
(
Ak(α, θ) Bk(α, θ)

Ck(α, θ) Dk(α, θ)

)
,

where Ak ∈ R
M×M is an M × M matrix, Bk ∈ R

M×N , Ck ∈ R
N×M and Dk ∈ R

N×N .
Further, α = (α1, . . . , αk) and θ = (θ1, . . . , θk). This notation allows us to rewrite (13)
as

hk(v) =
∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ρ(θ1) dθ1 · · · ρ(θk) dθk

×
∫

RN
h0
(
Ak(α, θ)v + Bk(α, θ)w

)
e−π |w|2 dw.

Note that, by the definition of rotations,

Ak(α, θ)AT
k (α, θ) + Bk(α, θ)BT

k (α, θ) = IM . (14)

Lemma 1. Let A ∈ R
M×M and B ∈ R

M×N be matrices that satisfy AAT + BBT = IM .
Then

∫

RN
h(Av + Bw)e−π |w|2 dw =

∫

RM
h
(
Av + (IM − AAT )1/2u

)
e−π |u|2 du

for any integrable function h.

Proof. Denote the range of B by H ⊂ R
M and its kernel by K ⊂ R

N . We may write
∫

RN
h(Av + Bw)e−π |w|2 dw =

∫

K

∫

K⊥
h(Av + Bu)e−π |u|2e−π |u′|2 dudu′

=
∫

K⊥
h(Av + Bu)e−π |u|2 du.

The symmetricmap BBT : RM → R
M has H as its range and H⊥, that is the orthogonal

complement of H inRM , as its kernel. Indeed, if BBT x = 0 for x ∈ R
M , then BT x = 0,

i.e., x ∈ KerBT or x is perpendicular to H . This shows that KerBBT ⊂ H . Because

RanBBT ⊂ H , if x ∈ H⊥ then x ∈ (
RanBBT

)⊥
or x ∈ KerBBT . Thus KerBBT =

H⊥ and, by a simple dimensional argument, RanBBT = H . Hence, the map BBT :
H → H is invertible (and positive definite). Define the linear map R : RN → H by

R =
(
BBT

)−1/2
B
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and note that RRT = IH while RT R projects the space K⊥ orthogonally onto H , that
is RT RK⊥ = H while (RT R)2 = RT R. Since K⊥ and H have the same dimension, it
follows that RT restricted to H defines an isometry between H and K⊥. Hence,

∫

K⊥
h (Av + Bu) e−π |u|2 du =

∫

K⊥
h

(
Av +

(
BBT

)1/2
Ru
)
e−π |u|2 du

=
∫

H
h

(
Av +

(
BBT

)1/2
RRTu

)
e−π |RT u|2 du

=
∫

H
h

(
Av +

(
BBT

)1/2
u
)
e−π |u|2 du.

The assumption AAT + BBT = IM , together with the fact that

∫

H
h

(
Av +

(
BBT

)1/2
u
)
e−π |u|2 du

=
∫

H⊥

∫

H
h
(
Av + (BBT )1/2u

)
e−π |u|2 du e−π |u′|2 du′,

now implies the lemma. ��
The matrix Ak(α, θ) has an orthogonal singular value decomposition,

Ak(α, θ) = Uk(α, θ)Γk(α, θ)V T
k (α, θ), (15)

where Γk(α, θ) = diag[γk,1(α, θ), . . . , γk,M (α, θ)] is the diagonal matrix whose entries
γk, j (α, θ), j = 1, . . . , M , are the singular values of Ak(α, θ), andUk(α, θ) and Vk(α, θ)

are orthogonal M × M matrices. Note that (14) implies γk, j (α, θ) ∈ [0, 1] for j =
1, . . . , M . We shall use the abbreviation

h0(Uk(α, θ)v) = h0,Uk (α,θ)(v).

These considerations can be summarized by the representation formula presented in the
following theorem.

Theorem 2 (Representation formula). The function hk can be written as

hk(v) =
∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ρ(θ1) dθ1 · · · ρ(θk) dθk ×

×
∫

RM
h0,Uk (α,θ)

(
Γk(α, θ)V T

k (α, θ)v +
(
IM−Γ 2

k (α, θ)
)1/2

w
)
e−π |w|2 dw,

(16)

where h0,Uk (α,θ), Γk(α, θ) and Vk are as defined above.
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4. The Hypercontractive Estimate

Starting from (16) and using convexity of the entropy and Jensen’s inequality together
with ∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ρ(θ1) dθ1 · · · ρ(θk) dθk = 1,

we get

S(hk) ≤
∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ρ(θ1) dθ1 · · · ρ(θk) dθk S(gk(·, α, θ)),

where we set

gk(v, α, θ) =
∫

RM
h0,Uk (α,θ)

(
Γk(α, θ)v +

(
IM − Γ 2

k (α, θ)
)1/2

w
)
e−π |w|2 dw,

(17)

and we removed the rotation V T
k (α, θ) by a change of variables.

To explain the main observation in this section we look at (17) when M = 1. Since
0 ≤ γk(α, θ) ≤ 1, we can write γk(α, θ) = e−t and we get gk(v, α, θ) = Nt (h0,Uk (α,θ))

where Nt is the Ornstein-Uhlenbeck semigroup, that is

Nth(x) =
∫

R

h
(
e−t x +

√
1 − e−2t y

)
e−πy2 dy.

Thus Theorem 2 renders the function hk as a convex combination of terms reminiscent of
theOrnstein-Uhlenbeckprocess, albeit inmatrix form.Wemakeuseof this observation to
find a bound forS(gk(·, α, θ)). This bound together with a suitable correlation inequality
proved in the next section will lead to a bound for S(hk).

In addition to the notation developed in the previous section, we need various
marginals of the function h0,Uk (α,θ). Quite generally, if h is a function ofM variables and
σ ⊂ {1, . . . , M}, we shall denote by hσ the marginals of h with respect to the variables

v j with weight e
−πv2j , j ∈ σ . For instance, we have

h{1,2}(v3, . . . , vM ) =
∫

R2
h(v1, v2, v3, . . . , vM )e−π

(
v21+v22

)
dv1dv2,

and for σ = ∅ we set hσ = h. It will be convenient to use the matrix Pσ : RM → R
|σ |

that projectsRM orthogonaly ontoR|σ | which we will identify with subspace ofRM . To
give an example, let v = (v1, ..., vM ). Then P{1,2}v = (v1, v2). The following theorem
is the main result of this section.

Theorem 3 (Partial entropy bound). Let h0 ∈ L1(RM , e−π |v|2dv) be nonnegative and
assume that S(h0) < ∞. Then

S(gk(·, α, θ))

≤
∑

σ⊂{1,...,M}

∏

i∈σ c

γ 2
k,i

∏

j∈σ

(
1 − γ 2

k, j

)

×
∫

RM
h0(v) log hσ

0,Uk (α,θ)

(
Pσ cUk(α, θ)T v

)
e−π |v|2 dv,

(18)

where σ c is the complement of the set σ in {1, ..., M}.
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A key role in the proof of Theorem 3 is played byNelson’s hypercontractive estimate.

Theorem 4 (Nelson’s hypercontractive estimate). The Ornstein-Uhlenbeck semigroup,

Nth(x) =
∫

R

h
(
e−t x +

√
1 − e−2t y

)
e−πy2 dy,

for t ≥ 0, is bounded from L p(R, e−πx2 dx) to Lq(R, e−πx2 dx) if and only if

(p − 1) ≥ e−2t (q − 1).

For such values of p and q,

‖Nth‖q ≤ ‖h‖p

with equality if and only if h is constant.2

Proof. For a proof we refer the reader to [27]. For other proofs see [12,15,17,18]. ��
Nelson’s hypercontractive estimate, that is Theorem 4, implies the following Corol-

lary, which will be useful in the proof of Theorem 3.

Corollary 2 (Entropic version of Nelson’s hypercontractive estimate). Let h : R → R+

be a function in L1(R, e−πx2 dx) with finite entropy, i.e.,

S(h) =
∫

R

h(x) log h(x) e−πx2dx < ∞.

Then

S(Nth) ≤ e−2tS(h) + (1 − e−2t )‖h‖1 log ‖h‖1
for all t ≥ 0.

Proof. Let h ∈ L p(R, e−πx2 dx), for p > 1 small, be a nonnegative function. As
‖Nth‖1 = ‖h‖1, we can apply Nelson’s hypercontractive estimate, which implies that
for p, q that satisfy (p − 1) = e−2t (q − 1),

‖Nth‖q − ‖Nth‖1
q − 1

≤ ‖h‖p − ‖h‖1
q − 1

= e−2t ‖h‖p − ‖h‖1
p − 1

.

Sending p → 1 and hence q → 1, we get the claimed estimate for such functions h.
If h just has finite entropy one cuts off h at large values, uses the above estimate and
removes the cutoff using the monotone convergence theorem. ��

We are now ready to prove Theorem 3.

2 Here and in the following, if there is no room for confusion, we denote by ‖h‖p = ‖h‖
L p(R,e−πx2 dx)

the

L p normof hwith respect to theGaussianmeasure on R. Note also that L1(R, e−πx2 dx) ⊂ L p(R, e−πx2 dx)

for all p ≥ 1 since e−πx2 dx is a probability measure.
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Proof of Theorem 3. Remember that 0 ≤ γk, j (α, θ) ≤ 1 for j = 1, ..., M . Thus, by
inductively applying Corollary 2 to

∫

RM
h0,Uk (α,θ)

(
γk,1v1 +

√
1 − γ 2

k,1 u1, . . . , γk,MvM +
√
1 − γ 2

k,M uM

)

×e−π
∑M

j=1 u
2
j du1 · · · duM ,

we obtain

S(gk(·, α, θ))

≤
∑

σ⊂{1,...,M}

∏

i∈σ c

γ 2
k,i

∏

j∈σ

(1 − γ 2
k, j )

∫

R|σc|
hσ
0,Uk (α,θ)(u) log hσ

0,Uk (α,θ)(u) e−π |u|2 du.

Inserting the definition of the marginal hσ
0,Uk (α,θ), we see that∫

R|σc|
hσ
0,Uk (α,θ)(u) log hσ

0,Uk (α,θ)(u) e−π |u|2 du

=
∫

RM
hσ
0,Uk (α,θ)(Pσ cv) log hσ

0,Uk (α,θ)(Pσ cv) e−π |v|2 dv

=
∫

RM
h0,Uk (α,θ)(v) log hσ

0,Uk (α,θ)(Pσ cv) e−π |v|2 dv

=
∫

RM
h0(v) log hσ

0,Uk (α,θ)(Pσ cUk(α, θ)T v) e−π |v|2 dv,

which finishes the proof of Theorem 3. ��

5. The Key Entropy Bound

Collecting the results of the previous sections we get the following bound

S(hk) ≤
∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ρ(θ1) dθ1 · · · ρ(θk) dθk

×
∑

σ⊂{1,...,M}

∏

i∈σ c

γ 2
k,i

∏

j∈σ

(
1 − γ 2

k, j

)

×
∫

RM
h0(v) log hσ

0,Uk (α,θ)

(
Pσ cUk(α, θ)T v

)
e−π |v|2 dv.

(19)

The right-hand side of (19) contains a large sum over the entropy of marginals of h0.
In order to bound such a sum in terms of the entropy of h0 one may try to apply some
version of the Loomis-Whitney inequality [23] or, more precisely, of an inequality by
Han [19]. This is essentially correct, but will require a substantial generalization of this
inequality. Let us first formulate the main theorem of this section.

Theorem 5 (Entropy bound). The estimate

S(hk) ≤
[

M

N + M
+

N

N + M

(
1 − μρ

N + M

NΛ

)k
]
S(h0) (20)

holds.



860 F. Bonetto, A. Geisinger, M. Loss, T. Ried

The generalization of Han’s inequality mentioned above was proven by Carlen-
Cordero-Erausquin in [11]. It is based on the geometric Brascamp–Lieb inequality due
to Ball [1], see also [2], in the rank one case, and due to Barthe [3] in the general case.

Theorem 6 (Correlation inequality). For i = 1, . . . K, let Hi ⊂ R
M be subspaces of

dimension di and Bi : RM → Hi be linear maps with the property that Bi BT
i = IHi ,

the identity map on Hi . Assume further that there are non-negative constants ci , i =
1, . . . , K such that

K∑

i=1

ci B
T
i Bi = IM . (21)

Then, for nonnegative functions fi : Hi → R,

∫

RM

K∏

i=1

f cii (Biv) e−π |v|2 dv ≤
K∏

i=1

(∫

Hi

fi (u) e−π |u|2 du
)ci

. (22)

Moreover,
∫

RM
h(v) log h(v) e−π |v|2 dv

≥
K∑

i=1

ci

[∫

RM
h(v) log fi (Biv) e−π |v|2 dv − log

∫

Hi

fi (u) e−π |u|2 du
]

,

(23)

for any nonnegative function h ∈ L1(RM , e−π |v|2dv).

Since Theorem 6 is very useful in a number of applications, and for the readers
convenience, we will give an elementary proof in Appendix A.

Remark 2. By taking the trace in (21) one sees that

K∑

i=1

cidi = M.

We would like to apply (23) to the right hand side of (19). An immediate problem
is that (19) is in terms of integrals and not sums. While there are some results available
for continuous indices (see, e.g., [4]), they do not apply to our situation and hence we
will take a more direct approach and approximate the measure ρ(θ)dθ by a discrete
measure. It is important that the approximation also satisfies the constraint (7). The
following lemma establishes such an approximation. Its proof is given in Appendix B.

Lemma 2. Let ρ be a probability density on [−π, π ] whose Fourier series converges
absolutely and assume that (7) is satisfied. There exists a sequence of discrete probability
measures νK , K = 1, 2, . . . , such that for every continuous function f on [−π, π ]

lim
K→∞

∫ π

−π

f (θ) νK (dθ) =
∫ π

−π

f (θ)ρ(θ) dθ.

Moreover,
∫ π

−π

cos θ sin θ νK (dθ) = 0,



Entropy Decay for the Kac Evolution 861

for all K ∈ N. More precisely,

νK (dθ) = 2π

4K + 1

2K∑

�=−2K

ρK

(
2π�

4K + 1

)
δ

(
θ − 2π�

4K + 1

)
dθ,

where ρK (θ) = 1
2π

∫ π

−π
ρ(θ − φ) pK (φ) dφ and pK is the Fejér kernel

pK (θ) := 1

2K + 1

(
K∑

k=−K

eikθ
)2

= 1

2K + 1

(
sin
(
(K + 1

2 )θ
)

sin θ
2

)2

.

At this point we can prepare the ground for the application of Theorem 6 to inequality
(19). We first replace ρ(θ)dθ in (19) with νK (dθ). Setting

ω� j = ρK (θ� j ), θ� j = 2π� j

4K + 1
, and θK = (θ�1, . . . , θ�k ),

we obtain

∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
νK (dθ1) · · · νK (dθk)

∑

σ⊂{1,...,M}

∏

i∈σ c

γk,i (α, θ)2

×
∏

j∈σ

(
1 − γk, j (α, θ)2

) ∫

RM
h0(v) log hσ

0,Uk (α,θ)(Pσ cUk(α, θ)T v) e−π |v|2 dv

=
∑

α1,...,αk

λα1 · · · λαk

∑

−2K≤�1,...,�k≤2K

k∏

j=1

ω� j

∑

σ⊂{1,...,M}

∏

i∈σ c

γk,i (α, θK )2

×
∏

j∈σ

(
1−γk, j (α, θK )2

)∫

RM
h0(v) log hσ

0,Uk (α,θK )(Pσ cUk(α, θK )T v) e−π |v|2 dv.

(24)

In order to apply Theorem 6 to (24) we have to replace the sum over the index i with
a sum over the indices α1, . . . , αk, �1, . . . �k and all subsets σ ⊂ {1, . . . , M}. Moreover,
we substitute

the constants ci by
1

Ck,M
λα1 · · · λαk

k∏

j=1

ω� j

∏

i∈σ c

γk,i (α, θK )2
∏

j∈σ

(1 − γk, j (α, θK )2),

where Ck,M will be defined in Theorem 7 below,

the functions fi (w) by hσ
0,Uk (α,θK )(w),

the linear maps Bi by Pσ cUk(α, θK )T ,

the functions fi (Biv) by hσ
0,Uk (α,θK )(Pσ cUk(α, θK )T v),

and the subspaces Hi by R|σ c |.
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For any given index i the condition Bi BT
i = IHi corresponds to

Pσ cUk(α, θK )TUk(α, θK )Pσ c = Pσ c

which is the identity on R
|σ c|.

The next theorem establishes the sum rule (21) in our setting and hence ensures the
applicability of Theorem 6 to (24).

Theorem 7 (The sum rule). If ν(dθ) is a probability measure satisfying (7), then

∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ν(dθ1) · · · ν(dθk)

×
∑

σ⊂{1,...,M}

∏

i∈σ c

γk,i (α, θ)2
∏

j∈σ

(
1 − γk, j (α, θ)2

)
Uk(α, θ)PT

σ c Pσ cUk(α, θ)T

= Ck,M IM , (25)

where

Ck,M =
[

M

N + M
+

N

N + M

(
1 − μν

N + M

NΛ

)k
]

with

μν = μ

∫
ν(dθ) sin2 θ.

The proof will be given in Section 6. We observe here that it follows from
Theorem 2 that μρ = limK→∞ μνK .

Proof of Theorem 5. First, we consider the case where ρ is repaced by νK and use
Theorem 6 together with Theorem 7 and the identification rules described above. The
entropy inequality (23) now says that
∫

RM
h0(v) log h0(v)e−π |v|2 dv

≥ 1

Ck,M

∑

α1,...,αk

λα1 · · · λαk

∑

−2K≤�1,...,�k≤2K

k∏

j=1

ω� j

∑

σ⊂{1,...,M}

∏

i∈σ c

γk,i (α, θK )2

×
∏

j∈σ

(
1 − γk, j (α, θK )2

) [ ∫

RM
h0(v) log hσ

0,Uk (α,θK )(Pσ cUk(α, θK )T v) e−π |v|2 dv

− log
∫

R|σc |
hσ
0,Uk (α,θK )(u) e−π |u|2 du

]
.

However, since h0 is normalized and Uk(α, θK ) is orthogonal, we find that
∫

R|σc|
hσ
0,Uk (α,θK )(u) e−π |u|2 d u =

∫

R|σc|

∫

R|σ |
h0,Uk (α,θK )(v, u) e−π |v|2 dv e−π |u|2 du

=
∫

RM
h0(Uk(α, θK )v) e−π |v|2 dv

= 1.
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Thus, we find

∑

α1,...,αk

λα1 · · · λαk

∑

−2K≤�1,...,�k≤2K

k∏

j=1

ω� j

×
∑

σ⊂{1,...,M}

∏

i∈σ c

γk,i (α, θK )2
∏

j∈σ

(
1 − γk, j (α, θK )2

)

×
∫

RM
h0(v) log hσ

0,Uk (α,θK )(Pσ cUk(α, θK )T v) e−π |v|2 dv

≤ Ck,MS(h0) . (26)

As K → ∞, the left-hand side of (26) converges to the right-hand side of (19). ��
We now have all ingredients to give the proof of Theorem 1.

Proof of Theorem 1. Recall from Section 3, that

f (v, t) = e−π |v|2e−Λt
∞∑

k=0

tkΛk

k! hk(v),

and that S( f (·, t)) = S(h(·, t)). Combining Theorem 3 and Theorem 5, we obtain

S(hk) ≤ Ck,MS(h0),

by convexity of the entropy, and computing

e−Λt
∞∑

k=0

Λk tk

k! Ck,M

yields Theorem 1. ��

6. The Sum Rule. Proof of Theorem 7

We have to compute the matrix

Z :=
∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ν(dθ1) · · · ν(dθk)

×
∑

σ⊂{1,...,M}

∏

i∈σ c

γk,i (α, θ)2
∏

j∈σ

(
1 − γk, j (α, θ)2

)
Uk(α, θ)PT

σ c Pσ cUk(α, θ)T .

Obviously PT
σ c Pσ c = Pσ c and hence

Z =
∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ν(dθ1) · · · ν(dθk)

×Uk(α, θ)

⎡

⎣
∑

σ⊂{1,...,M}

∏

i∈σ c

γk,i (α, θ)2
∏

j∈σ

(
1 − γk, j (α, θ)2

)
Pσ c

⎤

⎦Uk(α, θ)T .
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The sum on σ is easily evaluated and yields the matrix Γ 2
k (α, θ). Hence, recalling

the orthogonal singular value decomposition (15) of Ak(α, θ), that is, Ak(α, θ) =
Uk(α, θ)Γk(α, θ)V T

k (α, θ), we find that

Z =
∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ν(dθ1) · · · ν(dθk) Ak(α, θ)AT

k (α, θ). (27)

One can think about this expression in the following fashion. Recall that

[
k∏

l=1

rαl (θl)

]−1

=
(
Ak(α, θ) Bk(α, θ)

Ck(α, θ) Dk(α, θ)

)
.

With this notation, the matrix Z equals the top left entry of the matrix

∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ν(dθ1) · · · ν(dθk)

[
k∏

l=1

rαl (θl)

]−1 (
IM 0
0 0

)[ k∏

l=1

rαl (θl)

]
.

The computation hinges on a repeated application of the elementary identity
∫ π

−π

ν(dθ)

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)(
m1 0
0 m2

)(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)

=
(

(1 − ν̃)m1 + ν̃m2 0
0 (1 − ν̃)m2 + ν̃m1

)
,

where ν̃ = ∫
ν(dθ) sin2(θ). For this to be true we just need (7). We easily check that

for the rotations rα(θ)

∑

α

λα

∫ π

−π

ν(dθ) rα(θ)−1
(
m1 IM 0
0 m2 IN

)
rα(θ)

= 1

Λ

(
MλS

2
+
NλR

2

)(
m1 IM 0
0 m2 IN

)

+
μ

ΛN

(
N (M − 1)m1 + N ((1 − ν̃)m1 + ν̃m2)IM 0

0 (N − 1)Mm2 + M(ν̃m1 + (1 − ν̃)m2)IN

)

=
(
m1 IM 0
0 m2 IN

)
+

μν

ΛN

(
N (m2 − m1)IM 0

0 M(m1 − m2)IN

)
(28)

where μν = ν̃μ. Denote by L(ν1, ν2) the (N + M) × (N + M) matrix

L(m1,m2) =
(
m1 IM 0
0 m2 IN

)
,

and set

P = I2 − μν

ΛN

(
N −N

−M M

)
.

Then (28) is recast as

∑

α

λα

∫ π

−π

ν(dθ) rα(θ)−1L(m1,m2)rα(θ) = L(m′
1,m

′
2), (29)
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where
(
m′

1
m′

2

)
= P

(
m1
m2

)
.

By a repeated application of (29) we obtain

∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π ]k
ν(dθ1) · · · ν(dθk)

⎡

⎣
k∏

j=1

rα j (θ j )

⎤

⎦
T

L(m)

⎡

⎣
k∏

j=1

rα j (θ j )

⎤

⎦

= L(Pkm).

Thus,

Z =
(
Pk

(
1
0

))

1
IM .

It is easy to see that P has eigenvalues �1 = 1 and �2 = 1 − μν(M + N )/(ΛN ) with
eigenvectors m1 = (1, 1) and m2 = (N ,−M)T /(M + N ). Consequently,

(
1
0

)
= M

N + M
m1 + m2,

which yields
(
Pk

(
1
0

))

1
= M

N + M
+

N

M + N

(
1 − μν

M + N

ΛN

)k

.

This proves Theorem 7. ��

7. Boltzmann–Kac Collisions

In this section we show that the above results can also be extended, at least in a particular
case, to three-dimensional Boltzmann–Kac collisions.

Again we consider a system of M particles coupled to a reservoir consisting of N
particles, but nowwith velocities v1, . . . , vM ,w1, . . . , wN ∈ R

3. The collisions between
a pair of particles have to conserve energy and momentum,

z2i + z2j = (z∗i )2 + (z∗j )2

zi + z j = z∗i + z∗j ,

where z can be either the velocity of a system particle v or of a reservoir particle w. A
convenient parametrization of the post-collisional velocities in terms of the velocities
before the collision is given by

z∗i (ω) = zi − ω · (zi − z j ) ω

z∗j (ω) = z j + ω · (zi − z j ) ω, where ω ∈ S
2.

This is the so-calledω-representation. This representation is particularly useful, because
the velocities are related to each other by a linear transformation, and the strategy used
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to proof the results for the one-dimensional Kac system carries over rather directly. The
direction ω will be chosen according to the uniform probability distribution on the unit
sphere S2.

Introduce the operators

(Ri j f )(z) =
∫

S2
f (ri j (ω)−1z) dω,

where dω denotes the uniform probability measure on the sphere and the matrices ri j (ω)

are symmetric involutions acting as
(
z∗i
z∗j

)
=
(
I − ωωT ωωT

ωωT I − ωωT

)(
zi
z j

)

on the velocities of the particles i and j , and as identities otherwise. Theywill replace the
one-dimensional Kac collision operators in (3) in the otherwise unchanged generator of
the time evolution. Notice that the matrices ri j (ω) are orthogonal, so that the expansion
formula (12) still holds with the obvious changes in the dimension of the single-particle
spaces.

We prove an analog of Theorem 1 for the case of three-dimensional Boltzmann–Kac
collisions and pseudo-Maxwellian molecules.

Theorem 8. Let N ≥ M and F0(v,w) = f0(v) e−π |w|2 for some probability distribu-
tion f0 on R

3M. Then the entropy of the marginal

f (v, t) :=
∫

R3N

(
eLt F0

)
(v,w) dw

with respect to the thermal state e−π |v|2 is bounded by

S( f (·, t)) ≤
[

N

N + M
+

N

N + M
e− μ

3
N+M
N t
]
S( f0) .

Remark 3. The result in three dimensions is very similar to the case of one-dimensional
Kac collisions, with the difference that the rate of exponential decay is μ/3 instead of
μρ . The factor 1/3 comes from the fact that

∫
S2
dω ωωT = I3/3. It would be interesting

to cover the true Maxwellian molecules interaction

(Ri j f )(z) =
∫

S2
b

(
vi − v j

|vi − v j | · ω

)
f (ri j (ω)−1z) dω .

However, the dependence of the scattering rate b on the velocities doesn’t seem to be
treatable with the above methods.

The proof of Theorem 8 deviates from the one-dimensional case essentially in only
two places: the sum rule and the discrete approximation of the integrals. We begin by
proving an analogue of Theorem 7. Most of the steps for the computation of the matrix
Z in (27) are the same. What remains is to compute

Z :=
∑

α1,...,αk

λα1 · · · λαk

∫

S2×···×S2
dω1 · · · dωk Ak(α, ω)Ak(α, ω)T ,
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which is somewhat different for the case of Boltzmann–Kac collisions. Recall that
Ak(α, ω) is the upper left 3M × 3M block of [∏k

j=1 rα j (ω j )]−1, i.e.,

Ak(α, ω) = P3M [Πk
j=1rα j (ω j )]−1PT

3M

with the projection P3M = (
I3M 0

)
from R

3M+3N → R
3M . In particular, by linearity,

Z = P3M

⎛

⎜⎝
∑

α1,...,αk

λα1 · · · λαk

∫

(S2)k
dω

⎡

⎣
k∏

j=1

rα j (ω j )

⎤

⎦
−1 (

I3M 0
0 0

)⎡

⎣
k∏

j=1

rα j (ω j )

⎤

⎦

⎞

⎟⎠ PT
3M .

As in the proof of Theorem 7 we have

Lemma 3. Let α, β ≥ 0. Then

∑

1≤i< j≤M+N

λi j

∫

S2
dω ri j (ω)−1

(
α I3M 0
0 β I3N

)
ri j (ω) =

(
α′ I3M 0
0 β ′ I3N

)
,

where α′, β ′ are related to α, β by
(

α′
β ′
)

= P
(

α

β

)
, P = I2 − μ

3Λ

(
1 −1

−M
N

M
N

)
.

Notice that the matrix P of Lemma 3 has eigenvalues 1 and 1− μ/(3Λ) (1 + M/N )

with corresponding eigenvectors
(
1 1
)T and

(−N/M 1
)T . Repeated application of

Lemma 3 then implies, see also the argument in the one-dimensional case,

∑

α1,...,αk

λα1 · · · λαk

∫

(S2)k
dω

⎡

⎣
k∏

j=1

rα j (ω j )

⎤

⎦
−1 (

α I3M 0
0 β I3N

)⎡

⎣
k∏

j=1

rα j (ω j )

⎤

⎦

=
(

α(k) I3M 0
0 β(k) I3N

)
,

where
(

α(k)

β(k)

)
= Pk

(
α

β

)
.

Before we prove Lemma 3, let us make an easy observation.

Corollary 3. In the particular case α = 1, β = 0, we get

Z =
[

M

M + N
+

N

M + N

(
1 − μ

3Λ

(
1 +

M

N

))k
]
I3M .

Proof of Lemma 3. For 1 ≤ i < j ≤ M (respectively for M + 1 ≤ i < j ≤ M + N ) the
operators ri j (ω) only act non-trivially in the first 3M (last 3N ) variables. Taking into
account that ri j (ω)−1 I ri j (ω) = I , we obtain

λS

M − 1

∑

1≤i< j≤M

∫

S2
dω ri j (ω)−1

(
α I3M 0
0 β I3N

)
ri j (ω) = MλS

2

(
α I3M 0
0 β I3N

)
,
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and

λR

N − 1

∑

M+1≤i< j≤M+N

∫

S2
dω ri j (ω)−1

(
α I3M 0
0 β I3N

)
ri j (ω) = NλR

2

(
α I3M 0
0 β I3N

)
.

It remains to look at the interaction terms i = 1, . . . , M and j = M + 1, . . . , M + N .
Notice that

ri j (ω)−1
(

α I3M 0
0 β I3N

)
ri j (ω)

=
(

α I3M 0
0 β I3N

)
+

⎛

⎜⎜⎜⎜⎜⎝

0
(β − α)ωωT

0
0

0
0

(α − β)ωωT

0

⎞

⎟⎟⎟⎟⎟⎠
,

where the non-zero entries in the second summand on the right-hand side correspond to
the i th, respectively j th, 3 × 3 block on the diagonal. Since

∫
S2
dω ωωT = 1/3 I3, we

obtain

μ

N

M∑

i=1

M+N∑

j=M+1

∫

S2
dω ri j (ω)−1

(
α I3M 0
0 β I3N

)
ri j (ω)

= μM

(
α I3M 0
0 β I3N

)
+

μ

3
(α − β)

(−I3M 0
0 M

N I3N

)
.

Recall the definition of Λ = MλS/2+ NλR/2+μM . Hence, summation of all the three
contributions yields the statement of the Lemma. ��

As in the one-dimensional case, in order to apply the geometric Brascamp–Lieb
inequality Theorem 6, we need to approximate the uniform probability measure dω
on the sphere by a suitable sequence of discrete measures as in the one-dimensional
case (see Lemma 2). Additionally, in each step of the discretization, the constraint∫
S2
dω ωωT = 1/3I , has to hold. This is important, because it guarantees that the

geometric Brascamp–Lieb condition, i.e., the sum rule (21), holds in each step.
In order to find such an approximation, we parametrize the sphere in the usual way

by spherical coordinates

ω = ω(θ, ϕ) =
⎛

⎝
sin θ cosϕ

sin θ sin ϕ

cos θ

⎞

⎠

for θ ∈ [0, π ] and ϕ ∈ [0, 2π ]. For K , L ∈ N we introduce the measures

ΦK := π

K

2K−1∑

j=0

δ π
K j on [0, 2π ], and

ΘL :=
L∑

i=1

2

(1 − u2i )
3/2(P ′

L(ui ))2
δarccos ui on [0, π ],
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where PL is the Legendre polynomial of order L on [−1, 1], and ui , i = 1, . . . , L , are
its zeros. Then, if f ∈ C[0, 2π ] and g ∈ C[−1, 1],

∫ 2π

0
f (ϕ)ΦK (dϕ) = π

K

2K−1∑

j=0

f
( π

K
j
)

→
∫ 2π

0
f (ϕ) dϕ

as K → ∞ as Riemann sum. Furthermore,

∫ π

0
g(cos θ) sin θ ΘL(dθ) =

L∑

i=1

2 sin(arccos ui )

(1 − u2i )
3/2(P ′

L(ui ))2
g(ui )

=
L∑

i=1

2

(1 − u2i )(P
′
L(ui ))2

g(ui ) −→
∫ 1

−1
g(u) du =

∫ π

0
g(cos θ) sin θ dθ

as L → ∞ by Gauss-Legendre quadrature . The latter approximation is exact for
polynomials of order less or equal to 2L − 1. In particular, we have

∫ π

0
cos2 θ sin θ ΘL(dθ) =

∫ π

0
cos2 θ sin θ dθ = 2

3
, and

∫ π

0
sin3 θ ΘL(dθ) =

∫ π

0
sin3 θ dθ = 4

3
,

for all L ≥ 2. It is easy to check that

∫ 2π

0
sin ϕ cosϕ ΦK (dϕ) = 0,

∫ 2π

0
sin ϕ ΦK (dϕ) =

∫ 2π

0
cosϕ ΦK (dϕ) = 0,

∫ 2π

0
sin2 ϕ ΦK (dϕ) =

∫ 2π

0
cos2 ϕ ΦK (dϕ) = π,

for all K ≥ 2. Consequently,

1

4π

∫ 2π

0
ω(θ, ϕ)ω(θ, ϕ)T ΘL(dθ)ΦK (dϕ) = 1

3
I3

for all K , L ≥ 2. It follows that Z is not changed by replacing the uniformmeasure on S2

by the above discrete approximation, in particular, Z is still proportional to the identity
matrix, which guarantees the applicability of the geometric Brascamp–Lieb inequality.

This concludes the proof of Theorem 8. ��
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A The Geometric Brascamp–Lieb Inequality and the Entropy Inequality

In this section we prove Theorem 6. We use the same strategy as in [13] and [5] which
consists of transporting the functions fi with the heat kernel in such a way that the right-
hand side of (22) remains fixed while the left-hand side of that inequality increases. The
results in [5] are quite general but for the special case in which the sum rule (21) holds,
the proof is quite simple and this is one of the reasons why we include it here.

Proof of Theorem 6. The inequality (22) is equivalent to

∫

RM

K∏

i=1

f cii (Biv) dv ≤
K∏

i=1

(∫

Hi

fi (u) du

)ci
. (30)

This follows from the identity

K∏

i=1

(
e−π |Biv|2

)ci = e−π
∑K

i=1(v, ci B
T
i Biv) = e−π |v|2 .

We transport the functions fi by the heat flow, that is we define

fi (Biv, t) := 1

(4π t)M/2

∫

RM
e−|v−w|2/(4t) fi (Biw)dw. (31)

For the above definition to make sense, we have to show that the right-hand side is a
function of Biv alone. The condition Bi BT

i = IHi means that the matrix Pi = BT
i Bi

is an orthogonal projection onto a di dimensional subspace of RM . Moreover, Bi Pi =
IHi Bi = Bi . We rewrite the integral (31) by splitting it in an integral over w′ ∈ Ran Pi
and one over integration over w′′ ∈ Ran P⊥

i . Carrying out the integration over w′′ we
obtain

fi (Biv, t) = 1

(4π t)M/2

∫

Ran Pi

∫

Ran P⊥
i

e−|(Piv−Piw′)|2/(4t)

e−|(P⊥
i v−w′′)|2/(4t) fi (Bi Piw) dw′dw′′

= 1

(4π t)di /2

∫

Ran Pi
e−|(Piv−Piw′)|2/(4t) fi (Bi Piw′) dw′

= 1

(4π t)di /2

∫

Ran Pi
e−|(Biv−Biw′)|2/(4t) fi (Biw′) dw′

= 1

(4π t)di /2

∫

Hi

e−|(Biv−u)|2/(4t) fi (u) du

where, in the last equality, we have used that Bi maps the range of Pi isometrically onto
Hi . This justifies (31). Moreover, the above computation also shows that

∫

Hi

fi (u, t)du =
∫

Hi

fi (u)du

so that the right-hand side of the inequality (30) does not change under the heat flow.
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We now show that the left-hand side of (30) is an increasing function of t . It is convenient
to set φi (u, t) = log fi (u, t). Differentiating the function φi (Biv, t) with respect to t
yields

d

dt
φi (Biv, t) = Δvφi (Biv, t) + |∇vφi (Biv, t)|2.

Moreover,

d

dt

∫

RM

K∏

i=1

f cii (Biv, t) dv

=
K∑

m=1

cm

∫

RM
[Δvφm(Bmv, t) + |∇vφm(Bmv, t)|2]

K∏

i=1

f cii (Biv, t) dv.

Integrating by parts the term containing the Laplacian yields

d

dt

∫

RM

K∏

i=1

f cii (Biv, t) dv

=
K∑

m=1

cm

∫

RM
|∇vφm(Bmv, t)|2

K∏

i=1

f cii (Biv, t)dv

−
K∑

m,�=1

cmc�

∫

RM
∇vφm(Bmv, t) · ∇vφ�(B�v, t)

K∏

i=1

f cii (Biv, t)dv.

Finally, using that

∇vφm(Bmv, t) = BT
m (∇φm)(Bmv)

we get

d

dt

∫

RM

K∏

i=1

f cii (Biv, t) dv

=
K∑

m=1

cm

∫

RM
|BT

m (∇φm)(Bmv, t)|2
K∏

i=1

f cii (Biv, t)dv

−
K∑

m,�=1

cmc�

∫

RM
BT
m (∇φm)(Bmv, t) · BT

� (∇φ�)(B�v, t)
K∏

i=1

f cii (Biv, t)dv.

We claim that this expression is non-negative. The vectors ∇φm ∈ Hm are arbitrary
and hence the problem is reduced to proving that for any set of vectors Vm ∈ Hm ,
m = 1, . . . , K , it holds

K∑

m=1

cm |BT
mVm |2 −

K∑

m,�=1

cmc�B
T
mVm · BT

� V� ≥ 0.
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Recalling that BmBT
m = IHm and setting Y = ∑

� c�BT
� V� we conclude that it is enough

to show that

|Y |2 ≤
K∑

m=1

cm |Vm |2.

This follows easily, since, by applying Schwarz’s inequality, we find that

|Y |2 =
K∑

�=1

c�Y · BT
� V� =

K∑

�=1

c�B�Y · V� ≤
(

K∑

�=1

c�|B�Y |2
)1/2 ( K∑

�=1

c�|V�|2
)1/2

.

Combining this with (21), we learn that

|Y |2 ≤
(
Y ·

K∑

�=1

c�B
T
� B�Y

)1/2 ( K∑

�=1

c�|V�|2
)1/2

= |Y |
(

K∑

�=1

c�|V�|2
)1/2

.

Thus we have that, when applying (30) to the functions fi (u, t), the left hand side is an
increasing function of t while the right hand side does not depends on t . It is thus enough
to show that the inequality holds for large t . Using once more the sum-rule (21), we see
that

∫

RM

K∏

i=1

1

(4π t)ci di /2

[∫

Hi

e− |Bi v−u|2
4t fi (u)du

]ci
dv

= 1

(4π)M/2

∫

RM

K∏

i=1

[∫

Hi

e− |Bi v−t−1/2u|2
4 fi (u)du

]ci
dv

t→∞−→ 1

(4π)M/2

∫

RM
e− |v|2

4

K∏

i=1

[∫

Hi

fi (u)du

]ci
dv =

K∏

i=1

[∫

Hi

fi (u)du

]ci

which proves the first part of Theorem 6.
To prove the entropy inequality (23) we follow [11]. Let h be a non-negative function
whose L1 norm is one and whose entropy is finite. An elementary computation then
shows that

∫

RM
h(v) log h(v) e−π |v|2dv

= sup
Φ

{∫

RM
h(v)Φ(v) e−π |v|2 dv − log

∫

RM
eΦ(v)e−π |v|2 dv

}
.

Now, we set

Φ(v) =
K∑

i=1

ci log fi (Biv).
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This leads to the lower bound
∫

RM
h(v) log h(v) e−π |v|2 dv

≥
K∑

i=1

ci

∫

RM
h(v) log fi (Biv) e−π |v|2 dv − log

∫

RM

K∏

i=1

fi (Biv)ci e−π |v|2 dv

≥
K∑

i=1

ci

∫

RM
h(v) log fi (Biv) e−π |v|2 dv − log

[
K∏

i=1

(∫

Hi

fi (u) e−π |u|2 du
)ci
]

,

where the second step is a consequence of the Brascamp–Lieb inequality (22). ��

B Proof of Lemma 2

Proof. For K any positive integer we convolve ρ with the non-negative trigonometric
polynomial

pK (θ) := 1

2K + 1

(
K∑

k=−K

eikθ
)2

=
2K∑

m=−2K

(
1 − |m|

2K + 1

)
eimθ ,

and obtain a probability density ρK . The Fourier coefficients of ρK are given by

ρ̂K (m) = 1

2π

∫ π

−π

ρK (θ) e−imθ dθ = ρ̂(m)

(
1 − |m|

2K + 1

)

for |m| ≤ 2K and are zero otherwise. In particular,

1

2π

∫ π

−π

ρK (θ) sin θ cos θ dθ = ρ̂K (−2) − ρ̂K (2)

4i
=
(
1 − 2

2K + 1

)
ρ̂(−2) − ρ̂(2)

4i

=
(
1 − 2

2K + 1

)
1

2π

∫ π

−π

ρ(θ) sin θ cos θ dθ = 0.

With ρK we construct the measure

νK (dθ) = 2π

4K + 1

2K∑

�=−2K

ρK

(
2π�

4K + 1

)
δ

(
θ − 2π�

4K + 1

)
dθ.

The measure νK is positive since ρK ((2π�)/(4K + 1)) ≥ 0. Moreover, for all m ∈ Z

with |m| ≤ 2K the Fourier coefficients ν̂K (m) and ρ̂K (m) coincide. In particular, we
have

∫ π

−π

νK (dθ) sin θ cos θ = 0 .

To see this, we compute

ν̂K (m) = 1

2π

∫ π

−π

νK (θ)e−imθ dθ = 1

4K + 1

2K∑

�=−2K

ρK

(
2π�

4K + 1

)
e−2π im�/(4K+1)
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for |m| ≤ 2K . Observe that

ρK

(
2π�

4K + 1

)
=

2K∑

k=−2K

ρ̂K (k)e2π ik�/(4K+1),

and, as a consequence,

ν̂K (m) = 1

4K + 1

2K∑

�=−2K

2K∑

k=−2K

ρ̂K (k)e2π i�(k−m)/(4K+1).

But

2K∑

�=−2K

e2π i�(k−m)/(4K+1) =
{
4K + 1 if k = m
0 if k �= m,

and hence we conclude that
ν̂K (m) = ρ̂K (m) (32)

for |m| ≤ 2K . It is easy to see that for any continuous function f on [−π, π ],

lim
K→∞

∫ π

−π

f (θ)νK (dθ) =
∫ π

−π

f (θ)ρ(θ) dθ.

��
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