M P E ]

MATHEMATICAL PHYSICS ELECTRONIC JOURNAL

ISSN 1086-6655
Volume 2, 1996

Paper 1
Received: June 14, 1995, Revised: January 15, 1996, Accepted: January 26, 1996
Editor: G. Gallavotti

Filled band Fermi systems

F.Bonetto!, V.Mastropietro?

Abstract

Extending the results in (B.M.) on one dimensional interacting fermions in a periodic
potential we study the infrared behaviour of the two points Schwinger function in the filled
band case. If the fermions are spinless such behaviour is completely determined and it
depends on the ratio between the amplitude of the gap and the strength of the interaction.
If the ratio is large the Schwinger function behaviour is similar to the one in the free non
interacting case while if it is small the Schwinger function is deeply modified and it depends
on two anomaly indices, in terms of which the occupation number discontinuity and the
spectral gap are expressed. A heuristic second order analysis of the spinning case is also

performed.
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1 Introduction and statement of the results

The hamiltonian of a system of one dimensional fermions with spin ¢ which move in a field

—u0zc(Z) and interact via a short range pair potential Av(Z — §) is

H=T+uP+ AV (1)

L/2 L/2
- Z/ +(“)¢;o P Z/ dZ 3 e(@)7

L/2

L/2
V — Z/ dfdg U(f_ g)(’l/);;o,l/}x:',o) (1/);:,0'1/}?/:7‘71)

—L/2

where 1/)?0 are creation or annihilation fermionic field operators with spin ¢ on the Fock space
of fermions confined in a box (—L/2, L/2) with periodic boundary conditions, obeying to the
anticommutation rule {1/}%70,1/)3:0,} = b¢,—c185,0:6(Z — §), m > 0 is the fermion mass, ¢(Z) =
e(F+a) is a C*®°—smooth periodic potential, with foa dZc(¥) = 0 for definiteness, v(7) is the spin-
independent fermion-fermion interaction assumed bounded C'*° smooth and with interaction
range pgl. If o = 0 we say that the fermions are spinless while if o = £1/2 they are spinning.

We take L = Na, N integer. We assume that u and A are dimensionless and ¢(¥) = %E(f/a),

v(F) = 2222'5(7_”]90), with &(&), ©(7) also dimensionless; moreover it is not restrictive to assume
u > 0. Finally é(%) and #(7) are assumed ”rotationally invariant” i.e. even; u is called amplitude
of the periodic potential and A strength of the interaction.

In this paper we study the fermionic system with hamiltonian eq.(1) with |A| << 1, i.e. weakly
interacting fermions ; this allows us to distinguish in the hamiltonian a “free” part given by
T + uP and a perturbation AV. When also u << 1 the above distinction is ambiguous as we
could equally consider 7" as the ”free” part of the hamiltonian and AV + uP as a perturbation.

We write:

where ¢(/¥, Z,u) are the solution of:

R°0% - - -
— me &k, Z,u) + uc(X)o(k, &, u) = e(k,u)o(k, &, u) (3)

with the condition ¢>(/E§, Z+a,u) = ei’;a¢(lg, Z,u); the functions (/)(];, Z,u) are called Bloch waves
and k crystalline momentum. From the classical theory of Bloch waves, see for instance (K.),
it follows that 6(];, u) is not continuous only in correspondence of k= nw/a for any integer n
and it is non decreasing for k > 0. The part of the energy spectrum between e((n7/a)*, u) and
e(((n + 1)w/a)~,u) and between e((—(n + 1)7/a)*,u) and e((—nw/a)”,u) is called the n-th
energy band.



The zero temperature Schwinger functions are defined as
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where N =3, f_Léz dfd);;ﬂ/)a;a is the number operator, p is the chemical potential, t, > t2 >

...>0,|Q) is such that (H — uN)|Q) = Eo|Q) and Ej is the minimum eigenvalue of H — uN.

We will write:

S(:’: y) — _S(f; Zo, _78;g1 y0;+;5) o > Yo (4)
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where = (29, %), y = (y0,¥), and we call it the two points Schwinger function which can be

written in the following way:

S(z,y) = / dké(k, T, u)p(k, —7, u)eto#o—vo) §(k) =

—

/dk¢(k, Z,u)o(k, —7,u)S(k, 2o — yo) (5)
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where k = (ko,k). The physical properties of the model can be expressed in terms of the

Schwinger functions; a very important one is the occupation number defined as:
nE:S(/;;O_). (6)

The Fermi momentum pp(A,u, ) > 0in a d = 1 fermionic rotation invariant theory is defined

by the following two conditions:

1. the occupation number is not regular i.e. ny or some of its derivatives are singular at
k= ipF(Aa u, :u)

2. pr(A, u, pu) — prp(0, u, ) vanishes for A = 0.

In order to motivate the above definition note that if A = 0 the occupation number is analytic
everywhere except on two points (see below) which we call £pp(0, u, pt); in general there could
be more than two points where the occupation number is not regular and we choose among
them the one which can be continuously parametrized by A so that it reduces to pp(0, u, p) if
A = 0; if this choice is ambiguous we say that the Fermi momentum is not well defined. The
two momenta +pp (A, u, 1) are called the Fermi surface.

An important role in physics is plaid by the amplitude of the discontinuity at the Fermi surface
Z~1 which in d = 1 is simply defined by:

z771 = Mp= = Myt (7

Other important physical informations can be obtained from S(k). If |o), @« = 0,1, .., is a

complete set of eigenstates of H — u N and E, the corresponding eigenvalues; it is easy to check



that: _ ) N )
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where in the first sum only the states with n+ 1 particles contribute, if N|Q) = 7|Q) and in the

(8)

second sum there are only the states with n — 1 particles. As a function of kg the first addend in
the r.h.s of eq.(8) has poles at imaginary points iﬁ_lkoya with ko o = ERF —E} —p > 0if E7F!
are the eigenvalues of H over the states with 7 + 1 particles, and H|Q) = E7|Q); the second
addend has poles at —ih_lkoyg with kg g = Eg_l —El+u>0if Eg_l are the eigenvalues of H
over the states with 72 — 1 particles. The spectral gap A can be defined as Eg”'l + Eg_l —2E7
where Eg“, Eg_l are the minimum values of H over the states respectively with n+1, n—1
fermions, so that it can be obtained by the poles of S(k) by A= ming ko g + ming ko -

It is easy to check by an explicit computation that the Schwinger functions of the free A =0
particle system with hamiltonian 7'+ u P are given by the Wick’s rule in term of the propagator

So(z,y), given by eq.(5) with A = 0:

1
—iko — (e(k,u) — p)h™*

So(e,) = [ dkO(E. 8, wo(F, ~, w)eoie=so o
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From eq.(9) it is easy to compute the occupation number ny = X(E(];, u) — p < 0) where
x(condition) is 1 if the condition is verified and 0 otherwise. The Fermi momentum pp is then
defined by the condition e(pp,u) = u; note that since E(E, u) is not continuous there is not a
one to one correspondence between pp and p, i.e. to pp = nw/a correspond all the values of p
belonging to [e((n7/a)™, u),e((n7/a)*, u)]. The discontinuity at the Fermi surface is Z=! = 1.
Contrary to the occupation number, the asymptotic behaviour of g(k) for small kg and |E| —pF

depends on the value of the Fermi momentum:

1. if p does not belong to the closed set [e((n7/a)™,u),e((n7/a)t, u)] then g(k) behaves for

small k; and |/§| — pr as (—iko — vo(|/;:| — pr))~! where vy = %%’%—ulbzw i.e. it has
the same asymptotic behaviour of the Schwinger function in the u = 0 case (see eq.(11)

below).
2. quite different is the case in which p € [e((n7/a)™,u),e((n7/a)*,u)] i.e. pp = nw/a. In
this case we have that:

h
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(10)

The above limits are finite unless one chooses u = ¢((n7/a)™) or p = ((nw/a)*), in which

cases one of the two limits is singular. Of course the physical properties do not depend on



the choice of p € [e((nw/a)™,u),e((n7/a)*,u)] : for instance the spectral gap defined above
in the A = 0 case is equal to e((nw/a)t,u) — e((nw/a)™,u) if pr = nw/a for any choice of p

and it is 0 for all the other values of pp. It is convenient to define the adimensional spectral

gap, if pp = nw/a, as A, (u) = 2’;;2“2 [e((nm/a)t,u) — e((nw/a)™,u)]. For small u we have (see

Appendix 2), Aj(u) = A(u) = ciu + O(u?) where ¢y, the first Fourier coefficient of &(Z), is

assumed from now on equal to 1.

If A = u =0 we have that )
g(k) = — == (11)
ik~ B )
which is singular for any value of the chemical potential y = p%/2m; moreover the Fermi
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momentum is given by pu = the spectral gaps are zero and the discontinuity at the Fermi

surface Z=1 = 1.

The free Schwinger function So(z, y) decay for large values of [z —y| = \/(Z — §)% + v3(zo — yo)*:

1. ifu=0or u# 0 but pr # nw/a, as f(Z,y)/|x — y|, where f(Z,¥) is a bounded function
equal to sin(pp(Z — ) if u = 0;

2. if u # 0 and pp = nw/a decays faster than any power for large distances i.e. for all N

one can find constants C, C such that

C'NAna_l _1
So(: < —"T T — A 12
| 0(I,y)| = 1+AnN|CL‘—y|N or |‘l y| > A, ( )
Ca_l -1 .
|So(z,y)| < | | for 1<|jz—yl <A, if A,<1 (13)
=Y

Note that Sy(z,y) has the dimension of an inverse length,i.e. of a=*.

nmw

The free A = 0 system is called a metal if pp # “* while if pp = 2% and u # 0 it is called an
insulator: we can extend to the A # 0 case such definitions by saying that a fermionic system in
which both S(O,p}t) and S(0, pr) are infinite is a metal while if at least one between S(O,p;)
or S(0,py) is finite it is an insulator.

We consider now what happens in presence of an interaction A # 0. We note first that generally
pr(A, u, 1) # pr(0,u, ), i.e. the interaction changes the Fermi momentum at fixed .

Since the early works on the theory of Fermi systems, (L.W.), it has been realized that it is
more natural to study the properties of weakly interacting fermionic systems when A is varied
at fixed Fermi momentum rather than at fixed chemical potential. Therefore we write the
chemical potential in eq.(1) as g = pg + v where pg is the chemical potential of a fermionic
system with Fermi momentum pp and hamiltonian 7'+ uP.

In the case pp = nm/a, po is chosen at the center of the interval [e((n7/a)™, u),e((n7/a)t, u)];
such choice is rather arbitrary, as one could take any value in that interval and we make it for
definiteness. We fix the “counterterm” v so that pr(A, u, po + v) = pr(0,u, po) = pr, i.e. we

force the Fermi momentum in the “interacting” A # 0 theory and “free” X = 0 theory to be



the same. According to the formal Luttinger theorem (L1.), (B.G.L.), fixing pr(A, u, o + v)
should be equivalent to fixing the physical density p(A,u, po + v), i.e. pp(X, u, pg + v) should
be independent of A if p(A, u, o + v) is fixed.

Even a very small interaction can modify dramatically the physical properties of a fermionic
system with respect to the A = 0 case. This is what happens when the fermions are spinless and
pr # nm/a (not filled band case) in which case Z = oo and S(k) behaves, for small ko, k| — pr
as [k2 + v2(|k| — pr)?|~ /2% with v = hr/ma and n = O(A\?) > 0 (see (B.M.)). Such result
extends the theory of (B.G.P.S.) for spinless fermions with no periodic potential; if the fermions
are spinning similar results hold only if the interaction is repulsive, see (B.M.).

In this paper we study the pp = nw/a case, which is also called filled band case. If the strength
of the interaction X is small with respect to the gap amplitude A(u) of the free system one
expects from physical arguments that the behaviour of the free system is not different from the
behaviour in presence of small interactions.

This is in fact what we find (see the first statement of the theorem below) as we obtain that the
Schwinger function is given by So(z,y) + (A/A(u))g(r, y) with both Sy(z,y), S(r, y) obeying
to the bound eq.(12). We fix the counterterm v = 0 but from the proof it will appear that we
could equally fix v = O()); this means that in this interacting system as in the free one, in the
filled band case, the chemical potential s not completely determined by the Fermi momentum.

More interesting is the case in which the strength of the interaction A is large with respect to the
gap amplitude A(u) of the free system; in this case in fact one expects that the interaction could
change in a relevant way the physical properties of the system with respect to the free A = 0
case. We are able to treat this case only if A and u are both small, so that A(u) = u + O(u?)
(see the second statement of the theorem below in which for generality the case of any value of
the ratio 2 is discussed).

We find a behaviour described in term of two anomaly indices, n1(A, u) and 72(A, u) with
A™2n1(A, u), A™Ina(A, u) tending to a positive u-independent limit as A — 0 i.e. gy ~ Ae; +.. .,
N2 ==~ Ac2 + ... Where ¢, ¢ are positive constants. The two point Schwinger function is in
fact written as Sa(z,y) + Sp(z,y) with Sa(z,y), Sp(z,y) obeying to similar bounds for large
distances (see the theorem below) and S4(z,y), the “dominant” contribution if A, u are small, is
formally similar to the free Schwinger functions eq.(9) with the difference that the Bloch waves
(b(/;, Z,u) and the dispersion relation E(I;, u), defined by eq.(3), are replaced by E(E, @) and
Z‘lqb(/;, Z,4) where @ = a(k, A, u) and Z = Z(/{:, A, u) are bounded functions equal respectively
to u(14+O(X)) and 1+ O(A) for large |k| — 7/a and |ko| and their limit for |k| — 7/a, ko — 0 is

“interacting one-

equal respectively to 4! =72 and u~7*. We can interpret this by saying that the
particle wavefunction” in the filled band case are approximately i.e. neglecting the corrections,
Bloch waves in which the interaction changes in ¢ momentum dependent way the amplitude
of the periodic potential and the normalization. From physical considerations we expect that

the interaction modifies the system properties that depend mainly on momenta near the Fermi



surface, so that the momentum dependence of u(k, A, u) and Z(k’, A, u) is not surprising.

The occupation number discontinuity Z~! vanishes for u — 0 as u”* if X # 0, while it is 1 if
A # 0 i.e. the interaction modifies dramatically the system properties.

Following an usual therminology (see for instance (A.)) a metal with weakly interacting
fermions is called a normal liguid if the occupation number discontinuity is O(1), while it
ok |k]" with n = O(A?) in general.

In analogy with the above definition in the case of filled band we can define a normal insulator

is called a Luttinger liguid if, for small |k|, n, 4 E— N

a Fermi system in which for all u it is Z=! = O(1), while we can define a Luttinger insula-
tor a system in which the quantity Z~! vanishes as u — 0 (which is therefore an anomalous
behaviour). We can then conclude that our filled band Fermi system is a Luttinger insulator.

We are not really able to compute the full analytic structure near the Fermi surface in the
complex k-plane (hence the poles) of S(k) so that we do not really know the spectral gap in the
interacting case; however our results provide in our opinion a very strong evidence that there is
a gap of order O(u'="2) i.e. that the interaction changes the amplitude of the gap so that the
ratio between the free and the interacting gap is O(u~"2) i.e. vanishing or diverging as u — 0
depending on the repulsive or attractive nature of the interaction. We think that a more careful
study of the analytic structure of S(k) will allow us to prove the above claims about the gap.
An analogous statement was claimed in a similar one dimensional fermionic model by (L.E.1)
on the basis of alternative heuristic arguments (and it seems quite difficult to put them in a
rigourous form, see (S.)).

Our results are summarized by the following theorem which is formulated in terms of the

following quantities:
1. po = (e(m/a)™,u) +e((w/a)t,u)/2: unperturbed chemical potential

2. p = po+ v: chemical potential

3. Au) = 2”;32 [e(m/a)t,u) — e((w/a)~,u)]: adimensional unperturbed gap

4. vg = hmw/ma: Fermi velocily

5. [kl = ay/vy k3 + (IF
6. |z| = a=t\/22vi + F2: adimensional length

Theorem 1 (main result) Consider a Fermi system with hamiltonian

— 7)?: adimensional momentum distance from the Fermi surface

I
Z(_ an, + uc(Z;) — p) + 2)‘21)(@ ~ ) ()
- i<j

Constants ¢, €1 exists such that, for |A| < e:



case 1

case 2

small interaction compared to the gap), if u is such that Al < ey and v =0 then the
Au)

Schwinger function S(x,y) is given by

S(a.) = So(a.) + 5o 5(a.0)
and for all N and |z — y| > (A(u))~!
So(a, 0L 1366 )| < T3 R AN (15)

where Cn is a suitable constant, while |S(x,y)| < ﬁ for 1 < |z —y| < A~ Yu), if C
is a suitable constant and A(u) < 1. The occupation number discontinuity eq.(6) is such

that Z7' = 1+ O(z70)-

(A and the gap small), for u < e there are two regular functions u(k, X, u) and Z‘l(k', A u)
such that |u(k,\, u) — u| = O(X), |Z7 (k, A\, u) — 1] = O(X) for |k| > 7/2a and

lim a(k, A, u) = ul=m2(Au) lim 2—1(1{;, \u) = uM(dw)
[k|—0 |k|—0

where A™2n1(A, u) and A"tna(X, u) are both positive and independent of u in the A — 0
limit, such that, for a suitable v =v(A,u) = O(A?), the function S(z,y) is given by,

S(z,y) = Sa(z,y) + Sp(z,y) (16)
with
Sa(z,y) = /d/{:(/)(;i",k,'&(k,)\,u))(b(—g’,k,'&(k,)\,u))eiko(a&o—yo). (17)
1 1

Z(k, A u) —iko — (e(k, u(k, A, u)) — po)h ™"

The occupation number discontinuity eq.(6) is Z= = w9 (1 + O(X)) and for any N

and for |z — y| > u=(17"2) we have

Z—lul—ng()\,u)CNa—l
1+ ul=n2(0u)N | — y|N
Z—l l—ng()\,u)c —1
: - (18)
1+ u(l—”2(>\7U))N|J; —yly

[Sa(z,y)| <

S5 (2, )| < Max(|A], u, u'~1)

where Cn is a suitable constant, while

|Sa(z,y)| < Cla =y~ 7O [Sp(2,y)] < CMax(|A], u, u' =)z — =1 7rsl2w)
(19)
for 1 < |z —y| < u=(=m2(00) “apith pz(X, u) = g (A, u)(1=n2(X, w))~" and C is a suitable

constant



The second statement of the theorem holds for any value of the ratio % so that for |A| < g1u
and ||, Ju| < € both the statements holds. Note that the Schwinger functions bounds for large

|z — y| in the two statement, respectively

A(u)Cya~?!
» <
S S T AW e - o

and

Z—lul—ng()\,u)CNa—l
S(z,y) <
(l, y) =14 u(l—nz)N|x — le

coincide in this region, in the sense that

Z- =) Oy gt uCN'Na_1
14+ u@=m)N |z —y|¥V = 1+ ulN|z —yN

and B
A(u)Cna™? uCya=?
L+ A(u)N|e —yl¥ = 1+ ul|z —y|V

for some constant Cy, as it is trivial to check as by the computations of sec.2.3 and the
Appendix 1 A(u) = u + O(u?) and a(k, A, u) = u(l + %cl)), Z(k’,)\,u) =1+ %cz with ¢;
and ¢y bounded. Note moreover that the behaviour of the Schwinger function in case 2 for
1<|z—yl < u~(1=72(04)) ig the same anomalous behaviour found in the spinless theory with
no periodic potential in (B.G.P.S.), or in the not filled band case of (B.M.), for spinless fermions
or spinning with A > 0.

The proof of the theorem is performed by using renormalization group techniques, which
provide us with an algorithm to express the Schwinger function in the interacting case S(z —y)
as a sum of functions decaying faster than any power for large |z — y|. In the first case, i.e. |A]|

small with respect to the amplitude of the gap, we are able to write the Schwinger fuction as:

S = Y )+ i) (20)

1>h>—c0

where
¢iko(zo—yo) fh (kS + (5(15:: u) — j10)°)

—iko — (e(k, u) — po)
with f1(¢) is a C* function which is equal to 1 for [t| > v, f*(t), for h # 1, is a C*° compact
support function with support in v* < [t| < +"*? and Y 1<h<—oo fP(t) = 1 (see the next
section). Of course g"(z,y) = 0 for h < h* with AP~ A(ui as ming |6(E,u) — pol = A(w),

i.e. the Schwinger function is expressed in terms of a finite sum of functions. In Appendix 1,2

o (2, y) = / dko(F, k, u)d(—F, k, u)

it is shown that, for any N:

lg"(z,y)],19" (2, y)| <

so that the first statement of the theorem follows.



In the second case, in which the interaction and the gap amplitude are small and u << |A| for
simplicity, we have

Sy = Y. [y +7"(z,y) (21)

1>h>—-00
with
etko(zo—yo) fk(k(z) + (5(];:) Uh) — /JO)Z)
—iko — (e(k, on) — po)

with Z, o~ 4771k and g, ~ wy=72(M®*  Again the Schwinger function is given by a

1
P (e)= 5 [ dho(E b on)o(-.k,on)

h

finite sum but now the “last scale” h* is given by the condition 7*" ~ ope i.e. h* ~ (1-

n2(A, u)) log(u). Since for all N

M@y < - — LN )] < Max((A] u, =)
_Zh1—|—aév|m—y|N -

1 VP Cya!
Zp 14 o]z —yVv
(22)
the second statement of the theorem follows. Note that @(k, A, u) in the theorem is not com-
pletely determined as for a small A (b(/;, Zou(l+ ) = (/)(/;;, Zou)+ /\q;(/;, Z,u) where qg(/;, Z, u),
¢(lg, Z,u) and all their derivatives obeys to the same bounds and the same holds for e(k, u) (see
Appendix 2) so that we can replace @ in eq.(17) with 4(1+ O(X)) by simply replacing Sp(z, y)
with a proper 5’3(1‘, y) obeing to the same bound.

If u — 0 than A* — oo and, from eq.(21), we find that S(z,y) asymptotically behaves for
|z — y| — oo as %(1 + AA(A z — y)) with A(X, 2 — y) bounded, so that the results of
(B.G.P.S.) are recovered.

At the end of this paper we give some arguments supporting the conjecture that a similar
behaviour is found also in the spinning case, if the interaction is either repulsive or attractive
but u > kle_l)‘l_kz for some positive constants kq, k2. This suggests that the v = 0 spinning
case with attractive interaction generates spontaneously at the Fermi surface a gap O(e_|)‘|_k2)

even in absence of a periodic potential.

For simplicity in the following we use dimensionless quantities defined as:

- - ~ 1
r==z/a t = ht/2ma* H = 2ma*H/Rh* Vi, = \/j1/)%o (23)
: s

so that the hamiltonian H is given by eq.(1) with h=a=1,2m=1,u= 7> In the following
the tilde’s will be omitted and we consider directly dimensionless quantities. Moreover we write

simply 6(/;;) for E(E, u) and A for A(u) unless explicitely stated.

2 Proof of the theorem

2.1 Multiscale decomposition and the localization operator

In this section we prove the second statement of the theorem, which is the more technically

involved one; the proof of the first statement is easier and it is in Appendix 1. We consider a

10



Grassman algebra, whose elements ¢5 _, ¢ = &, verify {¢} _, 1/}211 o1 = 0. The Euclidean fields
can be defined as 7 , = fdke”(k"x”““’;f)d)ip and [ dk = %\,ﬁzk with e?*of = —1,6iEN =1
and the grassmanian integration is defined on monomials by:

[ ettt g, g = S0 T ot = o) (24)

K

where 7 is a permutation of the set (1,...,n), o is the parity of the permutation and
( ) /dk e_ik(‘z‘_y)
g(z —y) = =
—ikg — (k% — 72)

An application of Trotter’s formula allows us, as usual (see (B.G.)), to write the two points

Schwinger function in terms of grassmanian integral P(dvy) as:

[ P(dg)eVWytys
S(z,y) = lim [ P(dp)e=7 ) -

N—oo

(25)
where V(1) is given by V(¥) = AV 4+ vN + uP with:

V= Z/ davdzov(Z1 — F2)6(x01 — 2o 2)VF, UL 07, 5,
AXA

N = E/Adw;ja o P= Z/Adxc(f)qp;a o (26)
ag a

with A = (=43/2,3/2) x (=N/2,N/2) and ¢(&) = ¢(ZF + a). We start by studying the partition

function N i.e. the denominator of eq.(25). It is convenient to rewrite it as:

N:/P(dwr,)e—V”Wm) (27)

o=V (i) :/P(d%w.)6—‘7<wz.r.+wu.u.) (28)

where ¥y 4., ¥;.r., are grassmanian fields and P(dy 4.), P(d; ) denote respectively the grass-

manian integrations with vanishing cross propagator and with propagators g, ., gi.» given by:

e—ik(a:—y) .
wolz,y) = dk - 1 —h(kZ + (k] — 7)* 29
rley) = b (L 4 (F = ) (29)
) = [ 0 (R
i.r{T, = = + -7
Jirtsy —ikg — (K2 —72)

2and 1in a

where h(t) is a C'* function in its argument ¢ which is identically 0 if ¢ > «
neighbourhood of the origin.

In (B.G.P.S.) it is shown that the ultraviolet part of the propagator can be written as

Juo.(2) = G(z)+ R(z)  G(z) = H(Z)H (o) (30)
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where H(t) is a smooth function of compact support such that H(t) = e’ if [t] < 1 and

H(t) = 0if [t| > v > 1, and R(z) < {i¥w

ultraviolet problem analysis for the u = 0 case in (B.G.P.S) to the u # 0 case allows to check

for any integer N. A minor adaptation of the

that there exists an ¢ such that V° can be written, for |z] < ¢, if z = (A, v, u), in the following

way:

Vo)=Y / dhkydkodksdkab(ky — ka)uf i p, b, 0k + ky — ks — ka) +
+22A/dkdpv (PVR(P— k)i v, + (v — 4wAa(0)R(0))Z/dk¢;a¢,;U +

+ Z Z UCn / dk[’l/)l-c:—n?r,o,l/}k_—n?r,a + ¢]j_—n7r,a1/}k_+n7r,o] + (31)

o n=1

+ > Z/dkl ko Win (b, - b U,

(01,k1),,(02m kom) n=0
¢km+1,0m+1 . '1/}k2m,02m6(k1 —|— e + ]{fm — ]Cm.|_1 R ]sz + 27171')

where ¢(Z) = Y. ¢, cos(2nwZ), 2n7 is a spatial vector andthe kernels
Winn(k1,. .., km;2) are C* bounded functions such that W,, , = W,, _, and

SUPE, ko |[Winn (1, o ko 2)] < G 2mex(2m=h) (32)

where the sup is over the momenta in the support of h(k2 + (|/;:| —m)?) and C is a suitable

constant and of course

> supg, o Wik, o kam; 2)| < Y Cmmexmet) (33)
m,n m=1
converges for small enough z. We shall not reproduce here the details of the proof of eq.(31) as
this would be a word by word repetition of par. 3 of (B.G.P.S.).

In order to perform the “infrared” integration eq.(27) we decompose the grassmanian inte-
gration P(dy) into a product of independent grassmanian integrations, that is P(dy;,) =
[1)—_., P(dy"). This can be done by setting g; . (k) = Sp___ ¢"(k) and by writing v, =
>on YT with ¥" being a family of grassmanian fields with vanishing “cross propagator”
(i.e. anindependent family of variables) and with propagator [ 1/},@17011/)22702}3(5[1/)’1) = b5y,0,0(k1—
k2 )g" (k1): .
£t (k3 + (F] = m)2)

—ikg — E(k)
where E(lg) =k — 72 F(y~2M42) = h(y~2"2¢2) — h(y~2"¢%) is a C* function with compact
support.

g" (k) = (34)

12



It is convenient to introduce new grassmanian fields 1/)?;;“(7, called quasi-particles Euclidean
fields, with propagators gg(k’) and vanishing cross propagators, such that:
+ A _ +,h _
ko — Z 1/}k,&5,0 gh(k) - Z gg(k)
@==%1 @==%1
with: .
FOr?" (k§ + (k| = 7))
—iko — E(k)
where X(/;) + X(—/;) =1, X(E) =1ifk > 0 and it is 0 otherwise. It will be convenient in the

95 (k) = x(&Fk) (35)

following to write the momentum of the & fermion as /;;—}—(.D’pp, where £ is called the momentum
measured from the Fermi surface and pp = 7 is the Fermi momentum. It is easy to check, see

(B.G.P.S.), that the quasi-particle propagator eq.(35) can be written as:
g3k +3pr) =7""ga(y " k) + 3" (7" k)
with g"(k) regular and weakly dependent on h and:

k2 + k2

go(ky = {ELTE)

—Z]{?() — Wk
h,+

We can say that 1/)k’+L3pF 2. have a distribution which, "up to scaling”, is h independent z.e. the
+

T h,+ : —h/2 .k
distribution of 1/)k+(3pF7570 is the same of v 1/)7

Chk4dpe 3,0 UP to corrections negligible in the

h — —oo limit.

If we represent V°(¢), eq.(31), in terms of quasi-particles fields we obtain a sum of terms like:

dk; dkm o, s . KL
Vo (w) = / @ O (Ko Q)8 (Y (ki + Gipr)ei + 2nm) [T i va s @0on (36)
i=1

i=1
where ¢ = &, K, is the set of variables {k1;...; kn} and Q,, = {&1;...;Fn} and 10K,y Q)
are the kernels of eq.(31).

From eq.(27) the partition function can be written

NZ/HP@MJ”EWW> (37)

R<0

and the above equation leads naturally to the definition of effective potential on scale v":
e~V WEN) - /P(ch/;h‘*‘l) y ./P(ChpO)e—V”WS”) (38)

where £ <h = 7 g and [ P(dyStyyd Sty St = gSh(k) with:

MRy = (39)

Q
=
AR
—~
el
S
Il
h
—~
2
[V
ol
—~
e
[N ]
+
fa
=
|
5
S—
[3V
S—
Il
=
—~
o
o
el
S

(40)
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if fa(ko, k) = f(y~ 2" (k% + (Jk| — 7)?)). Of course ¥ = ¢ <0 by definition.

As in (B.M.), we can isolate the relevant part of V°(3) by introducing a localization operator
£ on the Fermi surface acting on V°(¢). It will appear clear, after the discussion following
eq.(51), that a natural definition for the localization is £V,% (¢)) = 0 for m > 4 and to compute
the 0-th order, if m = 4, or l-st order, if m = 2, of the Taylor series of f™°(K,,,; Q) at the
Fermi surface i.e. for K,,, = 0,,, = {0;...;0}. However k cannot assume the value 0 as it has
the form (2any/N,27(ns + 1/2)//3), with ny, nq integer, because of the antiperiodic boundary

temporal conditions , and this leads to the complicated formulae below:

4 4 4
¢ TLatk 325250 0030+ Gveles +20m) T Wi o,
i=1 n i=1 i=1

= 6(@14Ga—sapr 4n2n0fn (05, Q4) (41)
4 4
€, <
/H dkié(kl + ko —ks - k4) H 1/}kz+_u7ozpF,Qz,0i
i=1 i=1
where €1 = €9 = —e3 = —eg4 = +, 045 is the Kronecher delta, equal to 1 if @ = b and zero

otherwise and 0§ = {(0, £); (0, %); (0,%); (0, %)} Moreover

£ / dkydky8(ky — ky + (F1 — Go)pr + 2nm) f20 (Ko Qo) 32 o¢;2§§2pp,wz,a

ki+@1pF, &1,
= 5(@1_@2)‘,‘,F+2nﬂ-70/dkld/{:Q(S(k’l — k2) (42)

[F20%(Q) + E(ky + &10p)@1 70 (Q2) + K S O ()6 58,00 00 0 Vi 50

k1+&1pr &1, 2+@2pF,d2,0

where 5Ef(/g), the discrete derivative, is defined for instance as %W, and:

2

1 1 x5
L0 Qe) = 5 f20(0550) [0 (Qe) = 5 Y0, £10(0545 )
i=1

i=1

F20Q) = Fpo F20(05 55 Qa). (43)

where 0572- ={(0,(=1)'x/B); (0,7/5)}.

Remark: Noting that E(k, + &pp)@ = 27k + Gk2, in the limit 8 — oo eq.(42) becomes the
1-st term of the Taylor series at the Fermi surface for the kernel f2° plus a term O(k?).
It is crucial for this that E(/a + dprp)d is approximately linear for small k; if in eq.(42)
we put E(lg, u) instead of k2 this would not be true. The reason of the sum over i in the

first line of eq.(43) is technical and it is discussed in (B.M.).

The Kroneker delta in the above equations can be satisfied in several ways. If n = 0 then

there are the possibilities &1 = &4 = &y = W3, Wy = Wy = —ds = —d3, &1 = W3z = —ddy = —dy.
If |n] = 1 and remembering that pp = 7 the § is satiesfied if &) = Jy = J3 = —d4 and if
&1 = —dy = J3 = Ja. Finally if |n| = 2 we have &) = &y = —d3 = —ds. These are all the

possibilities in which the effect of the localization operator is not vanishing.
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The relevant part of V°(¢) in the spinning case is then:

LVOWSY) = noFS0 4 aoFS0 + zoFCSO + 50 FE0 4 ig P04 o FS0 + (44)
+ /\1,0F1§0 + /\2,0F250 + /\3,0F3§0 + /\4,0F450 + )\5,0F5§0 + /\G,OFGSO

<0 _ +,<0 ~,<0
Fpt= Z/dkldk2¢k1+¢3pF75701/}762-1-517&570

FEt = Z / dkldsz(El +dpr) ljlfcgpp,5,01/};25317&5,06(]{71 = k2)

)

P =3 [ bbbt o 08— k)

a0

FE0 = Z/dkldkﬂ(l}} + B e .0 Vs Sape —a,0 Ok — k2)

&0

FCSO = Z/dkldk2(_ik(l))1/}ljly—|s-<gpp,&3,o1/};27-%&(;1717‘7&5706(]{71 o ]{72) (45)

FSO = Z/dkldh(—ik(f) e aVSY bk — k)

ki+dpr,@,0
&0

<0/= = = =
F_ (wl,(.dz,(.dg,(.d4) —
4
<0 +,<0 -,<0 -,<0 "
Z/Hde k1+&51PF,51,01/}k2+<32pF,¢32,0’1/}k3+<33PF753,U’¢k4+¢34pF,¢34706(ZElkl)
o0’ i=1 P
where €1 =9 = —e3 = —g4 = 1 and we call
<0 __ <0/— - - - <0 __ <0/ = - - =
Fro = E F3P(3, -d,d, —d) Fsm = E F3(4, —d, —d, &)
@
<0 _ <0/— — - - <0 _ - o o
Fyo = E F3R(3, 0, -4, —d) Fpo = E F(3,d,d,d) (46)
@

FEO=DNFS@,6,-0,0)  FEP =) FS(-4,3,8,0)

w w

Remark: we can interpret eq.(45) as stating that the relevant part of the interaction between
fermions is the one which involves fermions with momenta k +&pp near the Fermi surface.
Note moreover that the periodic potential has the effect that the sum of the momenta is
not 0 but it is equal to 2n=; this phenomenon is called Umklapp and we call the terms in
eq.(45) in which the momentum is not conserved Umklapp terms. It will be crucial in the

following the (trivial) observation that so = O(u) and g, tg, As,0, As,0, As,0 = O(Au).

In the spinless case ¢ = 0 and

LVo = noF %+ agFE0 + 20FF" + soF 0 + ig PR + 1 FE0 + A F<° (47)
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where:

4
<0 _ +,<0 +.<0 _ <0 _ <0
== Z/Hdki e 0Vt g ok ape Ve rape @0 (D €iki) (48)
@ i=1 7

as, in the spinless case, FlSO = —F2SO = F<0 and FBSO = Ffo = F5§0 = FGSO = 0, because of
the anticommutation properties of the grassmanian variables so that eq.(47) can be deduced
from eq.(45) setting Ag = g1,0 = —g20.

We perform each integration in eq.(38) by writing

VIS = LV + RV (p=)

with R = 1 — £ and £ is defined as in eq.(41)(42) with 1/);372&570 replaced by 1/;,::1%’;1?7570
and f9( K, Q) by (K, Q). Then LV(¢Sh) is given by eq.(44) with ng, ag, 2o,
t0,%0,50,As,0, ¢ = 1,...,6, replaced by 7hnh,ah,zh,ih,th,'yhsh,Aiyh; the reason for which we
write the terms multipling Fyfh and Fafh as 7h sp and 7hnh instead of simply s, and np will be
discussed after eq.(51). The constants np, an, 2n, in,th, sp A Will be called running coupling
constants and will be denoted by v; p.

It is possible to check, see for instance (B.G.1), that the effective potential V*(¢<") can be

written in terms of {rees as follows.

:é?/{f—i—l: h:'u H H H H H H H H H H H 6 :+1

We call 7, the set of all the labeled trees with n end points T € 7, that can be costructed as
follows (see also the picture). Draw on the (z,y) plane vertical lines at z = k, £+ 1,...,0,1.
Let r (the root) be a point on the line z = k. Starting from r draw an horizontal line leading
to a point vg on the line z = k,, = k+ 1. Choose s,, > 0 and draw s,, lines starting from

vy leading to s, points vy,...,vs, i.e. the lines cannot go back. Do the same thing starting

with the points v; and go on recursively. A point v is called an end point if s, = 0, i.e. if
there is no line starting from this point. Moreover a point v is a trwvial vertez if s, = 1 and

a non triwial vertez if s, > 2. Finally if h, = 1 then v is necessarely an end point. Clearly
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this process ends when all the reached points are end points. A cluster v with frequency h, is
the set of the end-points reacheable from the vertex v with frequency h,; and the tree provides
an organization of the endpoints into a hierarchy of clusters. Each non trivial or trivial vertex
bear a label R except vy (see the picture) which can bear either a label R or a label £. To each
tree we associate a term V*(r,¢<¥) defined recursively as follows. If 7 has only one end-point
with frequency k + 1 then V¥(r,¥<*) is equal to one of the term of eq.(44) with @ instead of
iy or, only if k = 0, one of the monomial in RV°?. We attach a label to each endpoint of the

tree to distinguish among these possibilities. Otherwise
1
Vk(Ta1/}Sk) = (’);8;+1[Vk+1(7_1’1/}§k+1)’”.)] (49)

where @ is £ or R if the vertex v bears an £ or R label, n > 2, 7'...7°» are the sub-
trees starting from v and the symbols £ denote the truncated expectations with respect to
an integration with propagator ¢g”. We have that @ can be equal to £ only if v = vy and
the tree contributes to the local part of the effective potential. We also associate to each field
a labels f, f = 1,...,n, where n, is the number of the fields associated with all the end-
points of the tree. To every field with label f corresponds a momentum k(f) and the indices
(), o(f),e(f) = £1 and, also, the index s(f) = 0, 1,2 allowing us to distinguish the three

o () ™ e(f) TRLIO

possibilities Yy (1) 5, pr a(1).00r) EEWk(r)4a(rme 200y ~ R0V ta(ripr a(),005) W call
1, the set of f labels.

It is possible to check that the effective potential eq(38) can be written as

o0

VE@SF) =30 N v psh). (50)

n=17€7,

From eq.(49) we see that each set of running coupling constant o, = {v ;} is determined once
that a set ¢ is given from the relation ¥h—1 = @, + Bn(VUh, Uht1, .. .00) where Gy, called beta
function, is a sum over all the trees contributing to the relevant part of the effective potential.

We define:

VEEED) = 3 [ by S VA Puss b S (Pry )i Y () + 20)
n Py, F€Py,

where k,, is the set of all the momentum variables of the n, fields, P,, is a non empty subset
of I, | Py,| are the number of elements of this subset, ZP”D is the sum over such subsets and
PS4 (Pu) = ser, YD o50)

If in eq.(49) we expanded the expectations by Wick’s theorem, we could represent the r.h.s.
as a sum of Feynman graphs (see (B.G.1) for a detailed exposition). A Feynman graph is
constructed by symbolizing the fields associated with every end-points of the tree as orientated
half lines emerging from that point and enclosing the end-points belonging to the cluster v
togheter with their half lines into an ideal box. We pair, i.e. contract, the half lines in internal

lines (all but the exzternal lines 1/75’“(3)0)) and we associate to each of them a propagator g"»,
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if the line is contained in the ideal box containing the cluster v and not in any one with higher

frequency. Every graph contributes to the effective potential with a term of the form

[ st et (P, @Ps( Y (DK + S (Spr) + 200 (R)

F€Py,

where Kv is the set of the variables k(f) with f € P,,, QFv is defined in the same way and
ff””’h"”, called value of the graph, is the product of the propagators of the graph and of the
running couplings or the kernels in eq.(31) associated to the end points, integrated over the
momenta of the internal lines.

Furthermore, if G; is the set of all Feynman graphs associated with 7, given ¢ € G;, it is
natural to associate a subgraph g, to the vertex v enclosing into an ideal box the cluster v and

cutting into half lines the lines connecting points in the v cluster with points outside from it.

Each g, is of the form

/dKP"f,f"’h"(KP",QP”)cS( > e(Hk(F) +2nm/a)p<" "1 (P,)
FEP,
where ¢<#v=1(P,) are the half lines emerging from v before contraction and P, is defined as
Py,. On all these terms the R operation acts, if v # vg, while if v = vy the operation £ or
R acts, depending on whether it contributes to the relevant or to the irrelevant part of the
effective potential.

We call scaling dimension D(Py,) = _2+EAGPVD (1/24x4) where x4 =0if A = 1/}2_%”7570,
ya=1if A= E(k)1/}Z+QPF g, 0r A= —ikod)z_WpF 2.0 The size of a generic graph associated
with a monomial 1/~)Sk(PUD) with value fIv/» is defined by:

IfPrell= sup PPy (ky) - dp (g, ) R (K, Q) (51)
k‘l...,k‘|pu|€KP”
where dj, (k) is the characteristic function of the support of f(y~2" (k% + E(k)?)).

In order to motivate our definition of localization suppose for a moment that R = I where I
is the identity operator; by a standard calculation, see (B.G.1), it is possible to prove that the
size, eq.(51), of a Feynman graph is bounded by

([f20 ]| < mem T 7~ emhoD ()

where v’ is the vertex preceding v in the tree ordering, m is the number of end-points, ¢ =
max; j |vj 5| and C is a suitable constant. To obtain an estimate of the perturbative contribution
of order n to the effective potential, we must sum over trees. In order to have an estimate
uniform in £, N it is necessary that D(P,) > 0 for all P,. But we have that D(P,) = —1 if
|Pyl=2and }_,cp xa =0, while D(P,) =0if |P,|=4and }_,cp xa =0or |P]=2and
> acp, Xa = L. Note that D(P,) depends only on the number of external lines with x = 0 or

1: this is due to the fact that we write the coefficients of F£* F£" as y"n; and y"0y.
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Like in (B.G.) one could define as "relevant part” of the effective potential the sum of its
quadratic and quartic parts in the fields. However such definitions would still contain irrelevant
terms. This can be easily understood by remarking that for h suitable small the contributions

to the effective potential V” having forms:
4
/H d]{fzfs’h(lle, 94)6(]{71 + ]{72 — ]{73 — ]{74 + ((.31 + (.32 — (.:;3 — (.34)]9}7 + 27171')
i=1

+,<h 1/)-I-VS/‘L UL <h U <h
k1+@1pF,&1,0 "ka+@2pr,&2,0' Tkz+dapr,@3,0 Tka+dapr,da,0

or

k14+@1pF,@1,0 VkatDapr ,@a,0

/dkldkzé(lzl — ko + (&1 — @o)pp + 2n7m) f2(Kq; Qo) S0 —Sh (52)

are vanishing unless (&, + &y — &3 — Jy)prp + 2nw = 0 in the first case and (Jy —da)pp +2n7 =0
in the second as the delta’s in the above equations cannot be satisfied for the support properties
of the fiels.

It is possible to check by a standard calculation that, with the definition of £, R given by
eq.(41)(42) the size of the generic Feynman graph contribuing to the effective potential defined
above is bounded by:

1fFom ) < Omem Tyt he P+ (5

where D(P,) + z, > 0 (the R operation was defined in order to make true such an inequal-
ity). By repeating the estimates in (B.G.P.S.)(B.M.) it is easy to see that eq.(53) implies
that |[V)(7,4<F)| < e”¢” so that if ¢ is small enough the partition function is analytic in its
argument.

The problem is that we do not expect that |vs ;| < ¢, and this because a second order compu-

tation (in the spinless case for simplicity) shows that Ap—; = Ap and
L. zp_1 = zp + B1A%; an—1 = ap + P1Al
2. sh—1 = ysh +VShP3An; Np—1 = YNh

with fs, 81 > 0, so that, even if a third order computation showed that Ay, —,__, 0 this would
mean that A, ~ O(\/LE) and the couplings ay,, zp, sp would be unbounded at this approximation;
IMOreover ny = 'y—hno t.e. it grows as h — —oo. The unbounded growth of z;,, ap happens also in
the u = 0 case and it is an indication of the anomalous behaviour of the theory, see (B.G.P.S.),
i.e. that the Schwinger function has a different asymptotic behaviour for large |z — y| with
respect to the A = 0 case ; the growth of np is a signal that the interaction changes the Fermi
momentum pg.

The growth of sy is, on the other hand, a peculiar problem of the filled band case, as there is
not such a running coupling constant if u = 0 and is an indication that the Schwinger function

behaviour for large distances is different in the interacting case respect to the free one, as we
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will see, or respect the A # 0,u = 0 case of (B.G.P.S.). The idea is then to modify the definition
of V* at each step of the renormalization group generalizing the anomalous scaling procedure of
(B.G.) in order to take into account the presence of s,. Note finally that if u # 0 but pp # nw
i.e. the band is not filled, there is no ¢ among the running couplings (this is essentially due to
the momentum conservation) and the Schwinger function behaviour is similar to the spinless

A # 0,u =0 case, see (B.M.), if the fermions are spinless or spinning but A > 0.

2.2 Anomalous scaling

In the preceding section we saw that it is possible to express the partition function as an analytic
function of the running coupling constants, if such constants are small enough. However a
second order computation suggests that ap, zp, s, are not bounded and we can interpret this
as an evidence that the Schwinger function behaviour is different with respect to the free
A = u = 0 case. This of course is just what we expect as if A = 0,u # 0 the Schwinger
function are explicitely computable and in the A # 0,4 = 0 case their asymptotic behaviour
was obtained in (B.G.P.S.) and in both cases it is different with respect to the A = u = 0
case (see also the introduction). It is possible to extend the methods so far followed to a
more general approach which can take into account a possible Schwinger function behaviour
modification respect to the free case. Such approach is called “anomalous scaling” and it was
used for the first time in (W.F.) for the infrared problem in the ¢§ model, and among other
applications in (B.G.),(B.G.M.),(B.G.P.S) for the study of a system of d = 1 Fermi system and
in (B.G.1) for the Bose condensation problem.

We write, calling P(d¢<%) = Py (d¥<°) with Z, = 1:

N /PZ d1/}<0) - (\/Z_Dw<0) / H d1/}]:_+%52r<30 1/}k+w7rwa _VD(\/Z_DwSD)
kw g
—iko — k% — 237k 4 <o
exXp § — /deOCO(k) L 1/} 7:Dwdio,l/} IT,&,0
Z X(Wk+pF) k+om, k+

where the grassman integration is written formally as an integral over

dips?

. d’kfﬁ?r,a,o times the exponential of the appropriate quadratic form and Ny is a

normalization factor. The idea is now to extract from the effective potential some terms which
are difficult to control, i.e. so /=% and ZOFESO and to put them in the grassmanian integration.
In this way it remains in the interaction a term (ag — ZQ)FQSO which from the second order beta

function is easier to control. This is made writing:

where:

1 _
PZ—l(d’l/)SO) = N_O H d1/};c+_+¢37r,&5,0d1/}k+&57r,&3,0
@0
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. e - 7
—tko — k* — 2d7k - n
k+&n,8,0 Tk+OT &0

exp{— Z/dkco(k)Z_l(k)[

e X(@k + pr)
U_1(k)1/)l-cl-+c37r,c3,o1/}l:—u77r,—c3,o:| } (54)
with Z_1(k) = Zo + C5 Y (k)z0, Z_1(k)o_1(k) = C5 ' (k)op and VO = LVO + (1 — £)V° with
LVO$S0) = ngFE0 4 (ag — 20) FE0 + 1o FE% + i FR° + XG:AZ-,OFZSO (55)
i=1

The Grassman integral Py_, (d¢<%) can also be thougth as an integral over two independent
fields adding up to <0 = <=1 4 0 je.
PZ—1(d¢SO) = PZ—l(d¢S_1)PZ—1(d¢O)

where Py_, (d<~1), Pz_,(dy°) are equal to Pz_, (d¢<°) eq.(54) with Cy(k) replaced by C_1(k)

and fo(ko, k) respectively. We can write then:

M= / Py_ (dy=7) / Py_ (dy?)e”V (VA=) (56)
where: ]
LVOYS") = v PR + 60 FS° + 00 P + 0PSO+ gi o F° (57)
i=1
Zo Zo ZO . ZO ZO ?
140 Z_lno, 0 Z_l(ao 20), 0 Z_lloﬂ'o 7 0, 4i0 (Z—1) i,0

It is convenient to write explicitely the propagator associated to the integration
Pz (dy=%) ie g% 5 (z,y) = fPZ_l(d¢0)¢:£U =2 - we have that:

y,&' e
95.5(x,y) = / dke™ =Y fo (ko k)T_1 (k)5 ) (58)
where
T 1(k) =
ZoalB) x(k 4+ pp)~t (—iko — k2 - 27r/€) o_1(k)
-1 N . R
0'_1(/{7) X(—k’ -I-pF)_l (—iko — k%4 27rk)

which is well defined in the support of fo(ko, lg) and

- 2

Aes(8) = Zea(8) ( (=i + )" = (20)” = 1+ pI(—F + b (87

1
Ay (k)

X(k+pr) (—iko i 27123) —o_1(k)x(k + pr)X(—k + pr)

_U—l(k)X(];‘i‘ pF)X(_];‘i‘PF) x(—E—i—pF) (—iko k- 27rE)

T_y (k)™ = (59)
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We perform the integration fPZ_l(dd)O)e_VD(V 7190 — o=V THVZ¥ETY) Where

L:V_l(’ll)s_l) = n_leS_l—{—z_lFZS_l—}—a_lFaS_l+5_1F55_1+t0Ft5_1+
6
+ i FET Y NPT (60)
i=1
and of course the procedure can be iterated.
In general once the fields 4°, ..., ¥"*! have been integrated proceding as above, we have to
evalutate:

N = [ Pay(agshye ¥ B

where LV (1<") is defined as

6
LVRWS) = np FEh + ap FEM + 0, FE" + in PRt + sy PSP 4 2, FER 4 ) X0 FS" 0 (61)

=1
and formally:
1 _
Po(dv=") = o= [I #3506, Wiizna.s
E,Q,U

—iko—]gz—Q(Jﬂ'lg +.,<h _ <h
oo -3 [arcumzu| =B g | g -
S o VS e |} (62)

We include as above in the Grassmanian integration the “dangerous” terms of LV () i.e. s, F.S"
and thCSh:

/ch(d¢5h)e‘vh(“z_hws"> :/ch_l(dwh)e—wwz—w@) (63)
with

1 -
PZh—1(d1/}£h) =N H d1/}lj4§b'}:r,c3,od¢k-i—é}:r,cﬁ,a

h J
k&0
—Zl{fo—lz2—2(3ﬂ']; +,<h —<h
{3 [akCumzis(o | R B g yrg
2 G hEmaatida
SN O O | (64)

with Zp_1(k) = Zn(k) + C; (k) Zn(k)zn, Zn_1(k)on—1 = Zn(k)on + Zn(k)C;  (k)sp and
Vi =LVh 4 (1= L)V with

LV = npFE" 4 (ap — 2p)Fo + th Fy + inFo +
+ Apli+ Ao pFo+ Az als+ A pFa+ As pFs + A6 n L (65)
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Finall we write:

M= /ch—l(d¢5h‘1)/ch_l(dibh)e—w(mwsm

with
95z (x—y) = / Py, (dy" Wh g 0 5, = / dke* "0 fy (ko, KYT (k)5 5 (66)
where
o\ 2 N2 . .
Ah<k>:zh<k>((—iko+k2) ~ (258)" = x(F+ b+ pr)on(8?)
Th(k)™ =
k +pF) — k24 271'/;) —Uh(k)x(/;—{—pp)x(—lg—i— PF)
—on(k)x(k + >x< F+pr) X(—F+pr) (—iko — F* - 27F)
and
LVEE) =y "vnFy + 63 Fo + 00 Fs + T Fy +Zgi,hFi (67)
i=1
Z Z Z
h h h h .
= o = — g, =
Y Vh Zh_lnh, h Zh—l(ah zr), On Zh_llh
Zn Zn \?
i i B = A
m= 2t gin= () N (69)

In the above formulae we have used that o, (k), Zp(k) do not depend on &: this follows from
the "rotation” invariance of the theory, i.e. invariance under transformation & — —#, and from
the definition of C; .

In the following we call Z, = Z,(v") and o, = o4(y"). Note moreover that, if k£ belongs to
the support of fj(ko, E)

Znky=2z0 [ 0+ =) =20 [ Q+C7' 0z T G+z)  (69)
h+1>k>0 h+1>k>h+i h+i>k>0

where 7 is a number depending on the support of fh(k'o,/;). A similar formula holds also for
O’h(k’).
In order to study the renormalization group flow we need estimates on the propagator, which

are given by the following lemma that will be proved in appendix 3:

Lemma 2.1 The propagator gg (& —y) can be written as

95 s —y) =g (& —y) + Ci(z — y) + Ca(z — y) (70)
dk eikx —2h ]{72—}—];2
gg’L(I_y):/ - f(Py '(0_‘_‘ ))
(2m)2 Zy —iko — Gk
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2k bl 2
where |C1(z — y)| < WIC?—?/I)N) and |Co(z — y)| < 7~ (7_2) W Moreover

2 on Cn
Zny" 14+ (Y e —y)V

gk _s(z —y)| <

We can describe the structure of V" in term of a tree expansion. Note in fact that:

VI VT / Py, (dy+)e= V" (VT

and at each step V*(\/Z,v) is written as

rh _ px1/h \/Z_h h \/Z_h
e (e w5

where £*V" differs from £V" only because it does not contain anymore the addends F, and

F,. We can write

VE@SE =30 > Vi)
n=17€7,
1 1 S 1
VEr 2005 = O BLL IV 2,0, L) (71)

where n > 2, 71...7%% are the subtrees starting from vy (the first vertex above the root),
the symbols Ep, Eg denote the expectations with respect to a grassmanian integration with

propagator ggi)52 and O is equal to £*, if the tree contributes to the local part of the potential,
or R, if it contributes to the irrelevant part. The trees are defined in an analogous way as in

the preceding section.

2.3 The flow of the renormalization group

From the above discussion we have that the set vj _; is related to the v; 5» with A’ > h by the

relation:
_ Zh Naire h
Ui n-1 = ( ) [vin + By ;({vn}, - {vo})]
Zp-1 ’
A A
ohr = S fon + B ({un)s - {v0))] (72
h—1
_ Zn h
vh-1 = Z—va + B, ({va}, -, {wo})]
h—1
_ 7 h
I=——[1+F:({vn}, .. {vo})]
h—1
where vy ; = {0n:i,vn, Zn,0n}, @; = 2 for the g; 5 and o; = 1 otherwise. The function

BE({vn}, ..., {vo}) is called Beta function and from eq.(71) we know that B2 ({vs},..., {vo})
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= nso ﬁ?’n({vh}, ...,{vo}). Noting that

1 (hvVh on\”
sa(e—y)| < - [ — 3
2.2 =l < g = 58 )

with @ = 0,1,2 (see lemma 2.1), a slight modification of the proof in (B.G.P.S.)(B.M.), essen-
tially based on the Grahm-Hadamard inequality (Le.), shows that if

K3
_ 7 _
max [Ti k], lve] <€ max U—k <C max B o< (74)
k2 Sen 1Y 2 k-1

then
181" ({on}, -, fwo})| < CmCmer

so that if € is small enough z.e. if £ < ¢ = % than B is an analytic function in its arguments.

However it is not obvious at all that that there exists an € such that eq.(74) holds for every h.

2 ~
Given any sequence of vy, Zp, o, such that max; j |0; 1| < &, maxi=o,1,2 |Z¢| < Cand maxy ka
; Z

/1% there is a unique vg, analytic in the running coupling constants, such that |vp| < £ and vy,
converges to 0 for h — —oo at the rate O(y"). The proof of the existence of vy is essentially a
version of the unstable manifold theorem, see (B.G.P.S.). This value vg is obtained, given a, A,
by a unique choice of v.

In all the above consideration the presence of the spin has no importance. However the study
of the flow of the running coupling constants in the spinning case is much more involved than
in the spinless one, as there are five running constant more in the spinning case, so that we
consider from now on the spinless case.

We can write eq.(72) in a more explicit way, calling pn = (6n, Ap) and using the last of eq.(72)

in order to eliminate the factors Zf:' using also that v, = O(y") we get (see also app.4 of
(B.G.P.S.)):

Aot = M+ G Lunks s {po}) +
g o2
+ Z )‘k’ k )\kk’({vha Z i3 {v0, 00}) +
k' >h v
+ Y RI}\({Eh?Py_h};"';{60100}11//5)
Sho1 = 6+ Gy (ki {un}) +
Tk _
+ Z )‘k’ <5kk’({ h} 1%, 00}) +
B E>h
+ vhRZ({ﬁhav—h};.--;{60,00}%)
(o2 (o2
Th—1 = Th+ Z )\k/—:Gf’Zk,({f}h,—: ;.. 3{V0, 00}, vn) (75)
kEsh o v
Ohor = Oh+ Y, Ak, Goe w{on, h}; - {vo, o0}, vn)
Bk >h
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Oh-1 = 0op+opAfP3+

[od
+ 0on Z)‘kGllc:];({'aha_Z};~~-;{60:0-0})
E>h v

= 1+ XA+ >, medGlyp({und;o i {mo}) +
Ek'>h
Ok ~2,h — Oh~, e
AT GHL e Tk e oo)) +
k&'

Zp1
Iy

+ 'thZ({ﬁh,;—Z},.,,,{170,00},Vh)]

where we write explicitly some lowest order contribution to op, Zgzl and fs, 41 > 0, and by
{5} we mean a set of the Uy ;.

In the equations for Ap, 6, we have split, using lemma 3.1, the beta function into three parts
and the terms Gi’h, Gé’h are given by sum of integrals of products of the part ggL(;L‘ —y) of
the propagator while in the terms Gi’h, G?’h at least a non diagonal propagator or a C¥(z — y)
one is involved (see lemma 2.2); moreover the second order contribution to the beta function
is explicitely written. In the equation for 73,8y, o5 we have used that at least a non diagonal
propagator has to be involved in the term contributing to the beta function. In the last equation
again we have splitted the beta function into three terms as it was done for Ay, 6. Finally note
that Gilz,k' = 0(A), and R? = O(A?) while R} = O(X) for i # A.

A fundamental role is plaied by the following property:

Theorem 2.1 If we define:

i lim Gg’h(ﬂ; L) =GR

then it is
GA(n) = Gg(n) =0 (76)

The proof of this theorem was reduced in (B.G.P.S.) to the verification of some technical
lemmata proved in (B.M.) using the exact solution of the Luttinger model (M.L.). The Luttinger

model describes two spinless fermions with linear dispersion relation. The Hamiltonian is:

Ty + Hy = Z/df (@) 5 + (77)
Z/dis’dg‘/\v(f— D) (WEvzs) o (WF vy _s) (78)

where :: denotes the Wick ordering respect to the ground state of T and 1/)3{575 are creation or
annihilation operators of &J-fermions. We can introduce a family of Grassmanian variables 1/);75
and study the Luttinger model by a renormalization group analysis using the anomalous scaling
of the preceding section. The propagator is just given by ggyL(z — y) and the relevant part of
the effective potential Vs given by eq.(67) with v, = 0 by the symmetry of the interaction
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and for the parity of the Luttinger model propagator and s, = t;, = ¢, = 0. The Beta function
is given by, if up = Ap, o

Mnm1 = A+ BY 1 (pns - -5 o) + 7" R (pns -5 )

She1 = An + BEL(pns .- po) + 7" RE(uns .. M)

The crucial point is that:

h h
B} p(uni - p0) = Gy (mns - smo)  BEp(pn;- .5 p0) = Gy (pas - o)

and eq.(76) follows as from the exact solution, see (B.G.P.S.)(B.G.M.), it holds that B}, = 0.

From eq.(75)(76) we can obtain a bound on the running coupling:

)

Lemma 2.2 If for 0 > k > h max; y>p |05 x| < €, maxizoa2 |2 < C, and maxg>p Zf: <

k>h

¢P1* then there exists constant c1,C2,c3,¢4 > 0, depending only on € such that:

— ClAZ < |/\h—1 — )\0| < CZAZ (79)
—C1|/\| < |6h_1 — (50| < C2|A| (80)
—ci|Al <|mo1 =10 < el (81)
—c1|Al < -1 = 0o < oA (82)
— Asesh < log (%) < —ABscah (83)
—6163)\2}1 S log(|Zh|) S —6164/\2}1 (84)

It is possible to choose A small enough so that, fixed a generic constant K and a scale h such

that % > K and f;—’,z < K for any k > h then max; p>p |0 x| < € and maxg>y fol < ePré’

with € < &. In other words, from lemma 2.2 we know that it is possible to choose A so that
the Beta function 8 is analytic in its arguments for k > h. We can then choose A so that 3F
is analytic in its arguments for k£ > h* where h* is defined so that % < 1 for any h > h* but

zﬁi > 1; from lemma 2.2 it is easy to see that:

log., u < log, u+1
L+ [ABscs = = 1+ |A[Bscq
The introduction of the scale h* is crucial and represents the major difference with the not

filled band case, see (B.M.); the ”intuitive” meaning of it will be discussed at the end of this

(85)

section.
From lemma 2.2 and the above considerations it follows that V?" (x/Zhu/)fh*) is an analytic
function of A for |A| small enough; in order to compute the partition function it remains to

perform the integration:

N = /PZV(dqpéh‘)e—vh*(vzh*)wf"*) (86)
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The propagator associated with such integration, written in term of particle fields, is given by,

from eq.(66):

0 ) = 3 [ keI T (g e ) =

@,0

B / 1 Crlt (k)et(==y) (87)

=) N Cike 1 722 — (7R —one (1
[cos(m(z —y))(~iko + F*) + imk sin(w(z — y)) + on- (k) cos(m(x + 1))]

where the y functions do not appear becouse they are identically 1 in the support of C'h_,‘1 (k).

From a standard integration by parts it follows that:

Cny™

Zpe (14 (Jz — gy )N

i.e. it obeys to the same bound as ggl@2 (x — y) for h > h*, see eq.(73).
This follows noting that (—iko + /;2)2 - (TTE)Z — ope(k)? = 4*"" D(v"" k) and each of the tree
term in the numerator can be written as v*" N(y~"" k) with D(k), N(k) bounded and O(1)

with all their derivatives. Then also the integration eq.(86) is well defined and the analysis of

9" (z,y)| <

(88)

the partition function A is complete.

The Schwinger function eq.(25) admits a tree expansion similar to the one of the partition
function, whose convergence follows from the partition function expansion convergence, see
(B.G.P.S.); from brevity we do not report it here but we simply quote the results of the func-

tional integration in eq.(25):

| B e*@=9) h(kZ + E(k)2)
S(x,y) = /dk (2m)%  —iko — E(k)

+

0

+ Y D mEEED(gh (@ —y) + 58, 5, (z — ) (89)

where we call gS*° (z,y) simply g (z,y) and the first addend is bounded by H’lgifle for all

. . _ h
N, ggh%(l‘ —y) is given by eq.(66) and |931,52(=’” —y)| < max(|A|, u)%mfv_yw

It is easy to check that we can write, denoting now by k the ?physical” momentum i.e. not

the momentum measured from the Fermi surface:

L o= n = tko(zo—yo) fh(k’ko) 1
/dk¢(k, Z,op))0(k,—y, on)e Zn(k) ko — (e(k, on) = 77 (90)
where:
. 2 - . 2
E(k,on) = (|k| —71') + 2wsign (|k| —71') (|k| —71') + 0} + 7 (91)

28



and

ok, &, 00)) = eFFu(k, &, op)

sign(|k| — 7)o
gu(Fl=mon

V(E = )2 + 07

u(/;, Z,op) = emisien(E)rd | o (7&) |1+

sign(|/g| — o

—|—isign(/g) sin (7Z) |1— = (92)
(k] = 7)* + o}
From the computations in Appendix 2 it follows that:
|6(k, Z,u) — ¢(k, &, u)| = O(u)  |&(k,u) —e(k,u)| = O(u?) (93)

if (/)(E, Z,u) are the Bloch waves i.e. the solutions of eq.(3) and E(lg, u) the dispersion relation.
One recognizes in fact, by an elementary calculation, that eq.(92),(91), with o, = u are just
the Bloch waves and the dispersion relation computed at the first order in u. This is natural
as in the anomalous scaling we put in the grassmanian integration for each scale h the term
op [ dE cos(2aZ)Y T (D)Yt(T).

We call a(k, A, u) and Z(k, X, u) respectively oj, and Z, for v* < [k| < v"*1 with A > h* and
ope and Zye for [k| <" and we define:

log(Zp» log(op»
m ) = Iy < ) (94)

which from Lemma 2.2 and eq.(85) are respectively O(A?) and O(}), with signns = sign(}).
From eq.(89) it follows, from a standard argument (see for instance (B.G.1)), that for 1 <
|& —y| < u=(1=72) the Schwinger function behaviour is:
O pe——
|z — y|!+7e

with 3 = n1(1 —n2)~1, while for |z — y| > u'~"2 we have, for any N:
ZitopCn

S(z, y)| < —h ThtCN
| (»73 y)|— 1+U'hN*|£L‘—y|N

(95)

so that the bound eq.(17)(19) in the theorem follows. Note that such bounds do not depend
on the explicit expression of ¢"(z — y) eq.(90). Eq.(15) follows on the other hand from eq.(90)
and eq.(93).

In order to found Z~! note that, from the appendix 2, ¢(zt, Z)d(7t, —§) = cos(w(Z + ¥)) +
cos(m(Z—9)) + O(u) and ¢(7~, &)¢(7~, —y) = — cos(w(& + ¥)) + cos(a(Z — §)) + O(u) so that,
using eq.(66) we find:

0
1 N S (@ F D
z/“@mﬁwmw#QE:E:w<l2%&@@—w=
h=h* &)‘1,&32

L 1-n2
7 (1 4+ O(Max(\, u, u ))) (96)
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It is trivial now to check that the formula for the occupation number discontinuity Z~! stated

in the theorem holds.

Remark 1 : In order to understand the meaning of the scale h* let us compute the Schwinger
function corresponding to the A = 0,u # 0 case by the techniques developed so far. It
is trivial to realize that we obtain an expression for the Schwinger function analogue to
eq.(89), with Z, = 1,04 = u for any h and h* = [log, u]. On the other hand we know
from Appendix 2 that, if u is small and writing the momentum as k+ Wpp with & = £1

and pp = 7, in the region |/;| > 4"" but still << 1 we have

e(F + Gpp,u) — i~ (97)
2

R ~ u

sign(k)\/ k2 + u? ~ 2wk(1l + O(E—2))

while in the region |/;| < 4" we have:

=,

2

e(k + dpp,u) — p~ u(l—l—O(i—Q)) (98)
The meaning of the scale h* is then clear: it separates the momenta near the Fermi
surface in two regions, one in which the dispersion relation is approximately linear in k
and another in which is quadratic. The two points Schwinger function has of course a
different behavior for small k in these two regions. In the A # 0 case o) is not constant
and this has the effect that h* is different with respect to the A = 0 case but its meaning
remains the same i.e. it separates the momenta into two regions in which the two points
Schwinger function has a different behaviour. If u = 0, A # 0 one finds (see (B.G.P.S.))

h i e. the periodic

a formula similar to eq.(89) with h* = —oco, op« = 0 and Z ~ y™
potential has the effect that the infrared scales are finite. It is clear that then the scale
h* separates a region in which S(k) behaves like the Schwinger function of the u = 0 case

i.e. as |[k|~(1=75)S; to a region in which the behaviour is given by eq(17).

Remark 2 : Of course the scale A* should be chosen so that % < K for any h > h* but

z’,ﬁi > K with any constant K (we chose K = 1). In this case it is easy to check that

[A| < min[K, ] and o4+ ~ u!™"2 K" Zj. ~ u" K~™ so that eq.(16) still holds. We

have then some freedom in the choice of h* but of course not too much. For instance if
CN,yzh*

| < Zyxops(1+(|z—y|or™

the same bound of g"(z — y) for h > h*.

we choose h* = log, u then |gSh” (z,y) L i.e. it does not obey to

2.4 Outlook on the spinning case

Let us discuss finally what happens in the spinning case. A second order computations shows

that:

Op
gih-1=91.n—(B+ 0(7_11))9%’1
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Op
ga.h—1=g2n+ (B + O(,y_h))gih

a
93h—1=g3n —2(F + O(Py_h))!]S,h(gl,h — 2g2.5)

g
94.h—1 = gan + 0(7—:)

bl

95 -1 =gs,n — (B +O0(—))g54(291,n — g2,n)

=

96.h—1 =gs,n — (B +O0(—))96,1(291,n — g2,n)

T2 2

(22
Oh-1=0n+ (B3 + O(V—h))gzh

Th-1=Th + Bg2,h95,h

On—1 = On + Bg2.n95 1
g

Sp1 = 6 + 0(7—,’3)

Zh-1
Zy

(o2
=146}, +0<7—,’;> (99)

with 3, 31,05 > 0. One could proceed as in the spinless case using the anomalous scaling of
sec.(2.2). However in the spinning case the running coupling constants do not stay necessarily
bounded until the scale h* defined as in eq.(85). In fact by eq.(99), assuming heuristically that
the beta function higher orders vanish, it follows that g; 5 ~ 1—%1% which is bounded for
h > h* for any u only if g1,0 > 0; if g1,0 < 0 we have to require that |A*| < O(ﬁ) i.e. , from
eq.(85), that u > k1e~!7" . With this condition it is easy to check, from eq.(99), that also the
other running couplings stay bounded, remembering that gs o, g5,0, 96,0, 70, o = O(Au).

In conclusion if the fermions are spinning the second statement of the main theorem should

hold in the case of repulsive interaction or if |u| > fepe—IAIT*2

. In order to prove this one has
to repeat the analysis of the preceding sections and to show that the flow generated by the
complete beta function qualitatively coincides with the flow generated by the beta function
truncated to the second order eq.(99), exploiting some cancellations which should occur in the
Beta function. This seems not too difficult and we hope to discuss it in an other paper.

In the spinning case with attractive interaction A < 0 and no periodic potential there are
no rigorous result about the Schwinger function behaviour, see (B.M.); on the other hand in
the filled band spinning case the above discussion says that the Schwinger function behaviour
is given by eq.(16) only if |u| > k1e~!M7" . This suggests; in our opinion, that in the u = 0
attractive spinning case the Schwinger behaviour could be given by eq.(16) with u ~ O(e_|)‘|_k2)
i.e. the interaction generates spontaneously a gap in the energy spectrum. This phenomenon
was heuristically studied in (L.E.) and should be analogue to the B.C.S. superconductivity in
solid state models or to the mass generation in the relativistic standard model, but as far as we

known no rigorous results are known (although new insigth was given in (F.T.M.R.)).
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3 Appendix 1

This Appendix is devoted to the first statement of the theorem. The Fuclidean fields are here
defined as:

<= /dk¢(/€, Feichosoys

with et*of = 1, ¢*N = 1 and the functional integration is defined on monomials by the Wick
rule eq.(10) with g(z,y) = fdkeiku(x_o_yu)(b(/;, f)qﬁ(/;, —9g(k).

The Schwinger functions are given by eq.(25) and are related to the effective potential Veys
defined by:

- . v
e=Versle) — ﬁhjﬁ, W/P(Ch/;)e V(¥+e), (100)

where N = fP(dd))e_V(d’) is a normalization constant so that V.;;(0) = 0 and V(¢) = AV

where:

V= Z/ dzideav(Zdy — &2)6(zo,1 — 330,2)1/);1701/};27011/};2701 1,0 (101)
AXA

with A = (=58/2,8/2) x (—=N/2,N/2). As u is not small the periodic potential has to be
considered as a part of the free hamiltonian.

The two points Schwinger function is given in term of the effective potential by:

S(z,y) = g(z,y) + / dzdz'g(z,2)Va(z,2")g(2', y) (102)

with Va(z,2") = ;:Y%.

It is convenient to rewrite the grassmanian integral in eq.(100) as:

o~ Vers(9) — %/P(d%r‘)e_vowmw) (103)

6—VD(¢z.r.+9”) _ /P(dwu.v.)6—V(wz.r.+¢u.u.+9’) (104)

where %) "7 o are anticommuting grassmanian fields, P(dy¥?"), P(dy"") denote respec-
tively the grassmanian integrations with vanishing cross propagator and with propagators gy, .

and g; .. given by:

wrten) = | b R —ReE (= hkE + B (105)
ko — B(F)
‘ B e—tko(zo—yo) s 9 =
o) = [ Sl E)0(E AT + B

—.

where E(k) = e(k) — p and h(t) is a C* function in its argument ¢ and it is identically 1 if
t > [e((2m)t) — p)? hence the integral in g, (2, y) involves only momenta ”far” from the Fermi

surface so thus justifing the u.v. name.
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In (B.M.) it is shown that ultraviolet part of the propagator can be written as:
1 =2

e 2o

Guwv.(z,y) = Gz —y) + R(z,y) G(z) = H(Z)H (x0)

dmxg

where H(t) is a smooth function of compact support such that H(?) = eom” if [t| < 1 and
H(t) = 0if |t] > v > 1, and R(z,y) < ngifle
adaptation of the study of the ultraviolet problem for the u = 0 case in (B.G.P.S) to the u # 0

case it is possible to prove that there exists an ¢ such that V? can be written, for |A| < ¢, in

for any integer N. With some minor

the following way:

=> A / vz — yUF U gy, 20D / dedyv(z — y)R(z, y)¥F by

o0’

+Z/ Vio /dyfx(el v)) + (106)

* /dxl ern,l/)xl o1 " 1/}7/'71170711 zy,01 x2n702an(I1’ oo 7I2n’)\)

where K (z, y) =v(z — y)R(y, y), the kernels W, are products of suitable delta functions times
bounded functions analytic in A if |A| < € and, if d(z1 ..., 2,) is the length of the shortest tree

connecting the points (“tree distance” or “graph distance”), the following bounds hold:

/d:vl cdzon Wi, .. en; 2)|[(L4d(x, .. 20))Y < e(N)A|z|mee(2n-1) (107)
In order to perform the “infrared” integration eq. ( 3) we can write
0 S - . ,
i o(k, 7)p(—k, §)eikolzo—yo0)
rten= 3 =5 [0 R oLy _
P —iko — (e(k) — )

E /d2k¢ (k, Z)3(—k, §)etho@o=vo) gh (k)

h=—co

where f(t) = h(y=2t) — h(t) is a compact support function different from zero for

v~ 2le((2m)t)—p)? <t < [e((27F))—p)?. As the chemical potential is at the center of the gap we
have that E(lg) — pt is never vanishing so that only a finite number of term ¢(*)(k) contributes to
gir. (k). We call h* the last h such that f('y‘zh (k’%—k(e(lg) —u)?)) is not identically vanishing and
does not contain 7/a in its support. We call, for simplicity, g*” ~*(k) the sum of the g" (k) whose
support contain 7/a. We note that [¢((2m)) — u]y" ~! = O(A) where A = [e(at) 4+ e(77)]/2
is the gap amplitude.

The following lemma holds:

Lemma 3.1 For any integer N and for any u such that A # 0 there exist continuous functions

Cn(u) such that:

@)l < s

(108)
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Proof: If h # h* — 1 the integrand is continuous and vanishing at the integration extrema so

that we can write:

9" (z,y) = /d2k¢>(lga £)¢(—F, g)e!(FolFo—vo)th(ni=na) gh () — (109)
1
((zo —%0)2 + (n1 — n2)2) %

where & = £ 4+ ny and ¥ = £+ ny and z,y € (0,1). In the Appendix it is proven that the

[ et snE e g o) % o(F 2)o(~F.0)e" (1

derivatives of the functions e(k ) and qS(k' #), in the support of g”(k), are bounded for any N

and suitable continuous functions Cn(u) by:

CN( )
N

For the last propagator ¢ =1 we write

/d%f('y‘“*‘”(k%+(6(/3)— W)k, &)p(—k, et vl _

—iko — (e(k) — p)
/ J"(V‘Z(”f‘”(k2 + (e(k) = 1)*))po(k, &)po(—k, §)etolze=vo)
[—n,7] —iko — (co(k) — p)
/ 2k FOy 2 =D (k2 + (e(k) — 1)) 61(k, )¢1(—k, f)ethe(zo—vo)
[- 27, —7]ulr,27] —iko — (c1(k) — )

where En(/;) = 6(];) in the region [—(n+ 1)7, —n7] U [n7, (n 4+ 1)x] with En(];) analytic and

07 [6(k, £)6(—k, D] < |0 (k)| < O (u)y™" V1) (110)

+

periodic of period 27 and an analogous definition and properties hold for ¢, (];, Z) (see the

appendix 2). The second integral can be rewritten as

/ 2p TO IS + (k) = 1)) (k, )1 (—k, Gette(omve)
[~7.7] —iko — (e1(k) — p)

so that we have written the propagator as the sum of the integrals of two periodic function

over a period and we can integrate by parts without boundary terms. Hence proceeding as for

h > h* — 1 using eq.(110) we have

Y 1O (u)
T 1+ (e —yN

g (2, y) <

This ends the proof.

The effective potential is given by

~Vags(p) = log [ Pl )e V0 9) - Z Lenw, vy =
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Z% Z Z /Xm-..anWal(Xl)mWan(Xn)

1% X1 €Xy,.. . X, €X,

gT(,l/}f(la .. a,l/}Xn)SOXl\Xl o SDX,L\X,L

where W,,(X;) is one of the kernels of V°, X; = (z;1,...,2in,) dX; = H;L;l de; j, vx, =
Hj;l 1/)“], and ET is the truncated expectation with propagator g;, . Using the well known

expansion (Le.)(B.G.P.S.) for truncated expectation we can write

Ewx,, - vx) =[] g(m;,y;)/dPT(S)detGT(s) (111)

n €T

where T, is a tree graph connecting the sets of points X;,..., X,, GT is a matrix whose
4,3,8'5
suitable interpolation function belonging to [0,1] and dPp(S) is a normalized measure on the

elements are G » = Sjjrg(xij, i j0) with 2;; — x5+ not belonging to the tree, Sj; a
S variable.

From the Grahm-Hadamard inequality (B.G.P.S.) we obtain that the last integral in eq.(111)
is bounded by C’Zz "t for some C. Let us consider a spanning tree T connecting all the points
in X1,...,X,n. By eq.(107) the integral over the coordinates belonging to T/Tn and the sum
over o can be performed trivially obtaining by eq.(111) that the second addend in eq.(102) is
bounded by:

[eS)
n=1

where (21, 1), (x2,¥2), ..., (€n—1,Yn—1) are the n—1 lines belonging to T,. Writing g; ». (z,y) =
)

cA)”
( n,) Z H dzidyigi r (x1, Y1)9i r (%, 21) 91 r (Yn—1,Y) (112)
" T 1€T,

EZ;_ol ¢"(z,y) and remembering from lemma 2.1 that sup,, [dzg"(z,y) < y~" we have that

eq.(112) is bounded by:

oo h*—1 h*—1
VSIS L e
> oW D 7 =S
n=1 n' T, leT, h=1 1+(7 |I y|) hy...hp=1
oo ~ ™ h*—1
AC YA Cn (u)
— 11
2|5 L Tr e -7 (113)

using eq.(102)(113) the first statement of the theorem easily follows.

Remark: Contrary to the small u case all the infrared scales 0, —oco can be integrated togheter

i.e. without using the multiscale decomposition eq.(31)..

4 Appendix 2

In this Appendix, based on the results of (K.), we obtain some analyticity properties of Bloch

waves which we need in the estimates of sec.2. We consider the two Cauchy problems for the
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equation
— ¢" () + uc(z)d(z) = ep(x) (114)

in 0 <z <1and ¢1(0,¢,u) = ¢45(0,6,u) = 1 or ¢2(0,6,u) = ¢1(0,e,u) = 0. It is easy to see

that the two power series

$1(z,c,u) =cc+ Y _u'Cp(z,6)  ¢a(z,6,u) = 0.+ Y _u"Su(2,¢) (115)
n=0 n=0
with

Cn(z,e) = / ce(s1) H[U€(5i+1 —s;)c(s;)]dsy - - - dsy
0<s51<...Espp1=2x i=1
S, (1 5):/
0<

se(s1) [ Jloe(siqr — si)e(si)]dsy - - dsn (116)

515 S0np1=0 i=1
and c.(z) = cos+/zz, o.(z) = % provide formal solution for eq(114).1t holds (T.P.):

Theorem 4.1 The formal power series eq(115) converge uniformly on the bounded set of [0, 1] x
C x C to the unique solution of eq(114). They are a fundamental set of solutions and for every

z €10,1] ¢i(x, e, u), di(x, e, u) are entire function on C x C and are real on R X R.

We now look for solutions for eq(114) of the form

é(1,¢,u) = Ad(0, ¢, u) ¢'(1,6,u) = A¢'(0,¢,u) (117)
This solution can be extended to all R setting ¢(z+n, e, u) = A" ¢(z, e, u). We write ¢(z,¢,u) =
ag1(z,e,u) + fpa2(z, e, u) and substituting we obtain

2¢4(1,¢,u)
A2 — Dpule,u)+1=0 a_ 292l 118
}L(E, U) + 6 )\(E, u) _ )\(SU) ( )

where p(e,u) = ¢1(1,¢,u). Setting A = €** the first of eq(118) become
cosk = p(e,u) = ¢1(1,¢, u) (119)

which implicitely defines the function e(k, u). In (K.) it is proved that the zeros of w are
simple and in correspondence of real values of € which we call ,,(u). Defining p, = p(en(u)) =

cos ky, we have
k2m = :E[(?_] + 1)71' + Zth(u)] k2m+1 = :|:[2_]7T + ih2m+1(u)] _] = 0, :|:1,:|:2, e

We will always suppose that po, < —1, gam+1 > 1. This is not a limitation: see remark after
lemma 2. The zeros of the derivatives of x4 implies that 6(/;, u) must be a multivalued function.
This can be represented on a Riemann surface with an infinite sequence of sheets S, and En(];:)

are the values of E(E, u) on S,. The points k,, are diramation points that connect the sheet S,
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with the sheet S,,_1: i.e. if one starts at a real value of k on S, ,turns clockwise around k,, and
returns on the real axis one arrives on S, 41, while if one turns around k,,_; he arrives on S, _1.
The periodicity of cos(/g) implyes that for k real En(]g) are analytic periodic function of period .
Finally if we cut the complex plane along the segment [+(m+1)7+ihpy, (u), £(m+1)T —ih,, (u)]

we obtain a single valued function defined on all C' and analytic every where except on the cut.
Lemma 4.1 h,(u) is real, analytic in u and O(u) for small u
Proof We consider for definetiveness only hg(u). It is given by the equation

cos ];0 = p(eo(u),u) (120)

Note that if u(eo(u),u) # —1 we can invert locally eq.(120) obtaining the solutions ky =
nm + tho(u) and kg = nm — tho(u). If p(eo(@), u) = —1 we note that & must be a maximum
for p because we know that p(eg(u),u) < —1. This mean that the order of its first non zero

derivatives must be even, say 2n so that near u eq(120) is equivalent to the two equations

n, [#(eo(u) u) + 1
,u2n

—COS(];Q—TT)—}—l .
2

= =u"p(u) =u 121
i i) (121)

+ (ko — m)é(ko — 7) = £ (ko — w)\/
It is easy to see that 5(];:‘0 —7) = 5(—(/20 — 7)) so that we can write equation (121) as :I:(Eo —
’:T)g(:l:(];o — 7)) = u"fi(u). Moreover it is clear that

d - -
d_/%(ko —m)é(ko — )|z, —n # 0
so that by the inverse function theorem from the equation (/;0 - 7)5(/;() —7) = u”fi(u) we obtain
a function /go(u) = 7w + ihg(u) analytic near u Applying the same argument the equation with
the minus sign we obtain that its solution is Eo(u) = m —thg(u). This completes the proof that
ho(u) is analytic for all u. Choosing u = 0 we have that p(eg(0),0) = —1 and 62(’3(;35“) |u:0;£ 0
so that hg(u) is O(u) for small u.

Let us now define the new variable ¢ = +|k — ko| = \/(k — m)% + ho(u)? where the square
root, and so g, is intended as a double valued function. The function cs(q, u) = cos(k(q, u)) is

-

analytic and single valued as cos(k) is an even and periodic function and k = 7+ y/¢% — ho(u)?.
Lemma 4.2 : the function £(q,u) defined by
es(q, u) = p(e, u) (122)

with the condition £(0,u

)
Moreover ﬂaqq’—ul

) = eo(u) is analytic for q such that 0 < |Rek(q)| < 2m.
1 [sinhe (Mﬂl| )_1
2 e=eo(u)

d2¢
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Proof: near eg(u) we can write eq(122) as cs(q) — p(eo(u), u) = p(e, u) — pu(eo(u), u). Observe
that

des(q) 0 Op(e, u) 0
dq ¢=0 de e=eo(u)
d*cs(q) O u(e, u)
0 _— 0 123
dq2 ¢=0 # 0%e e=ceo(u) ;é ( )

where the relation on p follows from (K.) and those on cs(q) are trivial. Proceeding as above

we have that eq(122) is equivalent to the two equation

+ q\/cs(q’ v) _q’;(“(“)’ Y = Lyes(g,u) = eple,u) = < L’g —! (124)
Noting that cs(g) is even in ¢ and proceeding like lemma 1 we get, by the inverse function
theorem, an analytic function £(q, u) such that the solution of equation (124) can be written
as £%(q,u) = &(#q,u). The two functions £¥(y\/(k — m)2 + ho(u)?, u) are identical as bival-
ued function of £ as q is bivalued. We choose for definiteness e(q,u) so that &(ho(u),u) >
E(—ho(u), u). Eq.(124) can be inverted in a connected region in which a’é—(:) # 0. This end the
proof.

Remark 1 if yg = 1 we have that hg = 0 and so ¢ = 7 &+ k. The above lemma implyes

that e(k) can be considered as a couple of analytic functions &(7 + k).

Remark 2 as A(u) = &(ho(u)) —€(—ho(u)), from lemma 2 A(u)/ho(u) is a continuous function

of u.

To prove the second of the bounds eq.(110) we note that

ZZZ = D0 Ky (F—m) ((F = m)* + ho(w)?) T3 =
N k-m? " 1
= [\nl = = n_1
Z ((k—w>2+ho<u)2) ((k = m)% + ho(w)2) "%

for suitable combinatorial coefficient K,,. From lemma 2 it follows that:

‘3N6(/€) Cn(u)

N—1

(Ok)N ‘— ((k — 7)2 + A?)™3

where Cn(u) is a continuous function of u by remark 2.

From eq.(118) the equation for Bloch wave can be explicitly written:

62(1,€)61(2,€) + (A(e) — Me) ™" )éa(x, €)

¢(z,e) = :
¢a(1,€)¢1(1,¢)

(125)
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where 4;1(1,6) = %. It is easy to see that ¢1(1,e) = ¢4(1,¢). The functions ¢;1(z,¢) and
¢2(x,€) are analytic in £ so that we can define ¢1(z,¢) = ¢1(x,£(q)) and ¢2(z, q) = ¢a2(z,E(q))
analytic in ¢. To control the analytic properties of ¢(z, ¢) we must know where the denominator
is vanishing.
We have that

812, €)64(2,€) — 61(3, )dale,¢) = 1

because it is the wronskian. Moreover we have ¢1(1,é(£ho(u)) = ¢45(1,&(Lho(u)) = —1.
Substituting in the last equation we have ¢o(1, &(xho(u))¢i (1, E(£ho(u)) = 0. From this it
follows that at ¢ = ho(u) one of the two functions ¢, and ¢} must be zero. Note that around any
points u* such that ho(u*) = 0 it is impossible that ¢4(1,&(+ho(u))) = ¢2(1, e(—ho(u)) = 0.
In fact if this would be true ¢a(x,&(+ho(u)) and ¢a(x,E(—ho(u))) would solve eq.(57) with
conditions ¢2(0,e) = ¢a(l,e) = 0 and so should be orthogonal; but around u* their scalar
product must be different from zero because it is strictly positive in u* and it is continuous. A
similar argument holds for ¢} so that we can conclude that ¢2(1,¢) is zero in one and only one
of the two points £(%hg(u)).

Coming back to equation (125) we can write q.Sl(l,q) = ule) = qul(l,q) and ¢2(1,q) =
(¢ — ho(u))qu(l, q) where (52(1, q) and &1(1,q) are analytic and different from 0. This implies
that the denominator can be written as \/¢(q — ho(u))N(g) with N analytic and not vanishing.
Moreover we have that A(e) — A(e)™! = isin(ka) = i(k — 7) (S}cn_’ira) We observe that (?Ei)
is an even function of k£ and so can be written as a single defined function of ¢ ¢.e. we have

sin ka = \/q? — ho(u)?sn(q) where sn(g) is defined by this equation. Substituting all that in
equation (125) we obtain

5 at) + 41+ 28 e, 2001 (126)

¢(m¢q): 1-

with (;1(1‘, e(q)), (;1(1‘, ¢(g¢)) analytic as function of ¢ and u.

An important feature of the function ¢(x, ¢) is that for ¢ = ho(u) we have ¢(z, q) = (51(1‘, e(¢))
mcos(wf) and for ¢ = —hg(u) we have

é(x,q) = ig1(x, E(q))mi sin(wZ). This representation clearly holds in any small neighbour-
hood of the points u* such that hg(u*) = 0. Note moreover that eq.(93) easily follows. In fact
the Bloch waves extended to all R are given by ei’;"qﬁ(t, q(k)) where t € (0,a) and z =t + n;
then eq.93) easily follows noting that, for ||k| — 7| = 7/2, 6(];;) — k2= O(u).

To obtain the estimate eq.(110) in the case u near one of u* we first consider the case |/;—7r| <
O(A) Observe that \/q(lg) + ho(u) is a four-valued function of k that near k = 7 can be written

as:

q(k) £ ho(u) =
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ho(u)y| £1 + ,/% +1 = ho(u)fE((F - 7)/ho(u))

Let us study f+((/<7 m)/ho(u \/1—{—\/ :(3)2 + 1. Fork_"rwehave\/gm)%—i—l_:tl SO

that the two values of that function are well defined and analytic near k = 7. Moreover for both

values we have that 1+1/ % + 1 is an even function of £ and near k = 7 is :I:l—}—O((/{: 7)?)
so that its square root is well defined and analytic. The same holds for f~ (k ) It follows that

we can write

d(z, k) = hOT(M(ﬁ(E/ho(U))f/;l(f’ k) + 17 (B/ho(u))és(x, k) (127)

with f* four valued analytic functions. When we make the 7i-th derivative of this expression
we have that the n-th derivative of the functions (52(1‘, I;) and qzl(a:, E) is bounded by W
because they are analytic in ¢. The n-th derivative of f* are bounded by C™hg(u)~". The only
term to control is W' We have that the n-th derivative of this function is given by:

m d*iq d™ [ho(u)
Z E Koo "’”Hdkn dgm q

m nitnz+--+np=n

with K7~ combinatorial coefficients. using the fact that d"q/dk" < Cho(u)~ (=1 we get
that d” ( ho(u)/q) Jdk™ < Kpho(u)~™. All together this implies d" 6 (K, #)/dk™ < K/ ho(u)™".
Ifk—m> O(A) it is enough to observe that the derivatives of \/q 4+ ho(u)/,/q are given by:

Z Z I’g@lymlym2 H d” qq—(m1+1/2)( ho(u))_(m2_1/2)

mmi+mz=mni+--+np=n dk”
where K77™! "2 s a suitable combinatorial factor. The estimates follows remembering that
dnq/dkr < C(Jk| — =)= (=1,
If u is not near to one of the u* it is enough to observe that qﬁ(/;, #) is an analytic function of

k in a domain of radius no(u) around k = 7. By a dimensional estimate we get:

LRI CE WLL G)

BTN r

Chosing r = \/(lg — )2 + hg(u)?/2 and noting that SUD| 7 _ < ¢(k, ¥) is continuous the second
of the bounds eq.(110) follows.

Clearly above analysis can be repeated in correspondence of each of the point ¢,.

5 Appendix 3

In this appendix we prove lemmas 2.1 and 2.2.
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Proof of lemma 2.1: The bound on ggy_g(x — y) follows from eq.(66) by integrating by parts.

We can write gg z(z — y) as a term independent on o plus a remainder:

1
0
gk s —y) =gk, —o(k) + / dtggf%(fv — Wlton = .0 —o(k) + Ca(z — y) (128)
0

where

: —iko + k% — 2wrk
Co(z—y) = /dtdeh(k)‘lah(k)2(],;1(k)elk(x‘y) tho & kil ~. (129)

(=it +22)" = (58)” - 1o

The bound on C3 follows by a standard integration by parts.

Proof of lemma 2.2: We proceed inductively by assuming that eq.(79),(83),(82) hold for 0 >
k > h and proving that their validity for A — 1. From eq.(75) and the analyticity of the beta

function we have that:
Zi(1+ 2e3610%) < Zj—1 < (1 + car1A®) Zy,

where ¢1, ¢y are constants.

Assume inductively that:

—c3B1 0%k —cy 1A%k

Y <Zp <7y

for k > h; then the same equation holds for Z,_; as, from eq.(75):

81 caN2(h— 1+ ca N2 81 caN2(h—
Zh-1 SZh(l+ﬁlC4/\2)§»y Brear*(h 1)%§7 Brear®(h—1)

_62_1—{—26/\2 — B1car2(h—
o1 > Zn(1+2B1c3A?) > 4~ Prear’(h=1) eﬁfi)\f_ > y~Presd (A1)

A similar argument can be used to treat the bound on ¢} so that eq.(83) is verified.
Eq.(79) follows assuming that eq.(79)(83)(82) hold for k£ > h so that there are two constants
¢1, ¢z such that from eq.(75):
—cl)\Z[U—Z +9" < A1 — A < 02[0_2 +7"1A?
Y Y
and proceeding in the same way for 6,_1.

Finally in the same way the equations from 75, f, are obtained from eq.(75).
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