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§ Dipartimento di Matematica, Università di Roma ‘Tor Vergata’, I-00133 Roma, Italia

(Received22January1998and accepted in revised form30June1999)

Abstract. A one-parameter family of time reversible Anosov flows is studied; physically,
it describes a particle moving on a surface of constant negative curvature under the action
of an electric field (corresponding to an automorphic form) and of a ‘thermostatting’ force
(given by Gauss’s least-constraint principle). We show that the flows are dissipative, in
the sense that the average volume contraction rate is positive and the Sinai–Ruelle–Bowen
measure is singular with respect to the volume: therefore they verify the assumptions for
the validity of the continuous time version of Gallavotti–Cohen’s fluctuation theorem for
the large fluctuations of the average volume contraction rate. If several independent electric
fields are considered, it makes sense to ask for the validity of Onsager’s reciprocity: we
show, by explicitly computing the relevant transport coefficents, that it is indeed obeyed.

1. Introduction

1.1. In the last few years much work has been dedicated to the clarification of
the relationship between statistical mechanics and dynamical systems theory. Many
microscopic models for macroscopic statistical mechanical systems have been introduced
and studied both analytically and numerically. One of the main goals is to construct a
theory for non-equilibrium statistical mechanics. This means that one typically introduces
models describing the motion of particles in an external non-conservative field. A classical
example is a particle in a billiard moving under the influence of a constant electric field.
To prevent the energy of the system to grow unboundedly a mechanism to subtract it
from the system must be devised. In this respect the so-called Gaussian thermostat (see
Appendix A1 for more details) has also enjoyed a great deal of popularity because of its
use in molecular dynamics simulations. An interesting property of this thermostat is that,
although dissipative, it preserves the time-reversal properties of the system to which it is
applied. In turn this makes such systems ideal for the checking of thechaotic hypothesis
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introduced in [16]†. In [16] a large-deviations result (fluctuation theorem) is proven for
Anosov systems; a mathematical presentation of the proof for Anosov diffeomorphisms
is in [13], and the extension to flows can be found in [19]. The application of the
fluctuation theorem, according to the chaotic hypothesis, to some mathematical models
simulating dissipative reversible systems provides a parameterless law which has been
numerically verified at least in few cases [4, 10]. A rigorous proof that the average volume
contraction rate is positive (which is essentially the definition of dissipativity [13]; see
also Appendix A2) is, however, still lacking for models on which numerical simulations
are performed. The only case in which there exists such a proof is for the one-particle
system studied in [8], and, in fact, it seems interesting to provide some smooth examples
of dissipative Anosov flows and maps.

A theorem by Ruelle [22] proves that the average volume contraction rate is strictly
positive for AxiomA systems (and also for more general systems) when the Sinai–Ruelle–
Bowen (SRB) measure is not absolutely continuous with respect to the volume measure, a
result which therefore cannot be applied to the simplest Anosov systems because the latter
are Hamiltonian flows or area preserving maps.

In this paper we exhibit a simple example of a reversible topologically transitive Anosov
flow, for which we can prove that the average volume contraction rate is positive, so that
the fluctuation theorem in [19] can be applied; the flow is a perturbation of a geodesic flow
on a surface of constant negative curvature. A similar analysis can be performed for the
case of perturbations of Arnol’d’s cat’s map. This more trivial example is discussed in
Appendix A5: the discussion also shows that, as expected, generically the perturbation of
an area preserving map such as Arnol’d’s cat’s is dissipative, in the sense of [13].

The Anosov flow example arises by imagining that the particle on the surface is
electrically charged and moves under the influence of an electric field.

There are natural electric fields that can be defined on surfaces of constant negative
curvature. Such fields are the analogues of the constant field that can be defined on a
flat torus: they are covariant under the action of the group of movements of the (non-
Euclidean) geometry of the surface and locally conservative, hence they can be viewed
aselectromotive forceswhich tend to establish currents circulating around theg holesof
the surface, ifg is the surface genus (the electric fields have non-zero integrals along the
contours encircling the holes). There areg linearly independent of such fields, and they
are naturally given byg linearly independent automorphic forms that can be defined on the
surface.

A free charge on the surface, subject to such fields, will be accelerated: hence the
system that we consider is ‘thermostatted’ by means of a force that imposes that the motion
proceeds at constant kinetic energy (or speed). We impose the constraint via Gauss’ least-
constraint principle.

The system is thus a ‘non-Euclidean’ version of the system considered in [8]. It is
smooth and we prove that for small external fields it is dissipative (see Proposition 1.3
below). This could very likely be achieved by using the techniques of [8]: however, the
high symmetry of our system allows us to provide a direct simple proof by showing that the

† The content of such a hypothesis is that many particle systems in a non-equilibrium stationary state behave, as
far as macroscopical quantities are concerned, as if they were Axiom A systems.
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dissipation parameter (i.e. the average volume contraction rate) has non-vanishing second
derivatives with respect to the fields’ strengths which form a strictly positive defined matrix
H (the first derivatives vanish by time-reversal symmetry so that for a small field this is
enough to prove the positivity).

The derivatives of the average volume contraction rate are computed using aGreen–
Kubo’s formuladerived heuristically in [15] and provenin [23] for diffeomorphisms. We
think that there is no conceptual difficulty to extend the results in [23] to mixing Anosov
flows, also using the proof in [7] for the decay of correlation functions which covers the
case of the geodesic flow we are considering.

In the remaining part of this section we give a mathematical definition of the model
described above, and state the main result of the paper. In §2 we introduce a more
convenient system of coordinates, by following [9], and in §3 the positivity of the average
volume contraction rate, at small fields, is shown. It is natural to think that the positivity
holds atall fields; however, our perturbative method cannot deal with fields that are not
small (in general the system is no longer an Anosov system when the perturbation becomes
too large). In §4 Onsager’s coefficients, which form the entries of a matrixL, are computed
and shown to be the entries of the (symmetric) matrixH , so that Onsager’s reciprocity
relations are explicitly verified.

1.2. Let C+ be the upper complex semiplane: the most general compact analytic surface
of constant negative curvature is

∑
0 = C+/0, where0 ⊂ PSL(2, R) is a hyperbolic

Fuchsian group; the surface
∑

0 can be identified with a fundamental domain of0, with
the opposite sides identified modulo0 (we refer to [9, 11, 18] for notations). The system
is described by the equations of motion (see [8] for the analogous billiard model, and the
analogy becomes quite clear if one thinks of the billiard motion as a motion on a surface
whose curvature is zero except for anegativedelta-singularity in correspondence of the
boundaries) 



ẋ = y2px,

ẏ = y2py,

ṗx = Ex − αpx,

ṗy = −y(p2
x + p2

y)+ Ey − αpy,

(1.1)

wherez = x + iy ∈∑
0, and the ‘electric field’E ≡ (Ex,Ey) is given by

Ex = ε

2
(φ1(z)+ φ1(z)), Ey = iε

2
(φ1(z)+ φ1(z)). (1.2)

If φ1(z) is an automorphic form of order 1, [11], andφ1(z) is an antiautomorphic form of
order 1, which is the complex conjugate of the corresponding automorphic form (there are
g of both of them, ifg is the genus of the compact surface associated to0; see [21, §2.1
and §2.5]); this means that, ifh ∈ PGL(2, R) andj (z, h) = (h12z+ h22), then

φ1(zγ ) = φ1(z)j (z, γ )2 ∀γ ∈ 0. (1.3)

So the (non-conservative) potential is

V (z) = −ε

2

∫
C

[φ1(z
′) dz′ + φ1(z′) dz′],
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whereC is a curve in
∑

0 linking a (arbitrary) pointz0 to z; the potential is multivalued
on

∑
0. Note that (1.3), the analyticity of the automorphic forms on the upper complex

semiplane and the propertyd(zγ ) = j (z, γ )−2 dz ensure that the function (1.2) is
covariant and locally conservative (its integral over a small closed path, also crossing the
boundary, is vanishing), so motivating the fact that it can be interpreted as an electric field.

In (1.1) the functionα will be chosen in such a way that

H0 = y2

2
(p2

x + p2
y) = y2p2

2
(1.4)

is a constant of the motion (i.e. we assume that the particle moves under the constraint
that the kinetic energy is a constant of the motion and the constraint is realized as an ideal
one, that is it generates reactions obeying Gauss’s least-constraint principle, [14, 20]: see
Appendix A1). Then one finds

α = p · E
p2 ≡

pxEx + pyEy

p2
x + p2

y

, (1.5)

so that thevolume contration rate(i.e. the divergence of the right-hand side of (1.1), up to
the sign; see Appendix A2) is

σ = α = p · E
p2

. (1.6)

Note that the equations of motion (1.1) are reversible: the time-reversal symmetry is
obvious, namely(px, py) → (−px,−py) and (x, y) → (x, y); see Appendix A3 for
the (interesting) form that the symmetry takes in the other coordinates that we introduce
in §2.

Equations (1.1) describe a geodesic flow on a surface of constant negative curvature,∑
0, subject to the action of a non-conservative electric field and coupled to a Gaussian

thermostat which keeps constant the free energy of the system. With the units of (1.4), the
curvature isκ = −1.

The main result of this paper follows.

PROPOSITION1.3. The system described by (1.1) and (1.2), withα defined in (1.5), forε
small enough, is a dissipative reversible Anosov system, i.e. the time average of the volume
contraction rateσ , see (1.6), is strictly positive for almost all (with respect to the volume
measure) initial data. Equivalently, the SRB average ofσ is strictly positive.

Finally the existence of several independent electric fields (if the surface genus isg ≥ 2)
allows us to ask the question: ‘are Onsager’s reciprocity relations and, more generally,
Green–Kubo’s formulae verified?’ for the appropriately defined thermodynamic fluxes.
The answer should be affirmative as discussed informally in [14, 15]: this can indeed be
easily checked in our case (see §4).

It would be interesting to also prove the dissipativity for a system ofN particles moving
on the surface

∑
0 under the influence of the electric field (1.2) and subject to Gauss’ least-

constraint principle. Nevertheless, despite the fact that the volume contraction rate assumes
a very simple expression such as (1.6) for the one-particle system (1.4) (see Appendix A4),
we are not able to extend our methods to cover such a case; see also the end comments in
Appendix A4.
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2. A global system of coordinates

2.1. If w ∈ C+ andh ∈ PGL(2, R), then we write, following [18],

wh = h11w + h21

h12w + h22
. (2.1)

The coordinates(q1, q2, p1, p2) and the matrixg ∈ PGL(2, R) are defined by the
transformation [9],

(x, y, px, py) ∈ T ∗C+ −→ g =
(

p1 q2

−p2 q1

)
∈ PGL(2, R), (2.2)

given by

z = x + iy = ig−1 = p2+ iq1

p1− iq2

px + ipy = i

2
(detg)2j (i, g−1)

2 = i

2
(p1+ iq2)

2,

(2.3)

which can be rewritten as

x = p1p2 − q1q2

p2
1 + q2

2

, y = q1p1+ q2p2

p2
1 + q2

2

,

px = −p1q2, py = 1
2(p2

1 − q2
2),

(2.4)

by taking into account that one has

g =
(

p1 q2

−p2 q1

)
=

(
g11 g12

g21 g22

)
, g−1 = 1

detg

(
g22 −g12

−g21 g11

)
,

and that the definition ofj (z, h) given before (1.3) implies

j (i, g−1) = 1

detg
(g11− ig12). (2.5)

The transformation (2.2) defined by (2.3) is canonical [9, Appendix D], and provides a
global system of coordinates on the phase space of the geodesic flow deprived of the points
with zero velocity, if the elements in PGL(2,R) are identified modulo0 [9, §4]. In terms
of the new variables, the Hamiltonian becomes (see [9])

H0 ≡ H0(g) = (detg)2

8
= (q1p1 + q2p2)

2

8
. (2.6)

Then, from (1.6) and (1.2), one has

σ = ε/2

p2
x + p2

y

[px(φ1(z)+ φ1(z))+ ipy(φ1(z)− φ1(z))]

= ε

2

[
φ1(z)

px − ipy

+ φ1(z)

px + ipy

]
= εi

[
φ1(ig

−1)

(g11− ig12)2 −
φ1(ig−1)

(g11+ ig12)2

]

= εi

(detg)2

[
φ1(ig

−1)

j (i, g−1)2
− φ1(ig−1)

j (−i, g−1)2

]
(2.7)

asig−1 ≡ z andj (−i, g−1) = j (i, g−1).
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2.2. If we define the matrixM(g) as

M(g) =
(−D/4 −c(g)

c(g) D/4

)
, (2.8)

where we have setD ≡ detg = constant, and

c(g) = ε

2D2

[
φ1(ig

−1)

j (i, g−1)2
+ φ1(ig−1)

j (−i, g−1)2

]
, (2.9)

with j (i, g−1) = (det g)−1(g11− ig12) = D−1(g11− ig12), the equations of motion can
be written as

ġ = gM(g) = −D

4
gσz + c(g)gσy, (2.10)

with

σz =
(

1 0
0 −1

)
, σy =

(
0 −1
1 0

)
. (2.11)

Then, given a smooth functionF ∈ L2(0\PSL(2, R)), one has the evolution law

dF

dt
= −D

4
Tr

(
∂F

∂g
(gσz)

T

)
+ c(g) Tr

(
∂F

∂g
(gσy)T

)
. (2.12)

Note thatσ ≡ σ(g) = −2εD−2 Im(φ1(ig
−1)/j (i, g−1)2), while c(g) = εD−2

Re(φ1(ig
−1)/j (i, g−1)2). By taking into account the definition of the functions (see [9,

§4])

E1(g) ≡ φ1(ig−1)j (i, g−1)−2 = φ1(ig−1)j (−i, g−1)−2, (2.13)

one has

c(g) = εD−2 ReE1(g), σ (g) = 2εD−2 Im E1(g). (2.14)

3. Positivity of the volume contraction rate

3.1. Let us denote by〈 · 〉 the average with respect to the SRB measure of the perturbed
system and by〈 · 〉0 the average with respect to the SRB measure of the free system (which
is the volume measure).

The derivatives of〈σ 〉 with respect toε are well defined in the case of diffeomorphisms,
[23]; as we stated in §1.1, we assume the extension of the proof to the case of flows.
Then the solution of the equations of motion can be written asg(t) = g0(t) + O(ε),
whereg0(t) = ge−σzDt/4 is the solution of the equations of motion of the unperturbed
system with initial datag, (see (2.10) forε = 0), and, from (2.7), one hasσ(g(t)) =
σ1(g0(t))ε + O(ε2), with σ1(g0(t)) = 2D−2 Im E1(g0(t)). From reversibility and [23]†,

† One applies twice [23, Theorem 3.1(b)] in order to compute the second derivative of〈σ 〉, and then evaluates it in
ε = 0. Reversibility is used to conclude that〈σ1( · )〉0 = 0, so that, in particular, the first derivative is vanishing.
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one reads (ifSt denotes the time evolution of the perturbed system, andSt
0 denotes the time

evolution of the free system)

σ+ ≡ 〈σ 〉 = ε2

2

∫ ∞
−∞

dt [〈σ1(S
t
0·)σ1( · )〉0] +O(ε3)

= ε2

2

∫ ∞
−∞

dt

∫
dg σ1(g0(t))σ1(g)+O(ε3), (3.1)

where dg denotes the SRB measure of the free system in terms ofg (which is the
normalized Haar measure on0\PSL(2, R)).

3.2. Because of (3.1), one has

∂2〈σ 〉
∂ε2

∣∣∣∣
ε=0
= 1

D4

∫ ∞
−∞

dt

∫
dg (E1(g0(t))− E1(g0(t)))(E1(g)− E1(g)). (3.2)

Let U be the unitary representation of PSL(2, R) on L2(0\PSL(2, R)) induced by the
action of PSL(2, R) on the homogeneous space0\PSL(2, R),

(U(g)f )(g1) = f (g1g), q1 ∈ L2(0\PSL(2, R)),

andY (1) theU -invariant subspace ofL2(0\PSL(2, R)) on which the representation acts
irreducibly spanned byU(h)E1, with h varying in PSL(2, R), [18]. SinceE1(g0(t)) =
(U(e−σzDt/4)E1)(g), so that, ifE1(g) ∈ Y (1), alsoE1(g0(t)) ∈ Y (1), then∫

dg (E1(g0(t))− E1(g0(t)))(E1(g)− E1(g)) = 2
∫

dg Re(E1(g0(t))E1(g)). (3.3)

The representation(U(g)E1)(g0) = E1(g0g) induces the realization̂U of U on Ŷ (1)

(Û (g)f1)(z) = f1(zg)j (z, g)−2 ∀f1 ∈ Ŷ (1), (3.4)

whereŶ (1) can be realized as the subspace ofL2(C+, dx dy) consisting in the functions
analytic inx+iy ∈ C+ [18]; therefore the identification ofE1 ∈ Y (1) as a vector̂E1 ∈ Ŷ (1)

[18],

E1(g)←→ M1(z+ i)−2, (3.5)

with M1 = √4/π yields

E1(g0(t))←→ M1(z0(t)+ i)−2e−Dt/2, (3.6)

wherez0(t) = ig−1
0 (t) = ze−σzDt/4 = e−Dt/2z. Therefore∫

dg (E1(g0(t))E1(g)) = 4

π

∫ ∞
−∞

dx

∫ ∞
0

dy
e−Dt/2

(z0(t)− i)2

1

(z+ i)2 . (3.7)

One has ∫ ∞
−∞

dx

∫ ∞
0

dy
1

(z0(t)− i)2

1

(z+ i)2
= πeDt

(eDt/2+ 1)2
,

and so, from (3.2),

∂2〈σ 〉
∂ε2

∣∣∣∣
ε=0
= 42

D5 . (3.8)
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As 〈σ 〉 = 0 for ε = 0, one has that, forε 6= 0 small enough,σ+ ≡ 〈σ 〉 > 0, i.e. the system
(1.1) is dissipative. IfH0 = 1/2, i.e.D = 2, one has that (3.8) is equal to 1/2.

Therefore, since the system (1.1) is an Anosov flow (as it is a smooth perturbation of
an Anosov flow, [1]), reversibility and dissipativity imply that the fluctuation theorem for
flows (in [19, Theorem 3.6]) holds.

4. Onsager’s reciprocity relations

4.1. In general, if the genusg of the surface isg ≥ 2, one can introduceM electric fields
E1, . . . , EM which can be written in terms of theN = g linearly independent automorphic
forms of order 1, i.e.φ11(z), . . . , φ1N(z), and their complex conjugated (antiautomorphic
forms), i.e.φ11(z), . . . , φ1N(z), as

Eix(z) = εi

2

N∑
j=1

eij (φ1j (z)+ φ1j (z)), i = 1, . . . ,M,

Eiy(z) = iεi

2

N∑
j=1

eij (φ1j (z)− φ1j (z)), i = 1, . . . ,M,

(4.1)

whereε1, . . . , εM are the fields intensities, and theM × N matrix eij is real. Then the
resulting electric field is given by the superposition of theM electric fields (4.1), i.e.
E =∑M

i=1 Ei , and the volume contraction rate isσ = p−2(p · E).

4.2. The second derivatives of〈σ 〉 with respect to the fields intensitiesε1, . . . , εM ,
computed inε1 = · · · = εM = 0, define a matrixH . We consider also the matrixL
given by

Lij = ∂

∂εi

〈
∂σ

∂εj

〉∣∣∣∣
ε1=···=εM=0

. (4.2)

By repeating the analysis of §2 and §3, and taking into account: (1) the fact that the
functions inL2(0\PSL(2, R)) corresponding to the automorphic forms of order 1 through
(2.14) are orthogonal to each other, and admit all the same realization (3.4); (2) the results
in [23]; and (3) the reversibility of the equations of motion, one finds (see [15])

Lij =
∫ ∞
−∞

dt [〈σ1i (S
t
0·)σ1j ( · )〉0− 〈σ1i ( · )〉0〈σ1j ( · )〉0]

=
∫ ∞
−∞

dt

∫
dg σ1i (g0(t))σ1j (g),

whereσ1i (g) = 2D−2 ∑N
j=1 eij Im E1j (g), so that

Lij = 2

D4

∫ ∞
−∞

dt

N∑
n,m=1

einejm

∫
dg En(g0(t))Em(g)

= 42

D5

N∑
n=1

einejn = 42

D5
(eeT )ij . (4.3)
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From (4.2) one immediately sees thatLij = Lji , which expresses Onsager’s reciprocity
relations, and (4.3) provides an explicit formula for Onsager’s coefficients. IfD = 2, as
after (3.8) andM = N, eij = δij , one finds thatLij = δij /2, as written at the end of [17].

Note also thatL is just the second-derivatives matrix of the average volume contraction
rate, i.e.L = H , if Hij = ∂2〈σ 〉/∂εi∂εj , so that (4.3) shows thatH is positive definite:
then the system is dissipative.
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Appendix A1. Gauss’ least-constraint principle

A1.1. The system described by the Hamiltonian (1.4) can be obtained (locally) from
a free system in the Euclidean spaceR

3, with the constraint thatx3 = ϕ(x1, x2) =
tanh−1

√
1− (x2

1 + x2
2) −

√
1− (x2

1 + x2
2), x2

1 + x2
2 ≤ 1; one can think that this equation

describes the pseudosphere, i.e. the surface obtained by rotating about the asymptotic the
Beltrami tractrix (so that it has constant negative curvature), [5]. Such a system can be
described by the Lagrangian

L(x, ẋ) = ẋ2
1 + ẋ2

2 + ẋ2
3

2
− λW(x1, x2, x3), (A1.1)

with x = (x1, x2, x3) and ẋ = (ẋ1, ẋ2, ẋ3), for a suitable functionW(x1, x2, x3), in the
limit λ→∞, [2, §17]. More formally the following result holds.

LEMMA A1.2. If x = X(q), withq = (q1, q2, q3), is a system of local regular coordinates,
well adapted and orthogonal on a surface6 ∈ R3, i.e. (i) q3 = 0 describes the surface
x3 = ϕ(x1, x2), (ii) the kinetic matrix

Gnm(q) =
3∑

i=1

∂Xi(q)

∂qn

· ∂Xi(q)

∂qm

, (A1.2)

is such that

∂Xi(q)

∂qn

· ∂Xi(q)

∂qm

= 0 for n = 1, 2 andm = 3, (A1.3)

and (
∂Xi(q)

∂q3

)2 ∣∣∣∣
q3=0
= constant, (A1.4)

and (iii) the potentialW(X(q)) is such that

W(X(q)) = W̃ (q3), W̃ (0) = 0,

∂W̃(q3)

∂q3

∣∣∣∣
q3=0
= 0,

∂2W̃ (q3)

∂q2
3

∣∣∣∣
q3=0

> 0,
(A1.5)
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then the solution of the Euler–Lagrange equations corresponding to the Lagrangian
(A1.1), in the limitλ → ∞, converge to the solution of the Euler–Lagrange equations
corresponding to the Lagrangian

L0(q1, q2, q̇1, q̇2) = 1

2

∑
n,m=1,2

Gnm(q)q̇nq̇m, (A1.6)

provided that the initial data are such thatx is on the surfacex3 = ϕ(x1, x2) and ẋ is
tangent to the surface (in terms ofq, q3 = 0 andq̇3 = 0).

A1.3. Proof of Lemma A1.2.The proof follows from [12, §3.8, Proposition 13]: we simply
sketch it. Ifq is an orthonormal and well adapted system of coordinates, then we can write

x = X(q), ẋ = ∂X
∂q

· q̇, (A1.7)

so that

ẋi =
[ ∑

n=1,2

∂Xi

dqn

q̇n

]
+ ∂Xi

dq3
q̇3

ẍi =
[ ∑

n,m=1,2

∂Xi

∂qnqm

q̇nq̇m +
∑

n=1,2

∂Xi

dqn

q̈n

]
+

[
∂2Xi

∂q2
3

q̇2
3 +

∂Xi

dq3
q̈3

]

+
[
2

∑
n=1,2

∂2Xi

∂qnq3
q̇nq̇3

]
, (A1.8)

where the mixed terms in the final summation are vanishing when computed inq3 = 0, as
the new coordinates are well adapted and orthogonal (see (A1.3) above).

Then, on the surfaceq3 = 0, if (i) the initial data are taken such thatq̇3(0) = 0, and (ii)
W satisfies the conditions in (A1.5), one has

∑
n=1,2

∂Xi

dqn

q̈n = −
∑

n,m=1,2

∂2Xi

∂qnqm

q̇nq̇m. (A1.9)

Therefore the equations (A1.9) and the definition (A1.2) give

∑
m=1,2

Gnm(q)q̈m = −1

2

∑
k,m=1,2

∂Gnm(q)

∂qk

q̇mq̇k, (A1.10)

which can be rewritten, if one defines the ‘momentum’

pn =
∑

m=1,2

Gnm(q)q̇m, (A1.11)

as

q̇n =
∑

m=1,2

(G−1(q))nmpm, ṗn = 1

2

∑
k,m=1,2

∂Gnm(q)

∂qk

q̇mq̇k, (A1.12)

which are the Euler–Lagrange equations corresponding to the Lagrangian (A1.6).2
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A1.4. Let us apply Gauss’ least-constraint principle to the system (A1.1) subjected to the
action of an electric field

Ẽ = (Ẽ1(x1, x2, x3), Ẽ2(x1, x2, x3), Ẽ3(x1, x2, x3)), (A1.13)

and then take the limitλ→∞; the field will be chosen in a suitable way to be fixed later
(see (A1.18) below).

One has that the equations of motion become (see [14, Appendix A1])

ẍi = −∂W

∂xi

+ Ẽi − αẋi , for i = 1, 2, 3, (A1.14)

with α = (ẋ · Ẽ)/ẋ2. Note thatα has the same form independently ofW . When the limit
λ→∞ is taken, instead of the equations (A1.19), one obtains

∑
n=1,2

∂Xi

dqn

· q̈n = −
∑

n,m=1,2

∂2Xi

∂qnqm

q̇nq̇m + Ẽi − αẋi . (A1.15)

Then (A1.10) are replaced with

∑
m=1,2

Gnm(q)q̈m = −1

2

∑
k,m=1,2

∂Gnm(q)

∂qk

q̇mq̇k +
3∑

i=1

∂Xi

∂qn

Ẽi − α

3∑
i=1

∂Xi

∂qn

ẋi, (A1.16)

which can be rewritten, if one takes into account again the definition (A1.11), as

q̇n =
∑
i=1,2

(G−1(q))nmpm

ṗn = 1

2

∑
k,m=1,2

∂Gnm(q)

∂qk

q̇mq̇k +
3∑

i=1

∂Xi

∂qn

Ẽi − αpn.

(A1.17)

Then one defines the electric field in (A1.13), in such a way that, on the surfaceq3 = 0,


Eq1 =
3∑

i=1

∂Xi

∂q1
Ẽi = ε

2
(φ1(z)+ φ1(z) ),

Eq2 =
3∑

i=1

∂Xi

∂q2
Ẽi = i

ε

2
(φ1(z)− φ1(z) ),

(A1.18)

wherez = q1+ iq2 andφ1(z) is as in §1, so that the equations (1.1) are obtained, with

α =
∑

n=1,2 Enq̇n∑
n=1,2 q̇npn

. (A1.19)

For (1.1) one hasGnm(q) = q−2
2 δnm on the surfaceq3 = 0†, so that one can rewrite

(A1.19) as

α =
∑

n=1,2 Enpn∑
n=1,2 p2

n

, (A1.20)

so that also equation (1.5) follows.

† For instance, on the surfaceq3 = 0, one can set in (A1.7),x1(q1, q2, 0) = q−1
2 cosq1, X2(q1, q2, 0) =

q−1
2 sinq1 andX3(q1, q2, 0) = tanh−1

√
1− q−2

2 −
√

1− q−2
2 , with q2 > 1 and|q1| < π .
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Appendix A2. Volume contraction rate for diffeomorphisms and flows

A2.1. Given aC∞ compact Riemannian manifoldM and aC∞ diffeomorphismS :M →
M, theentropy productionrate (or average volume contraction rate) is defined as

e(µ) = −
∫

M

µ(dx) ln3(x), (A2.1)

where3(x) is the absolute value of the Jacobian ofS at x, computed with respect to the
Riemann metric, andµ is aS-invariant probability measure associated with the dynamical
system(M, S), [22, §1].

If (A2.1) is strictly positive, then one has an increment of entropy for the system, which
therefore can be interpreted as a dissipative system.

A2.2. Given aC∞ flow St : M → M, which solves the differential equationẋ = F(x) on
M, in the same way as in §A2.1 it is possible to show that the entropy production rate is
given by

e(µ) = −
∫

M

µ(dx)
d

dt
ln λt (x)

∣∣∣∣
t=0

, (A2.2)

whereλt (x) is the Jacobian of the linear mapTxM → TStxM, andµ is a St -invariant
measure associated with the dynamical system(M, St ). If St :M → M is a topologically
transitive Anosov flow (more generally an AxiomA flow), as in §1.1, andµ is the SRB
measure, then the average with respect toµ of any smooth functionF defined onM is
equal to its time average:∫

M

µ(dx)F (x) = lim
T→∞

1

T

∫ T

0
dt F (Stx0), (A2.3)

for µ0-almost all initial datax0 ∈ M, if µ0 is the volume measure, see [6, Theorem 5.1].
If one sets

ln J (x) = d

dt
ln λt (x)

∣∣∣∣
t=0

, (A2.4)

then (A2.2) corresponds to the expression appearing in [19, Definition 3.1], so that
σ+ ≡ 〈σ 〉 = e(µ). From the definition (A2.4) and the properties of the derivative of
the determinant, it is straightforward to verify that

ln J (x) = div ẋ ≡ div F(x), (A2.5)

so motivating the definition of the volume contraction rate given in §1.2, from which (1.5)
follows for the system (1.1).

Appendix A3. Reversibility of the equations of motion

A3.1. The system (1.1) is reversible: in fact there exists an isometric transformationI such
thatI2 = 1l andStI = IS−t , if St denotes the time evolution. Such a transformation is
given by

I(x, y, px, py) = (x, y,−px,−py), (A3.1)
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which, in terms of the coordinates introduced in (2.1), becomes

I(q1, q2, p1, p2) = (−p2, p1,−q2, q1), (A3.2)

that is

Ig = −σyg =
(−g12 g11

−g22 g21

)
, σy =

(
0 −1
1 0

)
. (A3.3)

A3.2. One has det(Ig) = detg, φ1(ig
−1) = φ1(i(Ig)−1), j (i, (Ig)−1) = ij (i, g−1),

c(Ig) = −c(g), σy(Ig) = −σy(g), M(Ig) = MT (g), so that, ifg′ = Ig andt ′ = −t ,

dg′

dt ′
= −gM(g)σy = −g1lM(g)σy = gσ 2

y M(g)σy

= g′(σyM(g)σy) = g′M(g′), (A3.4)

which shows the invariance of the equations of motion under the action of the mapI.

Appendix A4. Many-particle system

A4.1. Let us consider a system ofN particles on
∑

0, with the free Hamiltonian

H0 =
N∑

n=1

y2
n

2
(p2

nx + p2
ny) =

N∑
n=1

y2
nP2

n

2
, (A4.1)

subject to the action of the electric field (1.2) and coupled with a Gaussian thermostat.
Then, by applying Gauss’s least-constraint principle and reasoning as in Appendix A1,
one finds that the equations of motion become



ẋn = y2
npnx,

ẏn = y2
npny,

ṗnx = Enx − αpnx,

ṗny = −yn(p
2
nx + p2

ny)+ Eny − αpny,

(A4.2)

wherezn = xn + iyn ∈ ∑
0, and the ‘electric field’En ≡ (Enx,Eny) is given by (1.2)

evaluated inz = zn.
In (A4.2) the functionα has to be chosen in such a way that (A4.1) is a constant of the

motion, that is

α =
∑N

n=1 y2
npn · En∑N

n=1 y2
np2

n

≡
∑N

n=1 y2
n(pnxEnx + pnyEny)∑N

n=1 y2
n(p2

nx + p2
ny)

, (A4.3)

so that the volume contration rate (i.e. the divergence of the right-hand side of (A4.2), up
to the sign) is

σ = (2N − 1)α = (2N − 1)

∑N
n=1 y2

npn · En∑N
n=1 y2

np2
n

. (A4.4)
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A4.2. Then, as for (1.1), we can perform the canonical transformation of coordinates

zn = xn + iyn = ig−1
n =

pn2 + iqn1

pn1 − iqn2

pnx + ipny = i

2
(detgn)

2j (i, g−1
n )

2 = i

2
(pn1+ iqn2)

2,

(A4.5)

with gn ∈ PGL(2, R) for all n.
Then from (A4.4) and (A4.5) one obtains that, in terms ofg1, . . . , gN ,

H0 ≡ H0(g1, . . . , gN) =
∑N

n=1(detgn)
2

8
≡ D2

8
= constant, (A4.6)

and, for alln,

y2
npn · En = (detgn)

2

(p2
n1 + q2

n2)
2

[
iε

2
(pn1+ iqn2)

2ϕ1(zn)+ C.C.

]

= iε

2

[
φ1(zn)

j (i, g−1
n )2

− C.C.

]
, (A4.7)

so that (A4.3) becomes

α = εi

D2

N∑
n=1

[
φ1(zn)

j (i, g−1
n )2

− φ1(zn)

j (−i, g−1
n )2

]
= 2ε

D2

N∑
n=1

Im E1(gn), (A4.8)

where, in the last line, we have taken into account the definition (2.14) withg replaced
with gn.

Even if the initial decoupled systems areN Anosov systems, the interacting system is
no longer an Anosov system (the available volume is different from the original). This is
also reflected in the fact that the representations of the functionsE1(gn) are realized in
disjoint spaces, so that the analysis in §3 cannot be repeated. Therefore, nothing can be
concluded with the methods of §3.

Appendix A5. A dissipative Anosov diffeomorphism

A5.1. Let us consider a perturbation of Arnol’d’s cat’s map [3, §13]:(
x ′1
x ′2

)
=

(
1 1
1 2

) (
x1

x2

)
+ ε

(
f1(x1, x2)

f2(x1, x2)

)
, (A5.1)

wherex = (x1, x2) ∈ T2, andf(x) = (f1(x), f2(x)) is a function with components periodic
onT2.

The volume contraction rateσ is defined as the logarithm of the absolute value of
determinant of the Jacobian matrix (see Appendix A2):

σ = ln |detJ (x)|, J (x) =
(

1+ ε∂f1(x)/∂x1 1+ ε∂f1(x)/∂x2

1+ ε∂f2(x)/∂x1 2+ ε∂f2(x)/∂x2

)
, (A5.2)

so that, if: (i) 〈 · 〉 and 〈 · 〉0 denote the average with respect to the SRB measure,
respectively, of the perturbed system and of the free system (the latter is the volume
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measure), and (ii)Sn
0 denotes thenth iterate of the transformation in (A5.1) forε = 0,

i.e. thenth power of the matrix in (A5.1), then, from [23],

∂2〈σ 〉
∂ε2

∣∣∣∣
ε=0
=

∞∑
n=−∞

〈σ1(S
n
0 , )σ1( · )〉0, (A5.3)

whereσ1(x) is the first derivative ofσ(x) with respect toε, computed inε = 0; one has

∞∑
n=−∞

〈σ1(S
n
0 , )σ1( · )〉0 =

∞∑
n=−∞

∫ 1

0
dx1

∫ 1

0
dx2 σ1(S

n
0x)σ1(x)

=
∞∑

n=−∞

∑
ν∈Z2

σ1νσ1Sn
0ν, (A5.4)

whereσ1ν is theνth Fourier coefficient ofσ1:

σ1(x) =
∑
ν∈Z2

σ1νe
2πix·ν. (A5.5)

The series in (A5.4) is well defined (i.e. convergent), see [23]. With fixed ν the
other sum runs over all the integersn such that toSn

0ν there corresponds another Fourier
coefficient ofσ1: in general such a sum will not be empty, so that in general the expression
in (A5.4) will be not vanishing (and therefore positive), as a consequence of [22]†.

A5.2. As a concrete case we can consider a perturbation as in (A5.1), with

f1(x) = 1

2π
[sin(2π(x1+ x2))+ sin(2πx1)], f2(x) = 0, (A5.6)

so that

σ1(x) = 2 cos(2π(x1+ x2))+ cos(2πx1), (A5.7)

which can be expressed as in (A4.5) withν running only over the set of vectorsI =
{µj }4j=1, with

µ1 = (1, 1), µ2 = (−1,−1), µ3 = (1, 0), µ4 = (−1, 0), (A5.8)

corresponding to that where one hasσ1,µ1 = σ1,µ2 = 1 andσ1,µ3 = σ1,µ4 = 1
2.

The conditionsµ ∈ I andSn
0µ ∈ I can be satisfied only for (i)µ = µ3 andn = 1 (so

thatSn
0µ3 = µ1) and (ii)µ = µ4 andn = 1 (so thatSn

0µ4 = µ2). Then, from (A5.3) and
(A5.4), one has

∂2〈σ 〉
∂ε2

∣∣∣∣
ε=0
= σ1,µ3σ1,µ1 + σ1,µ4σ1,µ2 = 1, (A5.9)

which shows that forε small enough the volume contraction rate is positive, i.e. the system
(A5.1) with perturbation (A5.5) is dissipative. The system (A5.1) is not reversible, but a
reversible system can be easily constructed as explained in [13, §2]: if (T, S) is the system
(A5.1), then we can define a new system(T × T, S′), such thatS′(x, y) = (Sx, S−1y),

† Note that, even if (A5.4) vanishes, this does not yield〈σ 〉 = 0, but only that the second derivative of〈σ 〉 with
respect toε is vanishing inε = 0.
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with (x, y) ∈ T × T, and the isometryI such thatI2 = 1l andSnI = IS−n is given by
I(x, y) = (y, x). This means that a new reversible and (still) dissipative system is obtained,
and the fluctuation theorem in [§2], follows.
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