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We consider the ‘‘thermodynamic limit’’ of ad-dimensional lattice of hyperbolic
dynamical systems on the 2-torus, interacting via weak and nearest neighbor cou-
pling. We prove that the SRB measure is analytic in the strength of the coupling.
The proof is based on symbolic dynamics techniques that allow us to map the SRB
measure into a Gibbs measure for a spin system on a (d11)-dimensional lattice.
This Gibbs measure can be studied by an extension~decimation! of the usual
‘‘cluster expansion’’ techniques. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1768620#

I. INTRODUCTION AND MAIN RESULTS

In recent years a lot of attention has been devoted to the relation between nonequilibrium
statistical mechanics and dynamical systems theory. According to the point of view of Ruelle,
Cohen, and Gallavotti,21,11 a mechanical system evolving in a steady state can be described by a
hyperbolic dynamical system and its properties can be deduced from the ‘‘natural’’ or SRB dis-
tribution ~see below for a precise definition! associated with this dynamical system. This line of
investigation has already produced several interesting results both analytical, like the ‘‘Fluctuation
Theorem’’~see Ref. 11!, or numerical, like the works of Evans and Morris~see Ref. 8! and Moran
and Hoover~see Ref. 18!. Nonetheless, most of the work has been devoted to low dimensional
dynamical system, due to their accessibility both to analytical and to numerical study. In this paper
we want to study the properties of the SRB distribution for a class of simple systems in very high
dimension. For more references on this kind of systems see Ref. 17. The precise model we study
here is taken from Ref. 2.

We start considering a linear hyperbolic automorphism of the two-torusT2. To be definite, we
will always consider the so calledArnold cat map s0 : T2→T2 defined by the action modulus 2p
of the matrix

A5S 1 1

1 2D . ~1.1!

Note that the matrixA admits two orthogonal eigenvectorsv6 whose respective eigenvaluesl6

are such thatl1.1.l2 and l1l251. For this reason the dynamical systems0 is uniformly
hyperbolic and the stable and unstable manifolds at any pointfPT2 are given byWf

6(t)5f
1v6t mod2p.
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From s0 we can construct theuncoupledlattice dynamics by considering as phase space the
Cartesian productT5(T2)Zd

~namely any pointcPT has Cartesian components$cj%jPZd),
equipped with the metricd(c,c8)5(j2

2ujud̂(cj ,cj8) whered̂(cj ,cj8) is the usual metric onT2

and uju5( i 51
d uj i u for jPZd. On T the mapS0 acts simply as

S0
j~c!5~S0~c!!j5s0~cj!. ~1.2!

Note that the stable and unstable manifold ofS0 at a pointc are the Cartesian product of the stable
and unstable manifold ofs0 for the pointscjPT2, i.e., W0,c

6 (z)5c1(jw0,6
(j) zj mod 2p, where

w0,6
(j) is the tangent vector toT that has null component on the tangent space to everyTh

2 but for
Tj

2 where it coincides withv6 . The action ofS0 on W6(c) is naturally given by a diagonal linear
transformation.

We observe that the special choice of the matrixA plays no role in the following. Indeed we
will show in Appendix A that our results stay true if we replaces0 with any uniformly hyperbolic
analytic automorphism ofT2, not necessarily linear.

To add a coupling to this system we consider an analytic functiong: T→T2 and define

Se
j~c! 5

de f

s0~cj!1eg~rjc! 5
de f

s0~cj!1e f j~c!, ~1.3!

where (rjc)h5ch1j , i.e., r is the group of the translations onZd. This means that the function
f: T→T, whosej component isf j5g+rj, is translation invariant. We wantf to be short ranged: let
the nearest neighbor sites of the sitej benn(j)5$h:uj2hu<1%; we will assume thatg depended
only on cnn(0) , where we have used the notationcV5$cjujPV% for V,Zd. This implies that
Se

j(c) depends only oncnn(j) . More generally we could have assumed thatg depends only oncV

whereV is any finite subset ofZd containing 0 but this would not have changed the substance of
the following arguments. Moreover, we will takeg analytic in all its arguments.

The dynamical systemSe admits many invariant measures. Among them is the ‘‘natural’’ or
SRB measure defined as the weak limit of the volume measure onT under the evolution defined
by Se , when such a limit exists and is ergodic. Being thatT is infinite dimensional, to properly
define this concept we will consider finite dimensional approximations. LetTN5(T2)VN whereVN

is the cube of side 2N11 in Zd centered at the origin. To define the restriction ofSe to TN we have
to fix the boundary conditions: we choose periodic ones. To this extent note thatTN can be
naturally identified with the submanifold ofT formed by the points periodic of period 2N11.

MoreoverSe leaves such a manifold invariant so that we can defineSe,N 5
de f

SeuTN
. If no confusion

can arise, we will suppress the indexN.
We can now define the SRB measure forSe,N asmN

SRB5 limT→`(1/T)( t50
T21(Se,N* ) tmN

0 where
the limit must be understood as a weak limit andmN

0 5PjPVN
dcj /(2p)2 is the Lebesgue measure

on TN . The existence of such a measure follows from rather general theorem on hyperbolic
dynamical systems, ife is sufficiently small~see, for example, Ref. 10 and references there!.
Moreover, mN

SRB is ergodic, always for small e, and we have that mN
SRB(O)

5 limT→`(1/T)( t50
T21O(Se

t (c)) for mN
0 almost everyc, whereO is anobservable, i.e., a Holde¨r

continuous function fromTN to R. This means thatmN
SRB is thestatisticof Se . It is well known that

the SRB measure is still well defined in the limitN→`, for e small enough. This was first proved
by Bunimovich and Sinai in Ref. 6. Starting from this work, the model Eq.~1.3! ~or similar models
of coupled expanding automorphisms of the circle! has been widely studied in the literature~see
for instance Refs. 19, 3–5, 16, 17, 1, and 15!. Many properties of such systems are well known,
mainly uniqueness of the SRB state in the thermodynamic limit and exponential decay of corre-
lations ~see Refs. 3–5 for a proof of these properties!.
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We further investigate the regularity properties of the limiting measure. We show thatmN
SRB

depends analytically one. This means that if we consider an analytic observableO, i.e., an
analytic function fromTN to R, we have thatmN

SRB(O) is an analytic function in a domain that
depends on the analyticity properties ofO.

The main point of this work is to show that such a property remains true whenN→`, i.e., we
want to show that the domain of analyticity ofmN

SRB does not shrink to 0 whenN→`. More
precisely we say thatO: T→R is a local observableif it depends only oncV for some finite
V,Zd. We can summarize our main results as follows

Theorem: Given Se as above and a local observableO we have
(1) mSRB(O)5 limN→` mN

SRB(O) exists uniformly ine for e,e0 independent onO, and
(2) if O is local and analytic, thenmSRB(O) is analytic ine for e,e0(O).
The proof is mainly based on the possibility of mapping the SRB distribution into the Gibbs

state of a suitable spin system onZd11 and on the extension of classical techniques used to study
such Gibbs states~i.e., cluster expansion! to the particular ones that occur in our system. The key
point in order to get analyticity of the measure is proving that the SRB potentials~i.e., the
potentials of the Gibbs state the SRB measure is mapped into! are rapidly decaying. Once this
decay is proved, analyticity follows via standard techniques. Analyticity of the measure and
convergence of cluster expansion imply in particular uniqueness of the Gibbs measure and expo-
nential decay in space and time of the correlations of Ho¨lder continuous observables~see for
instance Ref. 10!. Our proof can also be adapted to the case of coupled analytic expanding circle
map: in fact, also, these models can be mapped into spin systems, and proceeding as below one
can prove that the SRB potentials satisfy the same decaying properties.

The rest of the paper is organized as follows. In Sec. II we give a brief review of the main
properties of smooth uniformly hyperbolic systems and we briefly describe the construction that
allows the above quoted mapping. The detailed proofs of this properties are postponed to Secs.
III–V. Finally, in Sec. VI, we complete the proof of the main theorem. Appendix A contain a direct
extension of our results to the case in which the uncoupled dynamics is not linear. Appendix B
deals with an application. In the contest of the physical application of dynamical systems~see the
beginning of this Introduction! a special status has been given to a particular observable, thephase
space contraction ratedefined ash1(c)5 logudet(DSe(c))u whereDSe is the differential ofSe .
Being that our system is infinite, it is more interesting to study thelocal phase space contraction
rate hV(c) defined by taking the determinant of a~large! minor of DSe . We show, for a large
class of couplingsf, that hV has a positive average and that it obeys a large deviation principle,
i.e., its large deviations are asymptotically described by a free energy functional.

II. ANOSOV SYSTEMS

A. Geometric properties

A dynamical system on a smooth compact manifold, whose dynamics is given by a uniformly
hyperbolic invertible map, is called anAnosov system. From the general theory we know that
Anosov systems are structurally stable, namely, given two Anosov diffeomorphismsS, S8 on a
manifoldV that are sufficiently close in theC2 topology, there exist aconjugation H:V↔V such
that S+H5H+S8.

In our situation this implies the existence of a maphe : TN↔TN such that

Se+he5he+S0 , ~2.1!

at least ife is small enough~a priori not uniformly in N!. The first step of our proof consists in
showing thathe is analytic ine uniformly in N. More precisely, we will constructhe directly for
N5`. Its finite N version can be obtained by restricting it toTN . We note thathe is, in general,
only Holdër continuous in the variablec. By this we mean that there exist constantc andb such
thatd(he(c),he(c8))<cd(c,c8)b. For this reason we cannot say that the SRB measure ofSe is
just the image under the maphe of the SRB measure forS0 , i.e., of the Lebesgue measure onT2.
Notwithstanding,he will play a crucial role in the construction onmN

SRB.
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As we saw in the Introduction the tangent space TcT to T on a pointc can be split in two
subspacesEc

1 andEc
2 such that TcT5Ec

1
% Ec

2 . Moreover, the distributionsE6 are continuous
and invariant underS0 , i.e., (DS0Ec

6)5ES0c
1 and we have

iDS0
nwi<Cl2

n iwi for wPEc
2 ,

~2.2!
iDS0

2nwi<Cl1
2niwi for wPEc

1 .

Ec
1 andEc

2 are called thestableandunstablesubspaces, respectively. In the case ofS0 all these
properties are trivially true. In particular we can consider onEc

6 the basis formed by the vectors
$w0,6

(j) %jPZd.
We will show in Sec. IV that such a splitting can be constructed also forSe , again uniformly

in N, i.e., we will prove the existence of the stable and unstable subspacesEe,c
6 for Se . Moreover,

we will show thatEe,he(c)
6 is an analytic function ofe, although it is only Holde¨r continuous inc.

This will turn out to be the right regularity to study the SRB measure. To do this we will directly
construct the vectors of the basis$we,6

(j) (c)%jPZd that coincide with$w0,6
(j) %jPZd for e50.

B. Symbolic dynamics

The main property that allows us to study analytically the SRB measure for an Anosov mapS
acting on a manifoldM is the existence of Markov partitions. We call a collectionQi , i
51,...,n, of closed subsets ofM a partition if ø iQi5M and QiùQj5]Qiù]Qj for every i
Þ j . For every sequences5$s t% tPZP$1,...,n%Z we can define the setX(s)5ù t52`

` St(Qs t
). Due

to the hyperbolicity properties ofS, if Qi are small enough,X~s! contains at most one point. This
allows us to construct asymbolic dynamics, i.e., a map from a subsetS of $1,...,n%Z to M. In
general, the structure of the subsetS is very complex but for Anosov systems it is possible to
construct particular partitions for which the setS can be described easily. Given a partitionQ we
call then3n matrix C given byCi j 51 if int(SQi)ù int(Qj )Þ0 and 0 otherwise the compatibility
matrix. We say thatQ is a Markov partition if the setS is formed by the sequencess such that
Cs i ,s i 11

51 for everyi PZ. This means that the sequences that satisfy the above nearest neighbor

condition code all the points ofM. In such a case we will denoteS5$1,...,n%C
Z .

We now show how to construct a Markov partition for our model. We start withs0 . A Markov
partition Q5$Qi ,i 51,...,n% for s0 acting onT2 can be easily constructed starting from its stable
and unstable manifolds. Such a construction is standard and can be found, e.g., in Ref. 10. LetC
be its compatibility matrix andĉ0 the associated symbolic dynamics.

It is important to note thatĉ0 is Holdër continuous in the sense that there exist constantsc and
b such that, for any two sequencess, s8P$1,...,n%C

Z , d( ĉ0(s),ĉ0(s8))<cd̃(s,s8)b, with
d̃(s,s8)5e2#(s,s8) where #~s,s8! the biggest integer such thats j5s j8 , ;u j u<#(s,s8). In this
case we can takeb5 ln(l1). Another key property is thatC is a mixing matrix; this means that
there exists adecorrelation time aPN such thatCa has all entries strictly positive. This means that
we can connect any two elements of the Markov partition ina time steps.

For every point s5$sj%jPZdP$1,...,n%Zd
we can consider the Cartesian productQs

53jPZdQsj
,TN . It is clear that the collection ofQs with sP$1,...,n%Zd

forms a Markov partition

for S0 . Note that it is natural to index the element of this partition with the element of$1,...,n%Zd

so that we can associate to this partition the symbolic dynamicsc0 : Zd3Z5Zd11→TN naturally

defined fromĉ0 . We can still callC the compatibility matrix and$1,...,n%C
Zd11

the set of possible

sequences~namelys5$sj,i%jPZd,i PZ is in $1,...,n%C
Zd11

if and only if Csj,isj,i 11
51 for everyj

PZd and i PZ). Given any point (j,i )PZd11 we will call j its space componentand i its time
component.

The key observation is that now the setshe(Qs) form a Markov partition forSe . This implies
that the space of symbolic sequences forSe is the same as that forS0 and that the symbolic
dynamicsce for Se is given byce(s)5he(c0(s)). Clearly ce is still Hölder continuous. This
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completes the construction of the Markov partition forSe . We thus obtained that the manifoldT
can be mapped to$1,...,n%C

Zd11
whered directions of the latticeZd11 represent thed directions of

T5(T2)Zd
and the last represents the time evolution. Indeed the mapSe on the space$1,...,n%C

Zd11

becomes the shift on the time direction, to be calledt.

C. SRB measure

Let now consider the SRB measuremN
SRB as defined in Sec. I. In this case we need to keepN

finite because it is not easy to give a meaning or construct directly the SRB measure forN5`.
Let mN

SRB be the measure on$1,...,n%C
VN3Z defined asmN

SRB(A)5mN
SRB(ce

21(A)), i.e., mN
SRB is

the image ofmN
SRB via symbolic dynamicsce . The measuremN

SRB can be described efficiently
through its restrictions to finite subsets ofVN3Z.

Given L,VN3Z, mN
SRB(sLusLc) will denote the probability of the event$s8usL8 5sL%

conditional to the event$s8usLc8 5sLc% w.r.t. the probability measuremN
SRB, where Lc5(VN

3Z)\L andsL is the collection of thesj,i for (j,i )PL.
From the theory of SRB measures~see Refs. 22 and 10!, it follows that mN

SRB is a Gibbs
measure and its conditional probabilities satisfy

mN
SRB~sL8 usLc!

mN
SRB~sL9 usLc!

5 lim
K→`

FDe
u~2K !~ce~t2Ks8!!

De
u~2K !~ce~t2Ks9!!

G21

, ~2.3!

wheres8 ~resp.s9! is the configuration coinciding withsL8 ~resp.sL9 ) on L and withsLc on Lc;
t is the image ofSe throughce ~i.e., it is the one step shift in time direction!; De

u(n)(c) measures
the expansion of the volume on the unstable manifold at the pointc. To be more precise let
$we,1

(j) (c)%jPVN
be a basis onEe,c

1 . We will construct one such a basis in Sec. IV. Then we have

De
u~n!~c! 5

de fAdetjh@~DSe
nwe,1

~j! !•~DSe
nwe,1

~h! !#

detjh@we,1
~j!

•we,1
~h! #

~c!, ~2.4!

whereu•v represent the usual scalar product inRVN and detjh is the determinant of the expression
in square brackets thought as a matrix indexed byj andh.

Using the invariance ofEe
1 under Se and introducing theunstable Lyapunov matrixL~c!

satisfying the equation

DSe~c!we,1
~j! ~c!5(

h
we,1

~h! ~Se~c!!Lhj~c!,

we can rewrite the above expression as

De
u~2K !~Se

2K~c!!5
Adetjh~we,1

~j!
•we,1

~h! !~Se
K~c!!

Adetjh~we,1
~j!

•we,1
~h! !~Se

2K~c!!
)

j 52K

K21

udetjh@Ljh~Se
j c!#u. ~2.5!

Now the first ratio in Eq.~2.5!, when inserted in Eq.~2.4!, is vanishing; indeed the uniform Ho¨lder
continuity ofwe,1

(j) (he(c)) and the fact thats8 ands9 are asymptotically identical in the past and
in the future imply that

lim
K→6`

~ lnAdetjh~we,1
~j!

•we,1
~h! !!~ce~tKs8!!2~ lnAdetjh~we,1

~j!
•we,1

~h! !!~ce~tKs9!!50; ~2.6!
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thus the choice of the basis inE1 does not change the result, namely the SRB measure does not
depend on the choice of the metric as is to be expected from its definition. CallingLj(c)

5
de f

(ln L(he(c)))jj, we finally get

mN
SRB~sL8 usLc!

mN
SRB~sL9 usLc!

5expH 2 (
j 52`

1`

(
jPVN

@Lj~c0~t js8!!2Lj~c0~t js9!!#J . ~2.7!

Here we used the fact thatce5he+c0 . Furthermore, the Ho¨lder continuity ofLj(c0(s8)) implies
absolute convergence of the sum in Eq.~2.7! because only points asymptotically equal both in the
past and in the future are compared.

The crucial point of this construction is that the matrixL(c) 5
de f

L(he(c)) is analytic ine due
to the fact that it depends only onwe,1

(j) (he(c)). As we already notedwe,1
(j) (he(c)) are analytic in

e. We will prove this fact in Sec. IV.
In Sec. VI we will apply to Eq.~2.7! the standard methods developed in the study of Gibbs

measure in statistical mechanics. To do this we will need to decompose the ‘‘interaction’’

Lj(c0(s)) as the sum of potentials depending only onsX 5
de f

$s j% j PX whereX is a finite subset of
Zd11. More precisely, we will decompose

(
~j,i !PVN3Z

Lj~c0~t is!!5 (
X,VN3Z

fX~sX!. ~2.8!

~These two series are not convergent: they represent the formal expression for the ‘‘Hamiltonian’’
of a Gibbs measure. See Sec. V B for a more precise statement.! We shall show that we can choose
fX analytic ine, translationally invariant in space and time directions and decaying exponentially
in the tree distanceof the setX, namely the length of the shortest tree connecting all the lattice
points inX. In this way~2.7! can be written as

mN
SRB~sL8 usLc!

mN
SRB~sL9 usLc!

5expH 2 (
XùLÞ0

@fX~sX8 !2fX~sX9 !#J , ~2.9!

so that one can finally write

mN
SRB~sLusLc!5

expH 2 (
XùLÞ0”

fX~sX!J
(
sL

expH 2 (
XùL0”

fX~sX!J . ~2.10!

This will allow us to show our analyticity claim uniformly inN.

III. PERTURBATIVE CONSTRUCTION OF THE SRB MEASURE

In this section we construct the conjugationhe and prove that it is analytic ine. The technique
we use consists in expandinghe as a power series ine and writing a recursive relation linking the
nth order coefficient to the coefficients of orderi with i ,n. This naturally leads to a tree expan-
sion of the usual form in perturbation theory for quantum field theory, i.e., the trees we will
introduce are the ‘‘Feynmann graphs’’ of our theory. See also Ref. 10 and reference therein for
similar application to KAM theory.
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A. The conjugation

From now on we will identify functions fromTN to TN with their lifts as functions fromR2VN

to R2VN. Using the definition~2.1! and looking forhe of the formhe(c)5c1dhe(c), we find

dhe+S02S0+dhe5e f +~ Id1dhe!, ~3.1!

where Id is the identity map.

Settingl 5
de f

l25l1
21 and writing f (c) 5

de f

(j,a f ja(c)w0,a
(j) and similarly fordhe

j6
, we get

dhe
j1

~S0c!2l21dhe
j1

~c!5e f j1
~c1dhe~c!!,

~3.2!

dhe
j2

~S0c!2ldhe
j2

~c!5e f j2
~c1dhe~c!!.

Both equations can be implicitly solved by iteration:

dhe
ja

~c!52ae (
p>0

lp1ra f ja
~S0

a~p112ra!c1dhe~S0
a~p112ra!c!!, ~3.3!

wherera5(11a)/2.
It is easy to see that the series in Eq.~3.3! is absolutely convergent, sincel,1 and f is

bounded. Expandingf ja
(c1dhe(c)) in power of its argument we find

f x~c1dhe~c!!5 f x~c!1 (
k>1

ek(
s51

k

(
k1 ,...,ks

kj>1

k11•••1ks5k S f x,x1 ,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D ~c!, ~3.4!

where we have introduced the indexx5~j,a!, with a56, andf x,x1 ,...,xs5]x1
¯]xs

f x with ] (ja) the

partial derivative in the direction ofw0,a
(j) . Moreover, we use the convention of summing on twice

repeated indexes. The first order coefficient of the expansion of the conjugation is then

dh~1!
x ~c!5~2a! (

p>0
lp1ra f x~S0

a~p112ra!c!, ~3.5!

while thekth, k.1, coefficient turns out to be

dh~k!
x ~c!5(

s51

k

(
k1 ,...,ks

kj>1

k11¯1ks5k21

~2a! (
p>0

lp1raS f x,x1 ,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D ~S0
a~p112ra!c!.

~3.6!

FIG. 1. Graphical interpretation of~3.6!.
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From Eq.~3.5! we see thatdhe is in general nondifferentiable with respect toc. Indeed already

differentiatingdh(1)
j1

(c) with respect toc we find a nonconverging series. On the contrary, it is
clear that Eq.~3.5! is Hölder continuous inc for every exponentb,1.

We can interpret Eq.~3.6! graphically as shown in Fig. 1.
The l.h.s. of the graphical equation in Fig. 1 representsdh(k)

x (c) while the r.h.s., representing
the sum in Eq.~3.6!, is a ‘‘simple tree’’ consisting of a ‘‘root’’r, a ‘‘root branch’’ lv[(r ,v)
coming from the ‘‘node’’ ~or ‘‘vertex’’ ! v, and sv branches ‘‘enteringv,’’ to be called lv i

[(v,v i), i 51,...,sv .
Even if the drawing in the figure does not carry them explicitly, we imagine that some labels

are affixed to the nodev: more preciselyx(v)5(j(v),a(v))PVN3$6% and pvPZ1 . Further-
more, a labelxl5(jl ,al)PVN3$6% is associated to each branchl. In the figure abovexlv

[x andxlv i
[xi , i 51,...,s.

The nodev symbolizes the tensor with entries

Nv;x,x1 ,...,xs
5
de f

~2a~v !!lpv1ra~v !
f x,x1 ,...,xsv

sv!
~S0

p~v !c!, ~3.7!

wherep(v)5a(v)(pv112ra(v)). Observe that, in order for Eqs.~3.7! and~3.6! to be nonzero,
we must haveujlv i

2j(v)u<1, due to our definition of the couplingf.

The linelv exiting vertexv symbolizes thepropagator, that is simplydxlv
,x(v) .

The line with labelx exiting from the bullet of the l.h.s. with label~k! representsdh(k)
x (c); the

branches with labelsxi exiting from the bullets of the r.h.s. with label (ki) represent
dh(ki )

xi (S0
p(v)c).

Even if it is not explicitly written in the figure above, a summation over the free indicesx(v),
xlv i

has to be performed@note that the summation overx(v) simply fixesx(v)5x, because of the

presence of the propagatordx(v),x].
Since Eq.~3.6! is multilinear indhki

xi , we can just replace each of the branches exiting from a

bullet with the same graphical expression in the r.h.s. of the above figure, and so on, until the
labels (ki) on the bullets~top nodes! become equal to 1. In this case the end-points represent
dh(1) , that is a known expression, see Eq.~3.5!, and we will draw these known end-points as
small dots.

Thus we have represented ourdh(k)
x as a ‘‘sum over trees’’ withk branches andk nodes~we

shall not regard the root as a node! of suitabletree values. In Fig. 2 we draw a typical treeu we

FIG. 2. A treeu of order k510 appearing in the expansion fordhe . Labelsj(v i), a(v i) and pv i
are associated to all

verticesv i .
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get via such a procedure.
Note that a tree induces a partial ordering among its nodes: a nodew precedesv ~and it will

be writtenw,v) if there is a path of branches connectingw andv with the arrows pointing from
w to v.

Let us now summarize the discussion above. LetT̂k(x) be the set of rooted trees withk
branches andk nodes, with labelsx(v), pv attached to their vertices andx(v0)[x, wherev0 is the
last vertex preceding the root. GivenuPT̂k(x), let the value ofu be defined as

Val̂~u,c!5 )
vPu

~2a~v !!lpv1ra~v !
f x~v !,x~v1!,...,x~vsv

!

sv!
~S0

p~v !c!, ~3.8!

wherev1 ,...,vsv
are the nodes immediately precedingv and p(v)5(w>va(v)(pv112ra(v)).

With these definitionsdh(k)
x (c) can be calculated asdh(k)

x (c)5(uPT̂k(x)Val̂(u,c).

B. Convergence and regularity of the perturbative expansion of the conjugation

By definition g(c) depends only oncnn(0) so that it is analytic inD5
de f

$cj
i PCuuIm cj

i u<r0,i
51,2,jPnn(0)% for somer 0.0. CallingG the maximum ofg on D, from Cauchy’s formula we
get

u f x,x1 ,...,xs~c!u<G
m1!¯mD!

r 0
s

<G
s!

r 0
s

, ~3.9!

wherem1 ,...,mD are the multiplicities of the partial derivatives with respect to theD 5
de f

2(2d
11)52unn(0)u possible variables~thusm11¯1mD5s).

In the same way, ifc andc8 are identical on each site butj8Pnn(j) and if 0,b<1, we get

u f x,x1 ,...,xs~S0
pc!2 f x,x1 ,...,xs~S0

pc8!u<G
~s11!!

r 0
s11 ~2p2!~12b!/2l2bpucj82cj8

8 ub, ~3.10!

where we have used the periodicity off. Next we bound the value of a treeuPT̂k(x). Using Eq.
~3.9!, for uPT̂k(x), we find

iVal̂~u,• !i`< )
vPu

lpv
G

r 0
sv

5
Gk

r 0
k21 )

vPu
lpv, ~3.11!

where we used that, ifuPT̂k(x), (vPusv5k21.
The sum over the trees can be interpreted as a sum over the topological trees and a sum over

the labels attached to the trees. IfUk is the set of topological trees of orderk, we get

idh~k!
x i`< (

uPUk
(

x~v !,a~v !
vPu

Gk

r 0
k21 (

pv
vPu

)
vPu

lpv5 (
uPUk

(
j~v !,a~v !

vPu

Gk

r 0
k21 S 1

12l D k

< (
uPUk

2k~2d11!k
Gk

r 0
k21 S 1

12l D k

<22k2k~2d11!k
Gk

r 0
k21 S 1

12l D k

, ~3.12!

where we used that:

~1! 2k is the number of terms in the sum over thea(v) indices;

3290 J. Math. Phys., Vol. 45, No. 8, August 2004 Bonetto, Falco, and Giuliani

Downloaded 06 Dec 2004 to 130.207.165.29. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



~2! (2d11)k is a bound on the number of terms in the sum over the values of thej(v) indices not
making Val̂(u,c) vanish@observe that, given a treeu, its value Val̂~u,c! is vanishing unless
uj(v8)2j(v)u<1, wherev8 is the node immediately precedingv]; and

~3! 22k is a bound on the number of unlabeled rooted trees withk nodes.

In the same way we find that, ifc andc8 are identical on each site butj8 and if 0,b,1,

udh~k!
x ~c!2dh~k!

x ~c8!u

ucj82cj8
8 ub

< (
uPU

S 1

12l12bD k

~2p2!~12b!/2
Gk

r 0
k

2k~2d11!k(
vPu

~sv11!

<22kS 1

12l12bD k

~2p2!~12b!/2
Gk

r 0
k

2k~2d11!k~2k21!. ~3.13!

So the maphe : TN→TN exists; it is Hölder continuous w.r.t.c and analytic w.r.t.e in the complex
disc ueu<eb , with

eb5F 1

12l12b
23

G

r 0
~2d11!G21

. ~3.14!

In order to prove thathe(c) is anhomeomorphism, we have to show that it is invertible. The proof
is easy and standard. Regarding injectivity, note that twodistinct pointsc1 , c2 , are necessarily
far order one in the ‘‘future’’ or in the ‘‘past,’’ namely there exists an integernPZ such that
uS0

nc12S0
nc2u5O(1). Then Se

n(he(c1))2Se
n(he(c2))5S0

n(c12c2)1dhe(S0
nc1)2dhe(S0

nc2)
cannot vanish as the first term is order one, the other two of ordere; thus it cannot be but
he(c1)Þhe(c2). Regarding surjectivity, sincef is a continuous injective mapping on a torus,f is
necessarily surjective~the proof is trivial onT1 and it can be easily extended by induction toTN).

IV. THE UNSTABLE DIRECTION

In order to explicitly compute the SRB measure, we have to construct a basis for the unstable
subspaceEc

1 , and the expansion coefficientDe
(n) associated to it, as explained in Sec. II B above.

Note that we cannot usehe to find a basis forEc
1 because it is only Ho¨lder continuous.

To find the unstable base$we,1
(j) (c)%jPV and theLyapunov matrixL~c! we have to solve the

following equation:

~DSewe,1
~h! !~c!5we,1

~j! ~Se~c!!Ljh~c!. ~4.1!

In general this equation cannot have solutions analytic ine. In fact, from the general theory we
know that the unstable vectors$we,1

(j) (c)%jPV are not differentiable with respect toc. But, as we
previously pointed out, to compute the SRB measure we need only to know the expansion coef-

ficient at the pointhe(c), i.e., De
(n)(he(c)). Let us definewe,1

(j) (he(c)) 5
de f

ve
(j)(c) for jPV and

note thatve
(j)(c) satisfies the equation

~DSe!~he~c!!ve
~h!~c!5ve

~j!~S0c!Ljh~c!, L~c!5L~he~c!!. ~4.2!

We will show that this equation admits a solution analytic ine. Moreover, the determinant ofL(c)
is all what we need to compute the SRB measure.

At this point, it is convenient to write Eq.~4.2! in components. Denoting byy the double

index hb ~again x5
de f

ja), defining ve
(j)(c) 5

de f

(hVe,y
(j)(c)w0,b

(h) and (DSew0,b
(h))(c)

5
de f

(xSe
x,y(c)w0,a

(j) , we get
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Se
x,y~he~c!!Ve,y

~r!~c!5Ve,x
~z!~S0c!Lzr~c!. ~4.3!

Now, defining the correctionsdL anddV as follows,

Ljh~c! 5
de f

l21djh1dLjh~c!, Ve,x
~j!~c! 5

de f

V0,x
~j!1dVx

~j!~c! with V0,h1
~j!

5dj,h , V0,h2
~j!

50,
~4.4!

we find that~4.3! is equivalent to

dLjr~c!5l21@dVj1
~r!

~c!2dVj1
~r!

~S0c!#1e f j1,r1
~he~c!!1e f j1,y~he~c!!dVy

~r!~c!

2dVj1
~z!

~S0c!dLzr~c!,

~4.5!

ldVj2
~r!

~c!2l21dVj2
~r!

~S0c!52e f j2,r1
~he~c!!2e f j2,y~he~c!!dVy

~r!~c!

1dVj2
~z!

~S0c!dLzr~c!.

Of course the above equations cannot determine completely the basis and its associated matrix:
indeed, given a solution$Vy

(r)(c)%, $Lzr(c)% of Eq. ~4.2! and a generic invertible Ho¨lder con-
tinuous matrixRgr(c), also$Vy

(g)(c)Rgr(c)%, $R21,zd(S0c)Ldg(c)Rgr(c)% solve~4.2!. Thus it
is possible to add a constraint todVy

(r)(c): a possible choice, which greatly simplifies the expres-
sions above, consists in takingdVr1

(j)(c)50, so that~4.5! becomes

dLjr~c!5e f j1,r1
~he~c!!1e f j1,h2

~he~c!!dVh2
~r!

~c!,

~4.6!

ldVj2
~r!

~c!2l21dVj2
~r!

~S0c!52e f j2,r1
~he~c!!2e f j2,h2

~he~c!!dVh2
~r!

~c!

1dVj2
~z!

~S0c!dLzr~c!.

An implicit solution of ~4.6! ~to be inverted iteratively by a new tree expansion, see below! is

dLjr~c!5e f j1,r1
~he~c!!1e f j1,h2

~he~c!!dVh2
~r!

~c!,

~4.7!

dVj2
~r!

~c!5(
j >0

l2 j 11@e f j2,r1
~he~S0

2 jc!!1e f j2,h2
~he~S0

2 jc!!dVh2
~r!

~S0
2 jc!

2dVj2
~z!

~S0
2 j 11c!dLzr~S0

2 jc!#.

As for the construction of the conjugation, we can expand in power series ofe both sides of Eq.
~4.7! and equate the coefficients of the same order, thus finding an iterative solution ofdL (k) and
dV(k) . The first order coefficients are given by

dL ~1!
jr ~c!5 f j1,r1

~c!,

~4.8!

dVj2~1!
~r!

~c!5(
j >0

l2 j 11f j2,r1
~S0

2 jc!,

while, for k11>2,
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dL ~k11!
jr ~c!5 (

s>1,ki>1

k11¯1ks5k S f j1,r1x1 ,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D ~c!

1 (
s>1,ki>1

k11¯1ks5k S f j1,h2x2 ,...,xs

~s21!!
dVh2~k1!

~r! dh
~k2!

x2
¯dh

~ks!

xs D ~c! ~4.9!

and

dVj2~k11!
~r!

~c!5 (
s>1,ki>1

k11¯1ks5k

(
j >0

l2 j 11S f j2,r1x1,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D ~S0
2 jc!

1 (
s>1, ki>1

k11¯1ks5k

(
j >0

l2 j 11S f j2,h2x2,...,xs

~s21!!
dVh2~k1!

~r! dh
~k2!

x2
¯dh

~ks!

xs D ~S0
2 jc!

2 (
s>1,ki>1

k11¯1ks5k

(
j >0

l2 j 11S f z1,r1x2 ,...,xs

~s21!!
~dVj2~k1!

~z!
+S0!dh

~k2!

x2
¯dh

~ks!

xs D ~S0
2 jc!

2 (
s>2,ki>1

k11¯1ks5k

(
j >0

l2 j 11S f z1,h2x3 ,...,xs

~s22!!
~dVj2~k1!

~z!
+S0!dVh2~k2!

~r! dh
~k3!

x3
¯dh

~ks!

xs D
3~S0

2 jc!. ~4.10!

These two relations, together with~3.6!, allow a recursive construction ofdL anddV. Obviously,
repeating the discussion of Sec. III A, one finds thatdL anddV can be expressed as sums over
trees, obtained by suitably modifying the construction of previous section. It can be easily realized
that the estimates for the tree values are qualitatively the same as before@see Eqs.~3.11!–~3.13!#.
We point out the differences appearing in the tree expansion fordV:

~1! The nodes can be of four different types@corresponding to the four lines in Eq.~4.10!#, so that
the number of possible labels for a tree of orderk is larger than a factor 4k.

~2! The numberDv of derivatives acting on a node function can be eithersv or sv11 @see Eqs.
~4.9! and~4.10!#, so thatDv! differs from the combinatorial factorsv! by at mostsv11. Then
the final estimate contains a factor that can be bounded by (1/r 0)Pv(sv11)<ek/r 0 .

A similar discussion can be made for the tree expansion ofdL.
The result is thatL andV are analytic ine and Hölder continuous inc with exponent 0,b,1

in a discueu<eb8 , with eb8 smaller than the convergence radiuseb of he @see Eq.~3.14!#. Note that
also in this caseeb8 is independent ofN.

As already explained~see Sec. II B and in particular Eq.~2.7!#, in order to compute the SRB

measure we needLj5(logL)jj5
def

2logl1dLj, where

dLj~c!5@ log~ I 1ldL !#jj5(
s>1

~21!s11

s
lsdLjh1~c!¯dLhs21j~c! ~4.11!

~no summation onj is intended!. Expanding Eq.~4.11! in series ofe, we get

dL~k!
j ~c!5 (

s>1,ki>1

k11•••1ks5k
~21!s11

s
lsdL

~k1!

jh1~c!¯dL
~ks!

hs21j
~c!. ~4.12!
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Again, the last equation, together with~4.10! and ~3.6!, allows a recursive construction of the
coefficientsdL (k)

j and the result is thatLj is a sum over~suitably modified! trees. The bounds are
still qualitatively the same, so thatLj is analytic w.r.t.e in a suitably small complex disc~inde-
pendent ofN! and Hölder continuous w.r.t.c.

V. SRB POTENTIALS

The next step towards the construction of the SRB measure and the proof of its analyticity
consists in the expansion ofLj in potentialsfX . From the analysis of previous sections it follows
that Lj, as well ashe

x , Vj2
(r) andLjh, can be expanded in convergent sums over tree values. We

will discuss here how to expandh in potentials, since the analogous expansion forV, L andL is
conceptually similar, just more involved due to the more complex structure of the trees.

We will proceed as follows. We first write the values of the trees in terms of the symbolic
variabless. We then decompose each of these values as a sum of terms only depending on thes’s
on finite but arbitrary large sets. Finally, we define the associated potentials by collecting together
the contributions which depend on the sames’s. Our goal is to obtain potentials defined over sets
with rather arbitrary shape but decaying exponentially with thetree distance@see after Eq.~2.8!
for a precise definition# of their support.

To begin with we expand the derivatives of the perturbation functionf via a telescopic sum.
Given the digits s and s8P$1,...,n% we can always find a sequence of digitsS(s,s8)
5s1s2¯sa21 such that the sequencesS(s,s8)s8 is compatible, i.e., such thatCsi ,si 11

51 for i

50,...,a21, wheres05s andsa5s8. Choosing a sequenceŝP$1,...,n%C
Z once and for all, given

sP$1,...,n%C
Z we can define its restriction to timej, s j as follows: sj,t

j 5sj,t if utu< j , sj,t
j

5ŝj,t if utu. j 1a and the gap is filled with the sequence constructed above fors5sj,6 j and
s85ŝj,6( j 1a) . We can now define

f x,x1,...,xs~c0~s!!5 f x,x1,...,xs~c0~s0!!1(
j >1

@ f x,x1,...,xs~c0~s j !!2 f x,x1,...,xs~c0~s j 21!!#

5
de f

(
j >0

f
~ j !
x,x1,...,xs~snn~ j !~j!!, ~5.1!

wherej is the spatial coordinate associated tox andnn( j )(j)5nn(j)3I j , I j5@2 j , j #ùZ. Since
uc0(s j )2c0(s j 21)u<cl j for somec.0, f ( j )

x,x1,...,xs is bounded by

i f
~ j !
x,x1 ,...,xsi`<G

~s11!!

r 0
s11

cl j . ~5.2!

A. Decay of the potentials for the conjugation

Inserting expansion~5.1! in the definition of the value of a tree Eq.~3.8!, we find

Val̂~u,c0~s!!5 )
vPu

(
j v>0

~2a~v !!lpv1ra~v !

f
~ j v!

x~v !,x~v1!,...,x~vsv
!

sv!
~tp~v !snn~ j v!~j~v !!!, ~5.3!

where we recall thatra(v)5(11a(v))/2, p(v)5(w>va(v)(pv112ra(v)) and nn( j )(j)
5nn(j)3I j , I j5@2 j , j #ùZ. The above expression can be seen as a sum over the values of a
new kind of trees, identical to the ones described in Sec. III A, but with a new labelj vPN attached
to each node. LetTk(x) be the set of these new trees of orderk contributing todh(k)

x , i.e., u
PTk(x) is a tree withk branches andk nodes~the root is not a node! with the following labels
attached to the nodesvPu: j(v)PV, pvPN, j vPN anda(v)P$21,11%.

Given uPTk(x), its value is given by
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Val u~s!5 )
vPu

~2a~v !!lpv1ra~v !

f
~ j v!

x~v !,x~v1!,...,x~vsv
!

sv!
~tp~v !snn~ j v!~j~v !!!, ~5.4!

so that we have

dh~k!
x ~c0~s!!5 (

uPTk~x!
Val u~s! with iVal ui`<S ceG

lr 0
2 D k

)
vPu

l j v1pv11, ~5.5!

where we have used Eq.~5.2!. We can now define the supportX(u),V3Z of a treeuPTk(x), as
the support of the spin variables on which Valu depends in a nontrivial way, plus acenter~j,0!.
More precisely,

X~u! 5
de f

$~j,0!%ø ø
vP0

C~j~v !,p~v !, j v!,

where

C~j~v !,p~v !, j v! 5
de f

ø
hPnn~j~v !!

ø
u i u< j v

~h,p~v !1 i !. ~5.6!

namelyC(j,p, j ) is a cylinder centered in (j,p), with the spatial base equal to the set of nearest
neighbors ofj and with height equal to 2j . ThenX(u) is the union of~j,0! and of cylinders of this
kind, one for each nodev of the tree. The point~j,0! has the role of center ofX(u) and is added
to X(u) for later convenience@note in fact that Valu~s! could not depend ons (j,0)].

Given a setX,Zd11 we can partition it in a natural way as a union of timelike segments.
More precisely, givenjPZd, let Tj5$(j,i )PZd11u i PZ%. The intersection betweenTj andX can
be uniquely partitioned as a union ofnj maximal connected segments. The collection of all these
segments forms a partition ofX in nX timelike segments$Ri(X)% i 51,...,nX

. Let nowr i be the center
of Ri(X). If Y is a subset ofZd11, we call tree distance ofY, dt(Y), the length of the minimal tree
connection of all the points ofY. Finally, let dc(X) be the tree distance of the set$r i% i 51,...,nX

.
From the previous bound on the value of a treeuPTk(x), Eq. ~5.5! can be interpreted as the

tree distance decay of the contribution of orderk to dh. Indeed,

ueukiVal ui`<S ceGueu1/2

lr 0
2 D kFldc~X~u!!ueunX~u!/2 )

i 51

nX~u!

l uRi ~X~u!!uG1/~2d11!

, ~5.7!

where we have the following.

~1! The factor ldc(X(u)) comes fromPvPul11pv; in fact pv is the displacement in the time
direction of the cylinder associated to the nodev w.r.t. the one associated to the nodev8
immediately followingv, and 1 is their maximum displacement in spatial direction, so that
(v(11pv)>dc(X(u)).

~2! We used thatnX<(2d11)k in order to boundueuk/2 with ueunX/2(2d11).
~3! The factorP i 51

nX(u)l uRi (X(u))u comes fromPvPul j v.
~4! The global power 1/(2d11) in ~5.7! comes from the size of the base of each cylinder, namely

we used the fact that the numbernX of segments is less than 2d11 times the number of
cylinders inX(u).

Collecting together all the treesu which have supportX(u)5X for a givenX, we get
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dhe
x~c0~s!!5 (

X{~j,0!
dhX

x ~sX! with dhX
x ~sX! 5

de f

(
k>1

ek (
uPTk~x!

X~u![X

Val u~s!. ~5.8!

So, using the bound~5.7! for ueu small enough,g051/2(2d11), k0522g0 logl, n05ueug0 and
a suitablec.0, we get

idhX
x i`<ce2k0dc~X!n0

nX)
i 51

nX

e2k0uRi ~X!u, ~5.9!

namelydhX
x decays exponentially with the tree distance ofX.

B. SRB potentials and their decay

Proceeding as above for the functionLj(c0(s)) we obtain that we can write it as

Lj~c0~s!! 5
de f

(
X,~VN3Z!

fX
~j,0!~sX!,

where by constructionfX
(j,0) is different from 0 only if (j,0)PX. The functionfX

(j,0) is again
given by a tree expansion analogous to that in Eq.~5.8!. Moreover, we will set

fX
~j, j !~sX! 5

de f

ft2 jX
~j,0!

~sX!.

We can define

fX~sX! 5
de f

(
~j, j !PX

fX
~j, j !~sX!,

so that we formally obtain Eq.~2.8!, namely, givenI T5@2T/2,T/2#ùZ ~T even! and callingL
5VN3I T ,

(
~j,i !PL

Lj~c0~t is!!2 (
XùLÞ0”

fX~sX!5O~]L!,

where]L is the boundary ofL and the correction can be exactly computed from the definitions
above.

Note the potentialfX(sX) is invariant under time and space translations~respectively for the
definition of fX

(j,i ) and for the periodic boundary conditions!, namely,

fX~sX!5frjt jX~sX! for any ~j, j !PVN3Z. ~5.10!

Moreover, it can be bounded by

ifXi`<ce2k1dc~X!n1
nX)

i 51

nX

e2k1uRi ~X!u, ~5.11!

for suitablec, g1 , k1.0 andn15ueug1.

VI. ANALYTICITY OF SRB MEASURE

In the previous sections, we wrote the SRB measure as a Gibbs measure with translationally
invariant potentialsfX , decaying as in~5.11!, and with hard core interaction in time direction.
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Moreover, the potentialfX is analytic ine in a small disc inC around the origin~independent of
N!. A well known technique to show analyticity of the Gibbs measure w.r.t.e is the so called
cluster expansion.

If L5VN3I T , with I T 5
de f

@2T/2,T/2#ùZ for some evenTPN, we call La5VN3I T12a .

Given aboundary conditions̄P$1,...,n%C
Zd11

, we define thepressure PL as

PL 5
de f

uLu21 log(
s

e2(XùLÞ0”fX~sX!, ~6.1!

where the sum is over all thes that coincide with sL on L, to s̄ on La
c and with

S(sj,T/2 ,s̄j,T/21a) in the space remaining. It is well known that the pressurePL can be consid-
ered as the generating functional for the Gibbs states. From its analyticity our main theorem will
follow easily, as we will see in Sec. VI D.

A. Decimation

In the presence of hard cores we cannot proceed in the standard way~Mayer’s expansion!,
since the standard proof~see Ref. 13! requires weakness of the original interactions. We can
overcome this obstacle by adecimation~see Ref. 7!, namely considering the statistical system on
scales larger than the length of decorrelation of the hard core.

1. Decimated lattice LD

For eachjPVN , we divide the time intervalI T
j 5

de f

$j%3I T into an alternating sequence of
blocks, called ‘‘B-type’’ and ‘‘H-type,’’ Bj

(0) , Hj
(0) , Bj

(1) , Hj
(1) ,...,Bj

(,21) , Hj
(,21) , Bj

(,) , con-
taining a number of spins respectively equal tob51 andh5h0a21, with h0PN to be chosen
later. For this reason we choose the number of points inI T

j to be uI T
j u5,h0a11, namelyT

5,h0a.
Remark:The choiceb51 is special for the present case, in which the unperturbed potential is

vanishing. In general one could treat with the same technique the case in which the unperturbed
potential is order one, with a sufficiently fast decay of the tails, and in that caseb should be chosen
suitably large~see Ref. 7!. Such a case arises, for instance, when the unperturbed system is the
product of nonlinear Anosov maps onT2, namely in the case treated in Appendix A. The present
discussion could be easily adapted to cover that case.

Let bj
( i ) 5

de f

s (j,2T/21 ih0a) , jPVN , i 50,...,,, be the spin in the blockBj
( i ) and hj

( i )

5
de f

$s (j,p)%(j,p)PH
j
( i ), jPVN , i 50,...,,21, be the collection of spins belonging to the blockHj

( i ) ;

it will be regarded as a sequence ofh b spins:hj
( i )5(b1(hj

( i )),...,bh(hj
( i ))). The lattice obtained

considering theH andB blocks as points:

LD 5
de f

$Bj
~p! ,Hj

~q!%jPVN ,p50,...,,
q50,...,,21 ~6.2!

will be called thedecimated lattice; on LD the distances will be computed by thinking of it as
having its sites spaced by 1 also in the time direction.

If X,L, Y(X) will denote the corresponding subset inLD , namely the smaller subset
Y,LD such that the union of theB- and H-blocks in Y contains the setX. Defining

FY(bY ,hY) 5
de f

(X:Y(X)5YfX(sx) Eq. ~6.1! can be rewritten as
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PL5
1

uLu
log(

bL
(
hL

e2(Y,LD
FY~bY ,hY! )

jPV
)
i 50

,21

Z~bj
~ i ! ,hj

~ i ! ,bj
~ i 11!!,

where

Z~b,h,b8!5Cbb1~h!Cb1~h!b2~h!¯Cbh21~h!bh~h!Cbh~h!b8 . ~6.3!

Observe that, from Eq.~5.11!, if Y does not coincide with a singleH-block, FY satisfies a
qualitatively equivalent bound:

iFYi`<ce2k̃dc~Y!ñnY)
i 51

nY

e2k̃uRi ~Y!u, YÞHj
~ i ! , ~6.4!

for somec, k̃, g̃.0 andñ5ueu g̃. Whereas ifY5Hj
( i ) for somejPV and somei 50,...,,21, we

haveiFYi`<hñ.

2. Averaging over many degrees of freedom: The Perron –Frobenius theorem

Decimation is arenormalization grouptechnique, consisting in summing first on theH-type
spins, thus getting an effective statistical system for theB-blocks: the idea is that if theB-blocks
are sufficiently far apart, after the averaging of theh’s, theb’s should bealmost independent, as
if there were only small interactions among them. The technical tool we shall use to prove
rigorously that the effective interactions between theb’s are small is the Perron–Frobenius theo-
rem.

Let Z(b,b8) be defined, with a little abuse of notation, as

Z~b,b8! 5
de f

(
h

Z~b,h,b8!5C
bb8

ah0 . ~6.5!

Observe that 1<Css8
a <qa. Since Ca has strictly positive entries, we can apply the Perron–

Frobenius theorem and obtain thatCa and its transposeCa,T admit a nondegenerate eigenvalue
l .0 with eigenvectorsp and p* , respectively, such thatps , ps* .0 for any s51,...,q, and
(sps* ps51. The eigenvaluel is maximal in the spectrum ofCa; namely, if we defineP as the
projection matrixPss85dss82psps8

* , we have

i~ l 21Ca!kPvi`<cae2akivi` , ~6.6!

for any vPRq and with

a 5
de f

2 log~12@min~Css9
a /Css8

a
!#2!>q22a. ~6.7!

As a consequence,

Z~b,b8!5C
bb8

ah0 5(
s

Cbs
ah0~pspb8

* 1Psb8!5 l h0pbpb8
* F11

~ l 2h0Cah0P!bb8

pbpb8
* G

5
de f

l h0pbpb8
* e2I ~b,b8!, ~6.8!

with I (b,b8)5O(e2h0q22a
). It is now clear that takingh0 big enough we can make the two body

potentialI (b,b8) as small as needed.
Using Eq.~6.8!, introducing a new effective potentialW including the contributions fromF

and I, defining
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)
i 50

,

e2U~ i !~bj
~ i !

! 5
de f

)
i 50

,21

pb
j
~ i !pb

j
~ i 11!* ~6.9!

and using limL→`uLu21 logPj,i(b
j
(i)e2U(i)(bj

(i))50 ~as it follows from the normalization condition

(sps* ps51), we can rewritePL as

PL5
1

a
log l 1

1

uLu
log(

bL
(
hL

m~bL ,hL! )
Y,L̄

e2WY~bY ,hY!

with

m~bL ,hL! 5
de f

)
jPV

)
i 50

,
e2U~ i !~bj

~ i !
!

(bj
e2U~ i !~bj! )i 50

,21 Z~bj
~ i ! ,hj

~ i ! ,bj
~ i 11!!

Z~bj
~ i ! ,bj

~ i 11!!
, ~6.10!

wherem(bL ,hL) is a probability density. Observe that, if one choosesh0.2 log ñ @so that both
hñ and I (b,b8) are small#, the new interactionW satisfies a bound similar to the one ofF:

iWYi`<ce2k̄dc~Y!n̄nY)
i 51

nY

e2k̄uRi ~Y!u, ;Y,LD , ~6.11!

for somec, k̄, ḡ.0, n̄5ueu ḡ.

B. Mayer’s expansion and polymer lattice gas

We shall now expand the small potential appearing in the expression forPL , via a Mayer’s
expansion, obtaining the pressure fore50 plus a correction.

It will be convenient to collect together the contributions of the potentials whose supports
have the sameclosure, in the following sense: for a set formed by a unique pointHj

( i )PLD we

define itsclosureas (Hj
( i )) 5

de f

(Bj
( i ) ,Hj

( i ) ,Bj
( i 11)) while for a set formed by a unique pointBj

( i )

PLD we define(Bj
( i )) 5

de f

(Bj
( i )); finally for Y,LD we define its closure asȲ5

de f

øGPY(G).
We say that a collectionC5$Ym%m51

n of setsYi,Zd11 ~think of them asmolecules! is con-
nectedif, given a couple (Yin ,Yfin)PC3C, it is possible to find$Ymj

% j 51
p , such thatȲinùȲm1

Þ0”, Ȳmi
ùȲmi 11

Þ0” and Ȳmp
ùȲfinÞ0”.

Writing e2WY(bY ,hY) as the value fore50 plus the correction, namely 11(e2WY(bY ,hY)

21), expanding the product overY,LD and collecting together the connected components, we
can rewrite Eq.~6.10! as

PL2
1

a
log l 5

1

uLu
log(

bL
(
hL

m~bL ,hL! (
G,LD

Y~G! )
gPG

r~gubg ,hg!, ~6.12!

where

~1! g is a subset ofLD , to be called in the followingpolymer~they are, indeed, the union of a
connected collection of molecules!;

~2! G is a collection of polymers:G5(g1 ,...,gn), n>1 andG,LD means thatg,LD , ;gPG;
~3! Y~G! is the function equal to 1 ifgùg850” for everyg, g8PX with gÞg8 and 0 otherwise;
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~4! r(gubg ,hg), g,LD is defined as

r~gubg ,hg!5
def

(
q>1

1

q! (
Y1,...,Yq

øiȲi5g

*
)
i51

q

~e2WYi
~bYi

,hYi
!21!, ~6.13!

where the* on the sum means thatY1 ...,Yq is a connected collection of subsets ofLD ;
~5! the term corresponding toG50” must be interpreted as equal to 1.

The key observation is that, thanks to the above definition of closure, in~6.12! we can sum
overh spins before summing over theb spins. After doing this the measurem(bL ,hL) factorizes,
i.e.,

PL2
1

a
log l 5

1

uLu
log (

G,LD

Y~G! )
gPG

F(
bg

(
hg

m~bg ,hg!r~gubg ,hg!G
5
de f 1

uLu
log (

G,LD

Y~G! )
gPG

r~g!. ~6.14!

Namely, we have rewrittenPL as the pressure fore50 plus a correction having the form of the
pressure of a ‘‘polymer lattice gas,’’ with activitiesr~g! and hard core potentialsY~G!.

C. Cluster expansion and its convergence

A standard argument, exposed for instance in Ref. 13, 20, or 10, leads to

PL2
1

a
log l 5

1

uLu
log (

G,LD

Y~G!r~G!5
1

uLu (
G,LD

YT~G!r~G!, ~6.15!

whereYT is the Mayer function, defined as

YT~g1 ,...,gn! 5
de fH (

gPG~n!
)

~ i , j !Pg
f ~g i ,g j ! if n.1,

1 if n51,

~6.16!

whereG(n) is the set of connected graphs which can be drawn onn vertices labeled 1,...,n by
connecting with links couples of distinct vertices; the functionf (g i ,g j ) is equal to 1 ifg iùg j

Þ0” and 0 otherwise. By construction,YT(G) is different from zero only ifG is a connected
collection of polymers. Observe thatG could contain many copies of the sameg. More precisely,
hereG represents a function from the subsets ofLD to N @and we can thinkG~g! as representing
the number of copies ofg# such that(g,LD

G(g)<`.
A bound forr~g! can be obtained as follows:

ur~g!u<ir~gu•,• !i`< (
p>1

1

p! (
Yi ,ø i Ȳi5g

*
)
i 51

p

iWYi
i`eiWYi

i`. ~6.17!

Using the bound~6.11! ~and that, ifø i 51
p Ȳi5g, one has( i 51

p iWYi
i<cn̄ugu), we find

ur~g!u<ecn̄ugu (
p>1

1

p! (
Yi ,ø i Ȳi5g

*
)
i 51

p

ce2k̄dc~Yi !n̄nYi)
j 51

nYi

e2k̄uRj ~Yi !u. ~6.18!
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We can now use the connectedness constraint on the sum in order to extract a factor exponentially
small in the size ofg. Indeed, if ø i 51

p Ȳi5g, one has both( i 51
p dc(Yi)>dc(Yi) and ( i 51

p nYi

>ng . After extracting such a factor we can relax the constraints on the sum, so that

ur~g!u<cecn̄uguFe2~ k̄/2!dc~g!n̄ng/2)
i 51

ng

e2~ k̄/2!uRi ~g!uG
3 (

p>1

1

p! S (
Ȳ,g

e2~ k̄/2!dc~Y!n̄nY/2)
j 51

nY

e2~ k̄/2!uR~Y!u D p

. ~6.19!

It is easy to see that the last sum is bounded bycugun̄1/4, so that

ur~g!u<cecn̄uguFe2~ k̄/2!dc~g!n̄ng/2)
i 51

ng

e2~ k̄/2!uRi ~g!uG (
p>1

1

p!
~cugun̄1/4!p

<ce2k8dc~g!~n8!ng)
i 51

ng

e2k8uRi ~g!u, ~6.20!

for somec, k8, g8.0 andn85ueug8. Using the preceding bound we can easily prove that

sup
xPZd11

(
d~g!>r

g{x

ur~g!u<c~n8!1/2e2~k8/2!r , ~6.21!

whered~g! is the diameter of the polymerg. A standard theorem, proved for instance in Refs. 13
and 10, states that, ifr~g! satisfies~6.21!, then

sup
xPLD

(
d~G!>r

G{x

YT~G!ur~G!u<c~n8!1/4e2~k8/4!r . ~6.22!

This implies that, varyingL, PL is a uniformly convergent sequence of analytic functions in a
domain independent fromL. The limit, still analytic in the same domain~thanks to Vitali’s
convergence theorem!, is independent of the way the thermodynamic limit is performed~i.e., one
can send the time side ofL to ` either before the spatial side is sent to` or together with it!,
thanks to the exponentially fast convergence of the sequence, implied by~6.22!. For the same
reason, the limit is also independent of the choice of boundary conditions and, because of trans-
lational invariance, it is equal to

P5
de f

lim
uLu→`

PL5
1

a
log l 1

2

h0a (
G,Zd11

G{~0,0!
YT~G!r~G!

uGu
, ~6.23!

whereuGu 5
de f

uøgPGgu and 2/(h0a)5 limuLu→`uLDu/uLu.

D. Analyticity of the mean values

The analyticity for the mean value of an analytic local observableO(cV) ~depending on the
variables in the finite setV,Zd) is an easy corollary of the previous result.

We first observe thatmSRB(O)5 limN,T→`(1/uVNuuI Tu)( (j,i )P(VN3I T)m
SRB(O+rj+Se

i ). This is
true thanks to the time and space translation invariance ofmSRB. Moreover, it is possible to
decomposeO as
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O~he~c0~s!!V!5 (
Xù~V3$0%!50”

OX
~0,0!~sX!.

This can be done expandingO(he) in power ofc, using the representation ofhe given in Secs. III
and V and collecting the terms with the same support. Moreover, we will set

OX
~j, j !~sX! 5

de f

Or2jt2 jX
~0,0!

~sX!

and

OX~sX! 5
de f

(
~j, j !

rjV3$ j %ùXÞ0”

OX
~j, j !~sX!.

It is easy to realize thatOX is invariant under space and time translations, and satisfies

iOXi`<cVnnXe2kdc~X!)
i 51

nX

e2kuRi ~X!u, ~6.24!

for somek, g.0, n5ueug and some constantcV.0 which depends on the size ofV. SettingL
5VN3I T , the thermodynamic limit of the mean value ofO(cV) can be written as

mSRB~O!5 lim
L→`

1

uLu
]z log

(sL
e2(XùLÞ0” @fX~sX!2zOX~sX!#

(sL
e2(XùLÞ0”fX~sX! U

z50

5
de f

]zPO~z!. ~6.25!

Via a new cluster expansion we find

mSRB~O!5 lim
L→`

1

uLu
]z (

GùLDÞ0”
YT~G!~rz~G!2r~G!!uz50 , ~6.26!

whererz(g) are the activities corresponding to the potentialfX2zOX . For uzu small enough, the
potentialfX2zOX satisfies the same bounds offX so that(GùLDÞ0”Y

T(G)(rz(G)2r(G)) is a
uniformly convergent sequence of functions, analytic ine andz in the product of two small discs.
This implies thatmSRB(O) is analytic ine and given by

mSRB~O!5
2

h0a (
G,Zd11

G{~0,0!
YT~G!

uGu
]z~rz~G!2r~G!!uz50 . ~6.27!
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APPENDIX A: UNPERTURBED NONLINEAR DYNAMICS

The result about analyticity can be extended to the case in which the unperturbed dynamic is
made up of independentnonlinearanalytic Anosov systemss0 : T2→T2. We suppose that there
exist v6(c) andl6(c) such that

~Ds0v1!~f!5l1~f!v1~s0~f!!, ~Ds0v2!~f!5l2~f!v2~s0~f!!, ~A1!
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with fPT2, v6(f) andl6(f) are Hölder continuous andul1(f)u21, ul2(f)u<l,1. Then we
consider again a perturbationf (c) on TN analytic in c. Observe, however, that in this case the

most naive example of perturbation,f (c) 5
de f

f 1(c)v1(c), with f 1(c) analytic, isno longeran
analytic perturbation.

1. Conjugation

The constitutive equation fordhe , lifted on R2VN, is

S0~he~c!!1e f ~he~c!!5S0~c!1dhe~S0~c!!. ~A2!

In order to exploit the hyperbolicity, it is convenient to arrange the terms as follows:

~DS0dhe!~c!2dhe~S0~c!!52e f ~c1dhe~c!!2@S0~he~c!!2S0~c!2~DS0dhe!~c!#.
~A3!

Define

f ,x1,...,xs~c! 5
de f ]s

]z1 ,...,]zs
f ~c1z1w0,a1

~j1!
~c!1¯1zsw0,as

~js!
~c!!uz15¯5zs50 ,

whereas

f x1,...,xs~c! 5
de f

(
x

f x,x1,...,xs~c!w0,a
~j! ~S0~c!! and S0

x1,...,xs~c! 5
de f

(
x

S0
x,x1,...,xs~c!w0,a

~j! ~S0~c!!.

Writing dhe(c) 5
de f

(xdhe
x(c)w0,a

(j) (c), and (DS0w0,a
(j) )(c) 5

de f

(yS0
y,x(c)w0,b

(h)(S0(c)), with S0
y,x(c)

5la(cj)dx,y , we get

ladhe
x~c!2dhe

x~S0~c!!52e(
s>0

S f x,x1,...,xs

s!
dhe

x1
¯dhe

xsD ~c!2(
s>2

S S0
x,x1,...,xs

s!
dhe

x1
¯dhe

xsD ~c!.

~A4!

Finally, the recursive equation for the Taylor coefficients ofdhe
j1

(c) is

dh~k11!
j1

~c!52 (
p>0

S )
m50

p

l1
21~s0

m~cj!!D (
s>0

(
k11¯1ks5k

ki>1

S f j1,x1,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D ~S0
p~c!!

1 (
p>0

S )
m50

p

l1
21~s0

m~cj!!D (
s>2

(
k11¯1ks5k11

ki>1

S S0
j1,x1,...,xs

s!
dh

~k1!

x1
¯dh

~ks!

xs D
3~S0

p~c!!. ~A5!

A similar equation holds forx5j2.
From now on, the construction of the conjugation function goes on as in the linear case with

similar considerations. We have only to take in account the fact that a tree of orderk ~w.r.t. e! does
not necessarily havek branches, because of the term on the last line of~1.5! ~to be called a vertex
of type 0!. Since the number of lines entering a vertex of type 0 is>2, one can easily prove that
the numberbk of branches of a tree of orderk is bounded byk<bk<2k21, so that nothing
qualitatively changes in the bounds and the proof of analyticity ofdhe proceed as in Secs. III and
VI.
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2. Unstable direction

The perturbed unstable direction in the pointhe(c) is given by the equation

~DSewe,1
~j! !~he~c!!5we,1

~h! ~he~S0~c!!!Lhj~c!. ~A6!

Setting we,1
(j) (he(c)) 5

de f

ve
(j)(c), it is convenient to rearrange the terms of the equation in the

following way:

~DS0ve
~j!!~c!2l1~cj!ve

~j!~S0~c!!5dLhj~c!ve
~h!~S0~c!!2e~D f !~he~c!!ve

~j!~c!

2@DS0~he~c!!2DS0~c!#ve
~j!~c!. ~A7!

Defining ve
(h)(c)5(xVe,x

(h)(c)w0,a
(j) (c), and using again the considerations of Sec. IV, we finally

get

la~cr!Ve,x
~r!~c!2l1~cr!Ve,x

~r!~S0~c!!51dLzr~c!Ve,x
~z!~S0~c!!

2e(
s>0

S f x,yx1,...,xs

s!
Ve,y

~r!dhe
x1
¯dhe

xsD ~c!

2(
s>1

S S0
xy,x1 ,...,xs

s!
Ve,y

~r!dhe
x1
¯dhe

xsD ~c!

@with (DS0
x1 ...xswa

(j))(c) 5
de f

S0
xy,x1 ,...,xs(c)wb

(h)(S0c)]. Again, because of the third term on the r.h.s.
of Eq. ~A7!, the number of branches of a tree appearing in the construction ofdV and dL is
greater~in general! than the order of the tree itself. This is not a problem, since one can easily
realize that, again, the numberbk of branches of a tree of orderk is such thatk<bk<2k.

3. SRB interactions

Following the proof in Sec. IV and, proceeding as in Secs. V and VI, one proves analyticity
of the SRB distribution. In fact, the only~slight! difference in the construction of SRB potentials
is in the telescopic cutting necessary to representh, L, V andL as sums of local functions of spin
variables. Notice that now each tree node is associated to the product of a node functionf v(c)
@e.g., in the case of a tree contributing todh, f v can be a derivative off or a derivative ofS0 , see
~A5!# times a product of local Lyapunov exponents, like the factorPm50

p l1
21(s0

m(cj))

5
de f

U1(p,s0
p(v)(cj)) in ~A5!; the analogous expression appearing in a vertex witha(v)52 will

be denoted byU2(p,s0
p(v)cj). So the total node function associated to a vertexv will now be of

the form

Fv~p~v !,S0
p~v !~c!! 5

de f

Ua~v !~p~v !,s0
p~v !~cjv

!! f v~S0
p~v !~c!!, ~A8!

wherev8 is the vertex immediately followingv. The telescopic expansion~5.1! has to be done
separatelyfor each of the factors in the above equation@l~c! is Hölder continuous#, getting in the
end potentials with the same kind of decay rate. The bounds are not qualitatively changed and the
subsequent analysis of Sec. V follows so that, by suitably modifying the decimation procedure,
analyticity of SRB measure can be proved. We point out that a main difference in the proof of
convergence of the cluster expansion is that now the unperturbed potentials are not vanishing, but
have support only on timelike segmentsI ,Z, and are exponentially decaying with the diameter of
I. For this reason one cannot proceed exactly as in Sec. VI. The standard way to treat this problem
~see Ref. 7!, is to choose a lengthr such that the unperturbed interactions on setsI, diam(I )
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.r , are small enough for the cluster expansion. Then one fixes the size of theB-blocksb5r , and
the size of theH-blocks, h, such that the Perron–Frobenius theorem is true for thereduced
partition function Zr(bj

(p) ,hj
(p) ,bj

(p11)), in which only the interaction on sets
I ,(Bj

(p)øHj
(p)øBj

(p11)), diam(I )<r , are taken in account.

APPENDIX B: GREEN–KUBO FORMULA AND LARGE DEVIATION

In this section we deal with an application. We introduce thelocal phase space contraction
rate9 on a volumeV0,VN averaged on a timeT0 , given by

hL0
~c! 5

de f 1

uL0u (
j PI T0

logudet~DSe!V0
~Se

j ~c!!u, ~B1!

with L05V03I 0 and I 0 5
de f

@2T0/2,T0/2#ùZ. We prove a Green–Kubo formula forhL0
, from

which it will come out that generically its mean valueh1 is strictly negative. Furthermore, we can
show the large fluctuations ofhL0

aroundh1 satisfy a large deviation principle, namely they are
asymptotically described by a strictly convexfree energy functional F(h): it can be obtained as
the Legendre transform of the generating functionalP(z)5PhL0

(z) @see Eq.~6.25!#.

For the rest of the Appendix the SRB interaction will be called$fX
1%X,Zd11, to remind that

they are derived from the unstable restriction ofDSe .
Theorem B1: Given Se such thath1,0,

(1) P(z) is analytic and strictly convex inz, for ueu,e0 , uzu<1, with e0 small enough; and
(2) the Green–Kubo formula is valid:

]e
2P8~0!ue5052 1

2]e
2P9~0!ue50 . ~B2!

Theorem B2: Given Se such thath1,0,

(1) the free energy F(h) is analytic inh, for ueu,e0 , and hP@P8(21),P8(1)#;
(2) if @a,b#,@P8(21),P8(1)#, then

lim
uL0u→`

1

uL0u
logmSRB~hL0

P@a,b# !5 max
hP@a,b#

2DF~h,h1!, ~B3!

with DF(h,h1) 5
de f

F(h)2F(h1).

1. Local phase space contraction rate

Repeating the construction of SRB potentials leading to~B8!, we set

hL0
~he~c0~s!!! 5

de f 1

uL0u (
X,Zd11

XùL0Þ0

fX~sX!, ~B4!

for a suitable potentialfX , satisfying

ifXi`<ce2kdc~X!nnX)
i 51

nX

e2kuRi ~X!u, ~B5!

for somec, k, g.0 andn5ueug. From the invariance under time translations of the SRB measure,
we have
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h1 5
de f

lim
uV0u→`

1

uV0u
mSRB~ logudet~DSe!V0

u!5 lim
uL0u→`

mSRB~hL0
!5 lim

uL0u→`

1

uL0u (
XùL0Þ0

mSRB~fX!

5 lim
uL0u→`

lim
uLu→`

1

uL0u
]z log

(sL
e2(XùLÞ0”fX

1
~sX!1z(XùL0Þ0”fX~sX!

(sL
e2(XùLÞ0”fX

1
~sX! U

z50

. ~B6!

It is easy to show the last expression is equal to the one with the summations overXùLÞ0” and
XùL0Þ0” replaced byX,L0 and without the limit inL ~since the correction is only a border
effect; or simply using again the cluster expansion developed in Sec. VI D!. In this way, defining
the generating function P(z) as

P~z! 5
de f

lim
uLu→`

1

uLu
log

(sL
e2(X,L~fX

1
2zfX!~sX!

(sL
e2(X,LfX

1
~sX!

, ~B7!

we finally get

h15P8~0!. ~B8!

Analyticity is achieved by cluster expansion@we do not needz small, but we can take, say,uzu<1,
since$fX%X areO(e)].

2. Green–Kubo formula

Consider the case in whichs0 is the Arnold’s cat map defined by~A1!.
Using the definition of pressure~B7! and the fast convergence properties of the cluster ex-

pansion ofP(z), we find

P~z!5 lim
uLu→`

1

uLu
log

mN,0
SRB~e2( j PI T

logudetL+S0
j u1z( j PI T

logudetDSe+he+S0
j u!

mN,0
SRB~e2( j PI T

logudetL+S0
j u!

, ~B9!

where
~1! the matrixL5L+he was introduced in Sec. II B above;
~2! mN,0

SRB is the unperturbed SRB measure: ifO~c! is a local Hölder continuous observable, it
is defined as

mN,0
SRB~O!5 lim

uLu→`

(sL
O~c0~sLuŝLc!!

(sL
1

, ~B10!

and, independently of the boundary conditions, it is equal to the Lebesgue measure.
Defining Uz as

Uz5 logudetLu2z logudetS0
21+DSe+heu, ~B11!

and using thatmN,0
SRB is the Lebesgue measure onTN , we find

P~z!5 lim
uLu→`

1

uLu
log

* dce2( j PI T
Uz~S0

j c!

* dce2( j PI T
U0~S0

j c!
, ~B12!

so thatP8(0) is equal to
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P8~0!5 lim
uLu→`

1

uLu (
j PI T

E dc logudetS0
21DSe~he~S0

j c!!ue2( j PI T
U0~S0

j c!

E dce2( j PI T
U0~S0

j c!

. ~B13!

SinceP8(0)ue50 is trivially50, we can try to see if]eP8(0)ue50 is different from zero@if it were,
P8(0) would be different from zero foreÞ0 small enough#. Recalling thatf (c) is the perturbing
function andf j(c) is its projection on thejth site, we get

]eP8~0!ue505 lim
uLu→`

1

uLu (
j PI T

E dc

~2p!2uVNu
Tr@S0

21D f ~S0
j c!#

5 lim
uLu→`

1

uLu (
j PI T

(
a56
jPVN

E dc

~2p!2uVNu
la f ja,ja

~S0
j c!. ~B14!

Sincef is periodic we have]eP8(0)ue5050.
A straightforward calculation shows that

1

2
]e

2P8~0!ue505 lim
uLu→`

1

uLu (
j PI T

E dc

~2p!2uVNu H Tr@S0
21D2f ~S0

j c!dh~1!~S0
j c!#

2
1

2
Tr@~S0

21D f ~S0
j c!!2#2 (

j 8PI T

Tr~S0
21D f ~S0

j c!!Tr~u!~S0
21D f ~S0

j 8c!!J ,

~B15!

where Tr(u) is the trace restricted to the~unperturbed! unstable manifold. The preceding expression
can be rewritten in a more convenient way. Using the explicit expression ofdh(1) , Eq. ~3.5!, and
definingA05øjPnn(0)nn(j), we find that the first term in Eq.~2.15! is equal to

(
a i56

uju<1

(
p>0

E dcA0

~2p!2uA0u
la1f 0a1,0a1ja2~c!~2a2!lp1ra2f ja2~S

0

a2~p112ra2
!
c!

5 (
a i56

uju<1

(
p>0

E dcA0

~2p!2uA0u
la1f 0a1,0a1~c!a2la2f ja2,ja2~S

0

a2~p112ra2
!
c!. ~B16!

Integrating by parts, we see that the sum of the second and third terms in Eq.~2.15! is equal to

2
1

2 (
a i56

uju<1

E dcA0

~2p!2uA0u
la1f 0a1,0a1~c!Fla2f ja2,ja2~c!1l (

pPZ
f j1,j1

~S0
pc!G . ~B17!

Combining the three contributions, we finally find
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]e
2P8~0!ue5052 (

a i56

uju<1

(
pPZ

E dcA0

~2p!2uA0u
la1f 0a1,0a1~c!la2f ja2,ja2~S0

pc!

52 lim
uLu→`

1

uLu E dc

~2p!2uVNu S (
j PI T

Tr@S0
21D f ~S0

j c!# D 2

52
1

2
]e

2P9~0!ue50 ,

~B18!

that is the expected Green–Kubo relation~see Ref. 14!.
From Eqs.~2.18! and~2.8!, we see that, fore small enough,h1 is negative and, generically,

strictly negative@the condition forf to begenericis just that the first line in Eq.~2.18! is different
from 0#.

Let us now compute Eq.~2.18! in a special case, essentially the simplest possible. Let

f j1
~c!5 (

hPnn~j!
sin~cj

12ch
1 !, f j2

~c!50. ~B19!

Substituting such choice in Eq.~2.18!, we find

]e
2P8~0!ue50522 (

uju51
E dc0

~2p!2

dcj

~2p!2
l2 cos2~c0

12cj
1!~v1•ê1!252

2d

11l22
, ~B20!

whereê15(1,0) and we used thatv15(1/A11l2,2l/A11l2).
So, choosingePR small enough and different from zero,h15P8(0)52@d/(11l22)#e2

1O(e3),0. Furthermore, ifzPR has modulus smaller than 1,P(z) is strictly convex@since
1/2P9(0)52P8(0).0 andP(z) is analytic foruzu<1 ande small enough#.

3. Large deviations

In the present section we shall prove a large deviations property forhL0
. We will follow the

classical strategy set up in Refs. 22 and 12~in particular we will refer to the formulas in Sec. 5 of
the latter!. The proof below will hold in the caseh1,0, namely in the generic case or, to be
definite, in the case the perturbation is chosen as in Eq.~B19!.

Thanks to the convexity ofP(z), given hP@P8(21),P8(1)#, there exists a unique point
Z(h)P@21,1# such thatP8(Z(h))[h; considering such a pointh and its neighbor of radiusd,
I d(h), such thatI d(h),@P8(21),P8(1)#, from the ‘‘large deviation property III’’, Sec. 5 of Ref.
12, we get

mSRB~h1PI d~h!!5O~1!eO~duL0u!eO~ u]L0u! exp$@P~Z~h!!2P~0!2Z~h!h#uL0u%. ~B21!

In our caseP(0)50. Still for hP@P8(21),P8(1)#, we define the free energyF(h) as the
Laplace transform of the generating functionP(z):

F~h! 5
de f

max
z

$zh2P~z!%5Z~h!h2P~Z~h!!; ~B22!

therefore, forI d(h),@P8(21),P8(1)#,

mSRB~h1PI d~h!!5O~1!eO~duL0u!eO~ u]L0u! exp$2uL0uDF~h,h1!%; ~B23!

whereDF(h,h1) 5
de f

F(h)2F(h1) @indeedF(h1)52P(0)50].
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Finally, if @a,b#,@P8(21),P8(1)#, it is suitable to takedL0
5uL0u2b, 0,b,1, and divide

the interval @a,b# in ub2auuL0ub identical disjoint subintervals centered inhn 5
de f

a1(n
21/2)dL0

. We find

mSRB~hL0
P@a,b# !5 (

n51

ub2auuL0ub

mSRB~h1PI dL0
~hn!!

5O~1!uL0ubeO~ uL0u12b!eO~ u]L0u! exp{uL0u max
hP@a,b#

@2DF~h,h1!#},

~B24!

namely the result in the second theorem.
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