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We consider the “thermodynamic limit” of @-dimensional lattice of hyperbolic
dynamical systems on the 2-torus, interacting via weak and nearest neighbor cou-
pling. We prove that the SRB measure is analytic in the strength of the coupling.
The proof is based on symbolic dynamics techniques that allow us to map the SRB
measure into a Gibbs measure for a spin system a+al()-dimensional lattice.

This Gibbs measure can be studied by an extengilatimation of the usual
“cluster expansion” techniques. @004 American Institute of Physics.
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I. INTRODUCTION AND MAIN RESULTS

In recent years a lot of attention has been devoted to the relation between nonequilibrium
statistical mechanics and dynamical systems theory. According to the point of view of Ruelle,
Cohen, and Gallavottt'*a mechanical system evolving in a steady state can be described by a
hyperbolic dynamical system and its properties can be deduced from the “natural” or SRB dis-
tribution (see below for a precise definitipassociated with this dynamical system. This line of
investigation has already produced several interesting results both analytical, like the “Fluctuation
Theorem”(see Ref. 1], or numerical, like the works of Evans and Mor(see Ref. 8and Moran
and Hoover(see Ref. 18 Nonetheless, most of the work has been devoted to low dimensional
dynamical system, due to their accessibility both to analytical and to numerical study. In this paper
we want to study the properties of the SRB distribution for a class of simple systems in very high
dimension. For more references on this kind of systems see Ref. 17. The precise model we study
here is taken from Ref. 2.

We start considering a linear hyperbolic automorphism of the two-fBfu3o be definite, we
will always consider the so callefirnold cat map §: T?>— T2 defined by the action modulus:2

of the matrix
A vt 1.1
=11 5 (1.1

Note that the matriXA admits two orthogonal eigenvectars. whose respective eigenvaluks
are such thah ,>1>X\_ andA,\_=1. For this reason the dynamical systemis uniformly
hyperbolic and the stable and unstable manifolds at any pbintl? are given bij(t)z 1)
+v .t mod2s.
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From sy we can construct theancoupledattice dynamics by considering as phase space the
Cartesian product/= (’1["2)Zd (namely any pointye7 has_Cartesian componen{s/,} . ;d),
equipped with the metrid(y, ") =32 1¥ld(yp¢, ;) whered(y;,4}) is the usual metric ofi2
and|¢=3% ,|&| for £e 79, OnTthe mapS, acts simply as

S5() = (So(#)) e=So( ). (1.2

Note that the stable and unstable manifol®ght a pointy are the Cartesian product of the stable
and unstable manifold o, for the pointsy; e T2, i.e., Wg,,(£) = ¢+ 2 Wi, mod 2, where
wgf)i is the tangent vector t@ that has null component on the tangent space to e’ﬂ?ér@gut for

Té where it coincides withy .. . The action ofS, on W* () is naturally given by a diagonal linear
transformation.

We observe that the special choice of the ma#iglays no role in the following. Indeed we
will show in Appendix A that our results stay true if we replagewith any uniformly hyperbolic
analytic automorphism df?, not necessarily linear.

To add a coupling to this system we consider an analytic fungidfi—T? and define

def def

SE(9) = so( ) + €9(pt) = so( ) + efE(), (1.3

where (ofz/;)f ¥y ¢, 1.€.,pis the group of the translations oi. This means that the function
f: 7—7, whose¢ component if¢=gop¢, is translation invariant. We waiito be short ranged: let
the nearest neighbor sites of the siteenn(&) ={7:|&é— »|<1}; we will assume thag depended
only on o), Where we have used the notatig={,/¢eV} for vC 79, This implies that
Sﬁ( ) depends only o, . More generally we could have assumed thdepends only o,
whereV is any finite subset af? containing 0 but this would not have changed the substance of
the following arguments. Moreover, we will talgeanalytic in all its arguments.

The dynamical systers, admits many invariant measures. Among them is the “natural” or
SRB measure defined as the weak limit of the volume measufEunder the evolution defined
by S., when such a limit exists and is ergodic. Being ti#as infinite dimensional, to properly
define this concept we will consider finite dimensional approximationsZj,et(1?)V~n whereVy
is the cube of sidelf+ 1 in Z9 centered at the origin. To define the restrictiorSpto 7y, we have
to fix the boundary conditions: we choose periodic ones. To this extent noteZ/ghean be
naturally identified with the submanifold &f formed by the points periodic of period\2+ 1.

def

MoreoverS, leaves such a manifold invariant so that we can defing= SelTN. If no confusion
can arise, we will suppress the indisix

We can now define the SRB measure 8y as uy o= lim_..(LT) = (SE )y where
the limit must be understood as a weak limit an%izﬂgedewgl(Zw)z is the Lebesgue measure
on 7y. The existence of such a measure follows from rather general theorem on hyperbolic
dynamical systems, it is sufficiently small(see, for example, Ref. 10 and references there
Moreover, uy*® is ergodic, always for smalle, and we have that w3y (O)
=lim_..(UT)=-JO(SL(y)) for uY almost everyy, where© is anobservablei.e., a Holde
continuous function from¥y, to R. This means thaty " is thestatisticof S, . It is well known that
the SRB measure is still well defined in the limit—«, for e small enough. This was first proved
by Bunimovich and Sinai in Ref. 6. Starting from this work, the model () (or similar models
of coupled expanding automorphisms of the cir¢dlas been widely studied in the literatusee
for instance Refs. 19, 3-5, 16, 17, 1, and.1@any properties of such systems are well known,
mainly uniqueness of the SRB state in the thermodynamic limit and exponential decay of corre-
lations (see Refs. 3—5 for a proof of these propeities
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We further investigate the regularity properties of the limiting measure. We shovyf{Tat
depends analytically or. This means that if we consider an analytic observaBlei.e., an
analytic function fromZy to R, we have thauy"(©) is an analytic function in a domain that
depends on the analyticity properties @f

The main point of this work is to show that such a property remains true Wherr, i.e., we
want to show that the domain of analyticity pfy*® does not shrink to 0 wheN—o. More
precisely we say tha®): 7—R is alocal observablef it depends only ong, for some finite
VC79. We can summarize our main results as follows

Theorem: Given S as above and a local observahi2 we have

(1) wSREO)=limy_... ux"%(O) exists uniformly ine for €< e, independent or®, and

(2) if O is local and analytic, thenSRE(©) is analytic in e for e< eq(O).

The proof is mainly based on the possibility of mapping the SRB distribution into the Gibbs
state of a suitable spin system @fi"* and on the extension of classical techniques used to study
such Gibbs state@.e., cluster expansioro the particular ones that occur in our system. The key
point in order to get analyticity of the measure is proving that the SRB poteritials the
potentials of the Gibbs state the SRB measure is mappeyl antorapidly decaying. Once this
decay is proved, analyticity follows via standard techniques. Analyticity of the measure and
convergence of cluster expansion imply in particular uniqueness of the Gibbs measure and expo-
nential decay in space and time of the correlations ofdelocontinuous observabldsee for
instance Ref. 10 Our proof can also be adapted to the case of coupled analytic expanding circle
map: in fact, also, these models can be mapped into spin systems, and proceeding as below one
can prove that the SRB potentials satisfy the same decaying properties.

The rest of the paper is organized as follows. In Sec. Il we give a brief review of the main
properties of smooth uniformly hyperbolic systems and we briefly describe the construction that
allows the above quoted mapping. The detailed proofs of this properties are postponed to Secs.
IlI-V. Finally, in Sec. VI, we complete the proof of the main theorem. Appendix A contain a direct
extension of our results to the case in which the uncoupled dynamics is not linear. Appendix B
deals with an application. In the contest of the physical application of dynamical sy&eethe
beginning of this Introductiona special status has been given to a particular observablghése
space contraction ratelefined asz, (¢) =log|det©S.(#))| whereDS, is the differential ofS, .

Being that our system is infinite, it is more interesting to studyltival phase space contraction
rate »y(y) defined by taking the determinant of(large minor of DS,_. We show, for a large
class of couplings, that , has a positive average and that it obeys a large deviation principle,
i.e., its large deviations are asymptotically described by a free energy functional.

II. ANOSQOV SYSTEMS
A. Geometric properties

A dynamical system on a smooth compact manifold, whose dynamics is given by a uniformly
hyperbolic invertible map, is called afinosov systenFrom the general theory we know that
Anosov systems are structurally stable, namely, given two Anosov diffeomorpl8sBison a
manifold Q) that are sufficiently close in th@? topology, there exist aonjugation H:(2) such
that SSH=H-S'.

In our situation this implies the existence of a map 7y« 7y such that

Seh=heS, (2.2

at least ife is small enougha priori not uniformly in N). The first step of our proof consists in
showing thath, is analytic ine uniformly in N. More precisely, we will construdi, directly for
N=oo, Its finite N version can be obtained by restricting itTq. We note thah,_ is, in general,
only Holdé continuous in the variable. By this we mean that there exist constargnd 8 such
thatd(h.(),h(¢'))=<cd(y,')?. For this reason we cannot say that the SRB measus isf
just the image under the mémp of the SRB measure f®,, i.e., of the Lebesgue measure Bh
Notwithstandingh, will play a crucial role in the construction omy".
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As we saw in the Introduction the tangent spagg 1o 7 on a pointy can be split in two
subspaceEw andE, such that '|;T E*@E . Moreover, the distribution& = are continuous
and invariant undeSo ie., (DSOE )= ESW and we have

IDSow|<CA|w| for weE,,
(2.2
IDS, "wll<CA"|w| for weE, .

Ew andE , are called thestableand unstablesubspaces, respectively. In the cas&phll these
propert|es are trivially true. In particular we can con&derEqpthe basis formed by the vectors
{Wo +}§eAd

We will show in Sec. IV that such a splitting can be constructed als&foragain uniformly
in N, i.e., we will prove the existence of the stable and unstable subsﬁggﬂ&;)r S.. Moreover,
we will show thatEE h.(4) is an analytic function ot, although it is only Holdecontinuous ing.

This will turn out to be the right regularity to study the SRB measure. To do this we will directly
construct the vectors of the bas{w(g) ()} ¢< 2 that coincide With{Wg_)_,_}éeZd for e=0.

B. Symbolic dynamics

The main property that allows us to study analytically the SRB measure for an Anoso8 map
acting on a manifoldM is the existence of Markov partitions. We call a collecti@y, i
=1,..n, of closed subsets ob1 a partition if U;Q;=M and Q;NQ;=dQ;NJQ; for everyi
#]. For every sequenae={o};.,<{1,...n}* we can define the set(o)=N;__..S(Q, ). Due
to the hyperbolicity properties @, if Q; are small enough¥(o) contains at most one pomt This
allows us to construct aymbolic dynamigsi.e., a map from a subs&t of {1,...n}” to M. In
general, the structure of the subeis very complex but for Anosov systems it is possible to
construct particular partitions for which the Setan be described easily. Given a partiti@nve
call thenxn matrix C given byC;; =1 if int(SQ;) Nint(Q;) # 0 and 0 otherwise the compatibility
matrix. We say thatd is a Markov partitionif the setX is formed by the sequencessuch that
Co o =1 for everyi e Z. This means that the sequences that satisfy the above nearest neighbor
condition code all the points of1. In such a case we will deno®e={1,...n}%.

We now show how to construct a Markov partition for our model. We start syittA Markov
partition Q={Q; ,i=1,...n} for s, acting onT? can be easily constructed starting from its stable
and unstable manifolds. Such a construction is standard and can be found, e.g., in Ref.(0. Let
be its compatibility matrix and, the associated symbolic dynamics.

It is important to note that, is Holde continuous in the sense that there exist constaated
B such that, for any two sequences o’ e{1,.. Ne, d(Co(o), co(o ))<Cd(0' a')P, with
d(o,0')=e #=") where #o,0') the biggest integer such thaj=o; , V|j|<#(o,0’). In this
case we can tak@=In(\.). Another key property is that is a m|xmg matrix; this means that
there exists @ecorrelation time & N such thatC? has all entries strictly positive. This means that
we can connect any two elements of the Markov partitioa time steps.

For every point s={sg,.e{l,.. n}/ we can consider the Cartesian produg

= Xge/dQs C7y. Itis clear that the collection o with se{1,.. n}A forms a Markov partition
for Sy. Note that it is natural to index the element of this partition with the elemefit oLfn}Z
so that we can associate to this partition the symbolic dynamicg?x 7Z=74"1— 7y naturally
defined fromc,. We can still callC the compatibility matrix ane{l,...n}éd+l the set of possible
sequencesnamely o={o}sczdicz iS in {1,.. n}'(zjd+l if and only if C(,f 0oL for every ¢
e 7% andi e Z). Given any point £,i) e Z9** we will call ¢ its space componergndi its time
component

The key observation is that now the shi{$Q) form a Markov partition forS,. This implies
that the space of symbolic sequences $ris the same as that fd®, and that the symbolic
dynamicsc, for S, is given byc.(o)=hcq(c)). Clearlyc, is still Holder continuous. This
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completes the construction of the Markov partition 8r. We thus obtained that the manifold
can be mapped '[{)l,...n}'(zfl+l whered directions of the lattic&?" ! represent thel directions of

T:(’JI‘Z)“d and the last represents the time evolution. Indeed the $pam the spacél,...n}/é0|+1
becomes the shift on the time direction, to be catted

C. SRB measure

Let now consider the SRB measuyig ° as defined in Sec. 1. In this case we need to Kdep
finite because it is not easy to give a meaning or construct directly the SRB measite for

Let my< be the measure oft,.. n}VNXz defined asmSRB(A)— B H(A)), e, myTBis
the image of,uSRB via symbolic dynamics,.. The measure:mN B can be described efficiently
through its restrictions to finite subsets\¢{x 7.

Given ACVyXZ, mi"8o,|osc) will denote the probability of the everfs’|oy=0,}
conditional to the evenfo'|o ) .=0o,c} W.rt. the probability measureny 2, where A°=(Vy
XZ)\A andao, is the collection of ther,; for (¢,i) e A.

From the theory of SRB measurésee Refs. 22 and 10it follows thatmy 2 is a Gibbs
measure and its conditional probabilities satisfy
-1

MR D (e "))

D (e ")

UA|(TAC)

(2.3

m
SR |O'Ac) K—o

whereg’ (resp.o”) is the configuration coinciding withr) (resp.o’y) on A and witho yc on AS;

7is the image ofS, throughc, (i.e., it is the one step shift in time directmrD‘E‘(“)(w) measures
the expansion of the volume on the unstable manifold at the phiffio be more precise let
{W('f) (‘/’)}éeVN be a basis OE:¢. We will construct one such a basis in Sec. IV. Then we have

det.,[(DSWE)- (DSIWL))]
u(n) n
D () = \/ det, (W, w7 | (), (2.4

whereu-v represent the usual scalar producRif~y and det, is the determinant of the expression
in square brackets thought as a matrix indexed: laynd 7.

Using the invariance oE: under S, and introducing theunstable Lyapunov matrixX ()
satisfying the equation

DS.()WE, ()= Z WA (SU() L7 (),

we can rewrite the above expression as

Vdet, (Wi, - wim) ) (SK(w))
Jdetf’z WD N I1 ldet,[cSll- 29

DUE(S K (y)) =

Now the first ratio in Eq(2.5), when inserted in Eq2.4), is vanishing; indeed the uniform tter
continuity ofw(f) ’ (h(y)) and the fact that" and¢” are asymptotically identical in the past and
in the future |mply that

lim (Inydet, (W, -wi”))(c(a"))— (Inydet (WE, - wl”)))(c(Ta"))=0; (2.6

K— +ow
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thus the choice of the basis Bi* does not change the result, namely the SRB measure does not
depend on the choice of the metric as is to be expected from its definition. Calfifg)

def

=(In L(h(¥)))%, we finally get

SR% a .
SRBU& 2 E [Af(Co(Tia’))— Aé(co(F o))} 2.7
my o Ac) j=— &

Here we used the fact that=h_cc,. Furthermore, the Hder continuity of Aé(cq(c’)) implies
absolute convergence of the sum in E2}7) because only points asymptotically equal both in the
past and in the future are compared.
def

The crucial point of this construction is that the matrif/) = L(h(#)) is analytic ine due
to the fact that it depends only (wi(fl(hé( ). As we already notew('fl(he(w)) are analytic in
e. We will prove this fact in Sec. IV.

In Sec. VI we will apply to Eq(2.7) the standard methods developed in the study of Gibbs
measure in statistical mechanics. To do this we will need to decompose the “interaction”

def

A%(co(0)) as the sum of potentials depending onlyep= 10j}jex WhereXis a finite subset of
79*1. More precisely, we will decompose

> Afcy(Ta))= Z | x(0%). (2.9

(&) eVNXTZ
(These two series are not convergent: they represent the formal expression for the “Hamiltonian”
of a Gibbs measure. See Sec. V B for a more precise statgriémshall show that we can choose
¢x analytic ine, translationally invariant in space and time directions and decaying exponentially

in the tree distanceof the setX, namely the length of the shortest tree connecting all the lattice
points inX. In this way(2.7) can be written as

mSRE
sRB(;MUA) exp{— > [¢x(<7>'<)—¢x(0§'<)]], (2.9

My (o) |ope) XAKX#0

so that one can finally write

exp{— > ¢x(0'x)}
XAA#0
E eXP[_ E d’x(Ux)]
oA XNAD

mSRe
(

(2.10

oplore)=

This will allow us to show our analyticity claim uniformly iN.

lll. PERTURBATIVE CONSTRUCTION OF THE SRB MEASURE

In this section we construct the conjugatiopand prove that it is analytic ie. The technique
we use consists in expandiihg as a power series iaand writing a recursive relation linking the
nth order coefficient to the coefficients of ordewith i <n. This naturally leads to a tree expan-
sion of the usual form in perturbation theory for quantum field theory, i.e., the trees we will
introduce are the “Feynmann graphs” of our theory. See also Ref. 10 and reference therein for
similar application to KAM theory.
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FIG. 1. Graphical interpretation ¢8.6).

A. The conjugation

From now on we will identify functions frory, to 7y, with their lifts as functions fronR2Vn
to R2YN, Using the definition(2.1) and looking forh, of the formh ()= ¢+ sh (1), we find

ShoSy— Sye dh.= efo(ld+ sh,), (3.)
where Id is the identity map.

def def N
Settingh =\ _=\;" and writing f(¢) = =, ,f**(p)w) and similarly forshs , we get

ShE (Sog) —N"1ohE ()= et (y+ Sh(1)),

(3.2
She (Soy)—NShE () =ef (y+sha(y)).
Both equations can be implicitly solved by iteration:
ShE' ()= —ae 3 NPT Paf € (SPPTE gt sh (S5 Py, (3.3
p=0

wherep,=(1+ «)/2.
It is easy to see that the series in E§.3) is absolutely convergent, since<l andf is

bounded. Expandinét‘(y+ sh (1)) in power of its argument we find
ko kyt---+kg=k XX 1o Xs

K sl 5h(xli1>' N é\hz(lis) (), (3.4

ijZI_

where we have introduced the index (¢,a), with a= =, andf**1:%=g, ---d; * with () the

partial derivative in the direction off/g%. Moreover, we use the convention of summing on twice
repeated indexes. The first order coefficient of the expansion of the conjugation is then

ahy)(9) = (—@) 2 NPTPapX(SyPT 0y, 3.5
p=

while thekth, k>1, coefficient turns out to be

k K1+“‘+k5=k71 fX,Xl ..... Xg
X _ T e R N (P1=pg)
5h<k)(¢)_521 klz,ks (_a)p;o N s! My My | (S ¥)-
ki=1

(3.6
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Uy

Us

U3

~=e
<
S

Vg
(%4

Vg

FIG. 2. Atreed of orderk=10 appearing in the expansion féh, . Labels¢(v;), a(v;) andp,, are associated to all
verticesv; .

From Eq.(3.5 we see thatth, is in general nondifferentiable with respect#oIndeed already

differentiating 5h(51+)(1p) with respect toy we find a nonconverging series. On the contrary, it is
clear that Eq(3.5) is Hdder continuous iny for every exponeng<1.

We can interpret Eq3.6) graphically as shown in Fig. 1.

The L.h.s. of the graphical equation in Fig. 1 repres&ﬁh@)(w) while the r.h.s., representing
the sum in Eq.3.6), is a “simple tree” consisting of a “root’r, a “root branch” \,=(r,v)
coming from the “node” (or “vertex”) v, ands, branches “entering,” to be called \,,
=(v,v), 1=1,...5,.

Even if the drawing in the figure does not carry them explicitly, we imagine that some labels
are affixed to the node: more precisely(v)=(¢(v),a(v)) e VyX{*} andp, eZ, . Further-
more, a labelk, =(&, ,a,) e VyX{*} is associated to each brangh In the figure abovex,
=X andx)\v =x;, i=1,..s.

The nodev symbolizes the tensor with entries

def FXXLse X

Ny, = (= @(0))NPoFPatl——— (S5, (3.7

wherep(v) =a(v)(p,+1—py)). Observe that, in order for Eq3.7) and(3.6) to be nonzero,
we must havégku —&(v)|=1, due to our definition of the coupliniy

The line\, exiting vertexv symbolizes thgropagator that is simply&xA X(©) -

The line with labelk exiting from the bullet of the I.h.s. with labé&k) representﬁh(xk)(np); the
branches with labelsx; exiting from the bullets of the r.h.s. with labelk;j represent
Shei (S5 4).

Even if it is not explicitly written in the figure above, a summation over the free indiCes
X\, has to be performefhote that the summation ove(v) simply fixesx(v)=x, because of the

presence of the propagatéy,) ,].
Since Eq.(3.6) is multilinear in 5h’;i_, we can just replace each of the branches exiting from a

bullet with the same graphical expression in the r.h.s. of the above figure, and so on, until the
labels ;) on the bullets(top nodeg become equal to 1. In this case the end-points represent
oh(y, that is a known expression, see E8.5), and we will draw these known end-points as
small dots.

Thus we have represented offy, as a “sum over trees” wittk branches ané nodes(we
shall not regard the root as a ngd# suitabletree valuesin Fig. 2 we draw a typical tre@ we
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get via such a procedure.

Note that a tree induces a partial ordering among its nodes: awm@uecedes (and it will
be writtenw<v) if there is a path of branches connectingaindv with the arrows pointing from
wtov. R

Let us now summarize the discussion above. Tgx) be the set of rooted trees with
branches and nodes, with labelg(v), p, attached to their vertices angv o) =X, wherev, is the
last vertex preceding the root. Givere 7,(x), let the value off be defined as

X() X(v1),- X(0g,)

VaAl( 0, ¢) = HH (— a(v))\Po T Patw) (S5, (3.9

s,!

whereul,...,vsu are the nodes immediately precedingand p(v)==2=,a(v)(P,+1—pa))-
With these definitionsshij, () can be calculated ashy () == 4. 7,0 VaI(6, ).

B. Convergence and regularity of the perturbative expansion of the conjugation

def )
By definition g() depends only o) SO that it is analytic inD = {y; e C|[Im y=<ro,i
=1,2£enn(0)} for somery>0. Calling G the maximum ofg on D, from Cauchy’s formula we
get

m+!---mpn! |

MM’ o= (3.9
rs ry’
0 0

|fX,X1 ..... XS(¢)|$G

def
wherem,,...,mp are the multiplicities of the partial derivatives with respect to the 2(2d
+1)=2|nn(0)| possible variablegthusm,+---+mp=s).
In the same way, if and /' are identical on each site bét e nn(§) and if 0<B<1, we get

(s+1)! 3 B ,
|7 25 Sy) — P (S <G — 7 (2) IRl — gl (310
0

where we have used the periodicity foNext we bound the value of a tree ﬁ(x). Using Eq.
(3.9, for 0 e 7 (x), we find

G Gk
Vi, )< Hg )\pvrTu:H(TlH APy, (3.11
ve 0

0 ved

where we used that, if e ﬁ(x), Z,eeS,=k—1.
The sum over the trees can be interpreted as a sum over the topological trees and a sum over
the labels attached to the treesdf is the set of topological trees of ordierwe get

GX Gk [ 1 \k
TUNIED S S 35 | EUS I e
0e O X(v),ag(v) rO p, ved 0e Oy .f(v),aa(v) rO
ve ved ve

Gk [ 1 \¥ Gk [ 1 \¥
S5 2 2k(2d+ l)kﬁ(m> $22k2k(2d+1)kﬁ(T) , (3.12
Heek ro ro

where we used that:

(1) 2Xis the number of terms in the sum over thév) indices;
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(2) (2d+ 1)k is a bound on the number of terms in the sum over the values @ftheindices not

making Va(0 ) vanish[observe that, given a tre@ its value Va(0 i) is vanishing unless
|E(v')—&(v)|<1, wherev’ is the node immediately preceding; and
(3) 2%¢ is a bound on the number of unlabeled rooted trees witdes.

In the same way we find that, if and ¢/ are identical on each site bt and if 0<g<1,

k

) => _ k(z w?) (- WG 2K(2d+ 1)k Z (s,+1)
6O 1—)\1713 ro

|5h(k> (¢)— (k)(lﬂ
|’;b§' ¢§/|

1 \X Gk
gzzk(m> (2O 2 2a 12k D). (319

So the maph, : 7y— 7y exists; it is Hader continuous w.r.tyy and analytic w.r.te in the complex
disc|e[<egz, with
-1

—(2d+1) (3.14

RN
In order to prove thah () is anhomeomorphisprwe have to show that it is invertible. The proof
is easy and standard. Regarding injectivity, note that digtinct points ¢, ¢,, are necessarily
far order one in the “future” or in the “past,” namely there exists an integetr7 such that
|Sowi—Sohal =O(1). Then Si(h.(41)) — Si(ne(12)) = Sg(4ha— ) + S (Spn) — Sh(Sgp2)
cannot vanish as the first term is order one, the other two of ogdénus it cannot be but
h (1) #h(y,). Regarding surjectivity, sinckis a continuous injective mapping on a tortiss
necessarily surjectivithe proof is trivial onT? and it can be easily extended by inductiorig .

IV. THE UNSTABLE DIRECTION

In order to explicitly compute the SRB measure, we have to construct a basis for the unstable
subspacE+ and the expansion coefﬁme@ﬂ‘) associated to it, as explained in Sec. 11 B above.
Note that we cannot ude, to find a basis fonE+ because it is only Hder continuous.

To find the unstable bas{e?v(g) (W)}eev and theLyapunov matrixZ(#) we have to solve the
following equation:

(DS () =W (S () LE(h). (4.0)

In general this equation cannot have solutions analytie. im fact, from the general theory we
know that the unstable VECtO{'W(E:Q_((//)}ge\/ are not differentiable with respect ia But, as we
previously pointed out, to compute the SRB measure we need only to know the expansion coef-

def
ficient at the point (i), i.e., D (h()). Let us definen’®, (h(4)) = v®(y) for £V and
note thaty(¥)(y) satisfies the equation

(DS (h () () =vE(SepILE (),  L(p)=L(h (). (4.2

We will show that this equation admits a solution analytie.iMoreover, the determinant af( )
is all what we need to compute the SRB measure.
At this point, it is convenient to write Eq4.2) in components. Denoting by the double
def
index 7 (again x=¢&%), defining <f>(¢) z NO@WS)  and  OSwWE) (#)
def
= 3,8V (y)w), we get
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S LP)VEN( ) =V E(So) L (). (4.3

Now, defining the correctionéL and 6V as follows,

def def
LE(y) =N 16, + oLE (), V(W) =VE+VE(p)  with Vi) =5,,, Vi) =0,
(4.4)
we find that(4.3) is equivalent to
SLE() =N oVE (1) — SV E(Sop) T+ ef T (h () + 1€ ¥(h () VI ()
SV E (Sow) SL (),
(4.5

NSV () =NV (Sop) = — et P () — el V(1) SV ()

+ oV (S L ().
Of course the above equations cannot determine completely the basis and its associated matrix:
indeed, given a solut|0|{1v(")(<//)} {L(4)} of Eq. (4.2) and a generic invertible Hader con-

tinuous matrixR”"(4), aIso{V(V)(t,//)RV"(w)} {R™M(Sep) LY ()R (1)} solve(4.2). Thus it
is possible to add a constramtaw ?) (#): a possible choice, which greatly simplifies the expres-

sions above, consists in takm@/}(:ﬁ) 0, so that(4.5 becomes

BLE(y) = ef€ 0" (h () + €FE 7 (h () VL (),
(4.6)
NSV () N LV (o) = — €0 ()~ ef 7 (h (1) V()

+ OV (Sou) LI ().
An implicit solution of (4.6) (to be inverted iteratively by a new tree expansion, see beiew
SLE(y)=ef €07 (h () + el 7 (h() oV (),
(4.7)
V() =2 NI et T (h (S5 )+ et 7 (h(Sy 1)) oV (Sy )

=0
— V(ST gy sLe (S5 ).
As for the construction of the conjugation, we can expand in power seriebath sides of Eq.

(4.7) and equate the coefficients of the same order, thus finding an iterative solutinptnd
oV (k) - The first order coefficients are given by

SLED (p) =17 (),
(4.8
VL )= F, NIHE (S,

while, fork+1=2,
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ShXt ... 8hs ) ()

& — -
5L(|f+1)(¢)_ . E Sl (ky) (kg)

( s
5vP " (thZ ) .,sh(xks))(w) (4.9

and
( kgt +ke=k (60 X e
2j+1 X X -
N (#)= ;%21 iao)\ " s! My =M, | (S )

kl+ +ks—k ETn Xon. .o

+ > > >\21+1(f T O s o sns )(Sg )
s=1, k=1 =0 (s—1)! 77 (k) ©(ky)” (kg)
kq+--t+ks=k ST IS

- 1 > S > \AT L i (5V(g SO)5h . .5th (S5
s=1k=1 |=0 (s—1)! (k1) (ks)
Kyt +kg=k X .

_ ' 2 ’ N2+l fe e (5\/({) SO)5V Sh*® ...shs
s=2k=1 [=0 (s—2)! & (ky) 7 (ko) 9 (kg) (ks)

X(So' ). (4.10

These two relations, together wi¢B.6), allow a recursive construction &L and 5V. Obviously,
repeating the discussion of Sec. Il A, one finds thatand 6V can be expressed as sums over
trees, obtained by suitably modifying the construction of previous section. It can be easily realized
that the estimates for the tree values are qualitatively the same as [mderEqs(3.11)—(3.13].

We point out the differences appearing in the tree expansioa\or

(1) The nodes can be of four different tydesrresponding to the four lines in E@.10], so that
the number of possible labels for a tree of ordés larger than a factor4

(2) The numbemD, of derivatives acting on a node function can be eitheor s,+1 [see Egs.
(4.9 and(4.10], so thatD ! differs from the combinatorial factas,! by at mosts,+ 1. Then
the final estimate contains a factor that can be bounded by){1/(s,+1)<e/r,.

A similar discussion can be made for the tree expansioflLof
The result is that. andV are analytic ine and Hdder continuous iny with exponent &8<1
in a disc|e|< ey, with €, smaller than the convergence radiysof h, [see Eq(3.14)]. Note that
also in this cases;g is independent oN.
As already explaine@see Sec. II B and in particular E.7)], in order to compute the SRB
def
measure we need ‘= (logL)*=—log\+ SA¢, where

_ s+1
SAé(y)=[log(l +\oL) = 2( ) NSSLEM(yh)- - - SL7s—14( ) (4.11)

s=1

(no summation or¥ is intended. Expanding Eq(4.1]) in series ofe, we get

Kyt +kg=k

-1 s+1
S (1) = 2 % SSLGA () SLIE (). (4.12

1kj=
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Again, the last equation, together wifh.10 and (3.6), allows a recursive construction of the
coefficients&Afk) and the result is thak ¢ is a sum oversuitably modified trees. The bounds are
still qualitatively the same, so that¢ is analytic w.r.t.e in a suitably small complex dis@nde-
pendent ofN) and Hdder continuous w.r.ti.

V. SRB POTENTIALS

The next step towards the construction of the SRB measure and the proof of its analyticity
consists in the expansion &f in potentialsgy . From the analysis of previous sections it follows
that A€, as well ash?, ngi) andL¢7, can be expanded in convergent sums over tree values. We
will discuss here how to expartdin potentials, since the analogous expansionMpt. and A is
conceptually similar, just more involved due to the more complex structure of the trees.

We will proceed as follows. We first write the values of the trees in terms of the symbolic
variableso. We then decompose each of these values as a sum of terms only depending’sn the
on finite but arbitrary large sets. Finally, we define the associated potentials by collecting together
the contributions which depend on the san® Our goal is to obtain potentials defined over sets
with rather arbitrary shape but decaying exponentially withttee distancdsee after Eq(2.9)
for a precise definitiohof their support.

To begin with we expand the derivatives of the perturbation fundtioia a telescopic sum.
Given the digitss and s’ e{1,..n} we can always find a sequence of digi¥(s,s’)
=5;S,"**S,_1 such that the sequens2 (s,s’)s’ is compatible, i.e., such th&tSi 5.1 fori
=0,...a—1, wheresy=s ands,=s'. Choosing a sequen(z%e{l,...n}éonce and for all, given
oef{l,..n}¢ we can define its restriction to timg o' as follows: ol =0, if |t|<j, ok,
=(Ar§,t if [t|>]j+a and the gap is filled with the sequence constructed above-far, .; and
S'=0 +(j+a)- We can now define

fX-’XI ’’’’’ XS(Unn(J)(g))v (51)

where{ is the spatial coordinate associatecktandnn® (&) =nn(&)x1;, I;=[—],j]1NZ. Since
|co(o)) —co(a? 1) |<cN for somec>0, f?j';(l """ *s is bounded by
(s+1)!

o= ——
+
rS 1

X, X1 o0t Xg
[t [

j
i cA\ (5.2

A. Decay of the potentials for the conjugation
Inserting expansioi5.1) in the definition of the value of a tree E(B.8), we find

fx(v),x(vl) ..... X(Usu)
(iy)
va](9’00(0)):1_[ 2 (—a(v))\PoHPaw) '

ved j,= s,!

(P onni0ewy), (5.3

where we recall thatp,y=(1+a(v))/2, p(v)=Zp=,a(v)(P,+1=pu,) and nnd(g)
=nn(§) X1;, 1;=[—],j]NZ. The above expression can be seen as a sum over the values of a
new kind of trees, identical to the ones described in Sec. Il A, but with a new jlakeY attached
to each node. Lef(x) be the set of these new trees of ordecontributing to 5h2‘ ), e, 0
e T (x) is a tree withk branches and# nodes(the root is not a nodewith the following labels
attached to the nodase 6: £(v) eV, p,el, j,eNanda(v)e{—1,+1}.

Given 6 e 7, (x), its value is given by
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fX(U),X(vl) ..... X(vsu)
(p)

Val 0(0’): H@ (_ a(U)))\pU+p“(U) (’Tp(v)o'nn(jv)(g(v))), (54)

so that we have

k

[T aetpott, (5.5

veb

X . ceG
Shi(col0))= > Val 6(a) with |Val 6].<|-—
0ETK(X) )\ro

where we have used E(b.2). We can now define the suppot{#) CV X7 of a treef e 7,(x), as
the support of the spin variables on which Yalepends in a nontrivial way, pluscnter(¢,0).
More precisely,

def

X(0) ={(£,00}U U C(£(v),p(v),],),

vel
where

def
C(&(v),p(v),j,)= U U (77,p(v)+i). (5.6

nenn(év)) lil<j,

namelyC(&,p,]j) is a cylinder centered in&(p), with the spatial base equal to the set of nearest
neighbors of and with height equal toj2 ThenX(#6) is the union of(¢,0) and of cylinders of this
kind, one for each node of the tree. The point¢,0) has the role of center 0f(6) and is added
to X(#) for later conveniencénote in fact that Valé(o) could not depend oo ¢ g)].

Given a setXCZ%*! we can partition it in a natural way as a union of timelike segments.
More precisely, giverg e 7%, let T,={(&,i) e 24" Yi e Z}. The intersection betweéh, andX can
be uniquely partitioned as a union f maximal connected segments. The collection of all these
segments forms a partition ofin ny timelike segment$Ri(X)}i:1'___nx. Let nowr; be the center
of Ri(X). If Yis a subset oF9"1, we call tree distance of, d,(Y), the length of the minimal tree
connection of all the points of. Finally, letd (X) be the tree distance of the S{ﬂ}izl,...nx-

From the previous bound on the value of a tlee7,(x), Eq. (5.5 can be interpreted as the
tree distance decay of the contribution of or#eéo sh. Indeed,

Nx(0) 1/(2d+1)

172\ k
ceGle| ) )\dc(x(g))|6|nx<5)/2H N RiCX(0))] , (5.7)
=1

2
N

| el Val 0||ws(

where we have the following.

(1) The factor\%X(?) comes fromII,_,\'*Pv; in fact p, is the displacement in the time
direction of the cylinder associated to the nadev.r.t. the one associated to the node
immediately followingv, and 1 is their maximum displacement in spatial direction, so that
2,(1+p,)=dc(X(0)).

(2) We used thahy=(2d+1)k in order to bounde|¥/? with | e|"x/2(2d*+1),

(3) The factorII/X("\ IR XDl comes fromlT, . Ao,

(4) The global power 1/(8+ 1) in (5.7) comes from the size of the base of each cylinder, namely
we used the fact that the numbey of segments is less thand2- 1 times the number of
cylinders inX(6).

Collecting together all the treeswhich have supporX(6) =X for a givenX, we get
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def X(0)=X
Sh¥(co(o))= >, Shi(oy) with sh¥(oy)= > € X, Val 6(c). (5.9
X>(§,0) k=1 9eT(x)

So, using the boun¢b.7) for | small enough;y,=1/2(2d+ 1), ko= —27yylog\, vo=|€|?0 and
a suitablec>0, we get

nx
||é)‘hg‘(llmsce*"odc(x)ngHl e olRil, (5.9
=

namely sh} decays exponentially with the tree distanceXof

B. SRB potentials and their decay

Proceeding as above for the functidri(cy(o)) we obtain that we can write it as

def
Afcolo)) = 2 ¢¥%ay),

xc (Vyx72)

where by constructions¢? is different from 0 only if ¢,0)e X. The function${© is again
given by a tree expansion analogous to that in ). Moreover, we will set

def
j 0
B (000 = ¢ 5% 00).

We can define

def )
dx(ox)= 2 PED(ay),
(¢ X

) e

so that we formally obtain Eq2.8), namely, givenl+=[—T/2,T/2]NZ (T even and callingA
= VN x| T

> Afcy(To))— D dx(ax)=0(dA),
(&i)eA XAA#0

whereJA is the boundary ofA and the correction can be exactly computed from the definitions
above.

Note the potentiatpy(oy) is invariant under time and space translatiorespectively for the
definition of ¢{¢") and for the periodic boundary conditionsamely,

Px(0x) = dyerix(ox)  for any (&])eVyXZ. (5.10
Moreover, it can be bounded by
nx
||d>><||m$cc%’“l"ﬂ“‘)vixi]:[1 e~ 1Rl (5.12)

for suitablec, y;, k,>0 andv,=|¢| 1.

VI. ANALYTICITY OF SRB MEASURE

In the previous sections, we wrote the SRB measure as a Gibbs measure with translationally
invariant potentialspy, decaying as in5.11), and with hard core interaction in time direction.
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Moreover, the potentiapy is analytic ine in a small disc inC around the origirindependent of
N). A well known technique to show analyticity of the Gibbs measure weris the so called
cluster expansion
def
If A=VyXlt, with I:=[—-T/2,T/2]NZ for some evenT e N, we call A;=VXI1,2,.

Given aboundary conditiom_e{l,...n}?;dﬂ, we define thepressure R as

def
Py=|A| tlog Y, e =xnazoéx(ox), (6.1

where the sum is over all the that coincide witho, on A, to ¢ on A and with
2(”§,T/2i;§,T/2+a) in the space remaining. It is well known that the presfRikecan be consid-

ered as the generating functional for the Gibbs states. From its analyticity our main theorem will
follow easily, as we will see in Sec. VID.

A. Decimation

In the presence of hard cores we cannot proceed in the standarMeggr's expansion
since the standard prodsee Ref. 1Brequires weakness of the original interactions. We can
overcome this obstacle bydecimation(see Ref. ¥, namely considering the statistical system on
scales larger than the length of decorrelation of the hard core.

1. Decimated lattice A p

def

For eachée VY, we divide the time interval$={§}><lT into an alternating sequence of
blocks, called B-type” and “H-type,” B, H{, B, HP ... BY ™D HI™Y, BYY, con-
taining a number of spins respectively equabte 1 andh=hga—1, with hye N to be chosen
later. For this reason we choose the number of pointsio be [I15|=¢h,a+1, namely T

Remark:The choiceb=1 is special for the present case, in which the unperturbed potential is
vanishing. In general one could treat with the same technique the case in which the unperturbed
potential is order one, with a sufficiently fast decay of the tails, and in thaticsiseuld be chosen
suitably large(see Ref. Y. Such a case arises, for instance, when the unperturbed system is the
product of nonlinear Anosov maps @i, namely in the case treated in Appendix A. The present
discussion could be easily adapted to cover that case.

def ) )

Let BY =0y tring. £€Vn, 1=0,..£, be the spin in the blockB’ and 7’
def
={0(eptepen® £€Vy, i=0,.£—1, be the collection of spins belonging to the blddk’;

3

it will be regarded as a sequencetoB spins: Y= (B1(7Y),....Bn(7")). The lattice obtained
considering théHd andB blocks as points:

def
Ao ={BP HMT 020, (6.2
will be called thedecimated latticeon A the distances will be computed by thinking of it as
having its sites spaced by 1 also in the time direction.
If XCA, Y(X) will denote the corresponding subset Ay, namely the smaller subset

YCAp such that the union of thé3- and H-blocks in Y contains the setX. Defining
def

Dy(By,my) = Zx.vx)=vPx(0x) EQ.(6.1) can be rewritten as
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{—1
1 . . .
Pr-ryploa 3 e sveratre o [T TT 28 87,

BA A

where

Z(B:1.B")=CppnChimpam Ch_1(menmCaymp - (6.3

Observe that, from Eq(5.11), if Y does not coincide with a singlel-block, @ satisfies a
qualitatively equivalent bound:

Ny

Hq)Ynmgcef}dc(Y);nYilJl e—}lRi(Y)\, Y £ H(i) 7 (6.4)

for somec, %, >0 andv=|e|”. Whereas ity =H{ for some¢ eV and somé =0,...{ —1, we
have||®y|..<hv.

2. Averaging over many degrees of freedom: The Perron  —Frobenius theorem

Decimation is arenormalization grougechnique, consisting in summing first on tHetype
spins, thus getting an effective statistical system forBHelocks: the idea is that if thB-blocks
are sufficiently far apart, after the averaging of tig, the 8's should bealmost independents
if there were only small interactions among them. The technical tool we shall use to prove
rigorously that the effective interactions between g®are small is the Perron—Frobenius theo-
rem.

Let Z(B,B') be defined, with a little abuse of notation, as

def
° ahg

Z(B.B) =2 Z(B.m.B)=Cp. (6.5
n

Observe that %Cia,sqa. Since C? has strictly positive entries, we can apply the Perron—
Frobenius theorem and obtain tr@f and its transpos€® T admit a nondegenerate eigenvalue
I>0 with eigenvectorsr and =, respectively, such that,, = >0 for any o=1,...q, and

3, mea,=1. The eigenvalué is maximal in the spectrum d€?; namely, if we defineP as the
projection matrixP ., = 8,, — 77,,77’;, , we have

I~ Pal..<c.e™ o], (6.6
for any w € R and with

def
a=—log(1—-[min(C2_,/C3_)1?)=q 2. (6.7)

As a consequence,

—h h
\_ ~ahg ahg * _1h * (1" "oC? Op)ﬁﬁ'
Z(B,p)=Cc2o=> Co(m oy +Pyg)=IMompmy | 14—
BE < Ty
def ,
= "o gy, e (BAY), (6.9

with 1(B,B8')=0(e” hOqua). It is now clear that takindp, big enough we can make the two body
potentiall (8,8’) as small as needed.

Using Eq.(6.8), introducing a new effective potentislV including the contributions frond
andl, defining
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€ eff =1
_ (i
H Um(BI )— H Wﬁ(l)ﬂﬁ i+1) (6.9

. _ g . - L
and using lim _ | A| 1IogH§,iEﬁg>e W) =0 (as it follows from the normalization condition
S,mem,=1), we can rewriteP, as

1
Pr=glogl+ IogE 2 m(By ) [T e v
Ba TA YCA
with

def

¢
m(ﬁAaﬂA):Q 1:[

(iply €-1 PUEE
—uBe) (ﬁ(') 5;'),/3(«{;'“)

g U Fo Z(p BT ©10

wherem(3, ,7,) is a probability density. Observe that, if one chooksgs —log7 [so that both
hv and1(B,8') are small, the new interactioW satisfies a bound similar to the one ®f

Ny

[Wyll.=< ce*;dc(Y)?‘Yi]:[l e “RMI vycAp, (6.11)

for somec, x, >0, v=|¢|”.

B. Mayer’s expansion and polymer lattice gas

We shall now expand the small potential appearing in the expressidd,foivia a Mayer’s
expansionobtaining the pressure fa=0 plus a correction.

It will be convenient to collect together the contributions of the potentials whose supports
have the samelosure in the following sense: for a set formed by a unique pcbi@‘l? eAp we

define itsclosureas(H(i)) = (B(i) H(i) B(i“)) while for a set formed by a unique poiﬁig)
__def
eAp we deflne(B(')) = (B(')) finally for YC Ap we define its closure a%= Ug.v(G).
We say that a collectlo(i {Ynin_, of setsY;C 79" (think of them asmoleculey is con-

nectedif, given a couple ¥i,,Ys,) € CXC, it is possible to find{Yy, }] 1, such thatY;,NYy,
#0, Y NYp  #0andYy ﬂYfm#(b
Wr|t|ng e W(By. ™) ag the value fore=0 plus the correction, namely-i(e~W(Bv.7v)

—1), expanding the product ov&C Ap and collecting together the connected components, we
can rewrite Eq(6.10 as

1
Py glogl= IogE 2 mBymn) 2 YOI pvlBymy). (612

BA A

where

(1) yis a subset of\p, to be called in the followingolymer(they are, indeed, the union of a
connected collection of molecules

(2) I''is a collection of polymerst’ = (y4,...,v,), Nn=1 and'C Ap means thayCAp, Vyel;

(3) Y(I') is the function equal to 1 ifyNy' =0 for every v, y' € X with y#+' and 0 otherwise;
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@ p(¥B,.m,), YCAp is defined as
def

1 2
p(1By, )= ZE > 11 e "™W®em—1), (6.13

1
uN

where thex on the sum means that; ...,Y is a connected collection of subsets/of ;
(5) the term corresponding tB=0 must be interpreted as equal to 1.

The key observation is that, thanks to the above definition of closur@,.12 we can sum
over 5 spins before summing over tigespins. After doing this the measumg 3, , 7,) factorizes,
ie.,

1
PA= Sl0g1= 5 Iog E Y(F)H > 2 m(B,.n,)p(¥IB,.1,)

By 1y

def 1

=—log > Y II p(y). (6.14
|Al T

Namely, we have rewritteR, as the pressure faa=0 plus a correction having the form of the
pressure of a “polymer lattice gas,” with activitiggy) and hard core potentias(I’).

C. Cluster expansion and its convergence

A standard argument, exposed for instance in Ref. 13, 20, or 10, leads to

1
P,——logl= I Y(T)p((I')= YT()p(T 6.1
A~ log |A|ogE ()p(I) |A|F2 (D)p(I), (6.15
whereY T is the Mayer function, defined as

aef| > I f(w.y) if n>1,
YT(yy,y) =14 988 (peg (6.16

1 if n=1,

whereG(n) is the set of connected graphs which can be drawm eertices labeled 1,.n,by
connecting with links couples of distinct vertices; the functidry; ,y;) is equal to 1 ify;Ny;
#0 and O otherwise. By constructio®,"(T") is different from zero only ifl" is a connected
collection of polymers. Observe thBtcould contain many copies of the sameMore precisely,
herel represents a function from the subsets\gf to N [and we can think'(y) as representing
the number of copies of] such thatzycADF(y)goo.

A bound forp(y) can be obtained as follows:

*
1 p
|p<y>|<||p(y|~,->||msp>la E_ HHWYine”WY.”x. (6.17)
=pl, =k

Using the bound6.11) (and that, ifU? lY y, one hasEf_ Wy | |<cv]y]), we find
ny,

* p
|p(fy)|<eCV|'Y|2 E_ 1:[ Ce_ch(Yi)WYiH e_K‘Rj(Yi)L (61&
U=y 1=

j=1
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We can now use the connectedness constraint on the sum in order to extract a factor exponentially
small in the size ofy. Indeed, ifUf_,Y;=1y, one has botiE{_d.(Y;)=d.(Y;) and =_;ny,
=n,,. After extracting such a factor we can relax the constraints on the sum, so that

n
— Y —
e~ (24N, 2[ ] e~ (W2 IRi()]

lp(y)|<ce™1 11

1 - . Ny - p
xS _'(2 e—(K/z)dC(Y)Vnylzl‘[l e(K/Z)R(Y)|) _ 6.19
: j=

p=1 YCy

It is easy to see that the last sum is boundedpy »** so that

n

— Y —
e~ (2dypn 2] | e—(x@ﬂ&(y)} D p_ll(c|y|;1/4)p
=1 .

lp(y)|<ces
p=1

n
Y
<ce «dM(yp )] e <RI, (6.20
=1

for somec, «', >0 andv’ =|e|7/. Using the preceding bound we can easily prove that

Yo X

sup X |p(y)|=sc(v)Vee (21 (6.2

XEZd+1§(‘y>>r

where §(y) is the diameter of the polymey. A standard theorem, proved for instance in Refs. 13
and 10, states that, () satisfies(6.21), then

I'sx

sup X YT(D)|p(I)|<c(v')e (<r, (6.22
xe ApdD)=r

This implies that, varying\, P, is a uniformly convergent sequence of analytic functions in a
domain independent fromh. The limit, still analytic in the same domaifthanks to Vitali's
convergence theorems independent of the way the thermodynamic limit is perforrtied, one

can send the time side df to « either before the spatial side is sentetcor together with if,

thanks to the exponentially fast convergence of the sequence, impli€6.2%. For the same
reason, the limit is also independent of the choice of boundary conditions and, because of trans-
lational invariance, it is equal to

def 1 2 07 YT(D)p(I)
P= lim Py,=—logl+— _ 6.2
‘A‘Hoc A a g hOaFC%Jrl |F| ( 3)

def
where|T'|=|U,.ry| and 2/fpa) =limy_..| Ap|/|A].

D. Analyticity of the mean values

The analyticity for the mean value of an analytic local observé¥(é,,) (depending on the
variables in the finite se¢ CZ%) is an easy corollary of the previous result. .

We first observe thatS*¥ O) =limy 1_..(UIVN[[11) 2 g iy e v 1w SR O0p®eS,). This is
true thanks to the time and space translation invariancg5¥. Moreover, it is possible to
decompose&) as
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O(hdco(oN)= > OR(ay).

XN (VX{0})=0

This can be done expandi@@(h,) in power of, using the representation bf given in Secs. Il
and V and collecting the terms with the same support. Moreover, we will set

O (ay )— O,, % -ix(ox)
and

def

Ox(oy) = @Ej) OED(ay).
pfvx{j}mx¢0

It is easy to realize thaby is invariant under space and time translations, and satisfies
Nx

|Oxll<cypme O] e IR, 6.2

for somex, y>0, v=|¢|” and some constamt,>0 which depends on the size Wt SettingA
=V Xlt, the thermodynamic limit of the mean value ©f ¢,) can be written as

e 1 EO_Ae_ZXﬂAst@[‘/’X("’X)_{OX(UX)] def
=i I =9,P . 2
o) Alinoo|/\|a§ °d S e~ Exna#0¥x(ox) ‘ IPold) (6.25
OA (=0
Via a new cluster expansion we find
SRB(O)—Ilm|A| 12y YTDEAT) = p(T)] o, (6.26

A—o

wherep¢(y) are the activities corresponding to the potenita Oy . For || small enough, the
potential ¢x— { O satisfies the same bounds ¢f so thatSrn, oY () (p*(T) —p(I)) is a
uniformly convergent sequence of functions, analytie and{ in the product of two small discs.
This implies thatuSRE ) is analytic ine and given by

I'=(0,0 T( )
w8 0)= d(p4(T)—p(T 6.2
(O)=Fa 2., T 2P D)= pT)l 0. (6.27
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APPENDIX A: UNPERTURBED NONLINEAR DYNAMICS

The result about analyticity can be extended to the case in which the unperturbed dynamic is
made up of independemnlinear analytic Anosov systems,: T2—T?. We suppose that there
existv . () and\ . (¥) such that

(Dsgv ) (@) =N, (h)v(So(@)), (Dsv-)(d)=A_(P)v_(So()), (A1)
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with ¢ € T?, v (¢) and\ . (¢) are Hdder continuous anph , (¢)| 1, N _(#)|<\<1. Then we

consider again a perturbatidif/) on 7y analytic in . Observe, however, that in this case the
def

most naive example of perturbatiof(¢) = f* ()v . (), with () analytic, isno longeran

analytic perturbation.

1. Conjugation

The constitutive equation fash,, lifted on R?VN, is

So(he(#)) + et (h()) = So(#h) + Sh(So()). (A2)

In order to exploit the hyperbolicity, it is convenient to arrange the terms as follows:

(DSpohe) () — Sh(So(#h)) = — ef (+ Sh () —[So(h () — So( l/f)—(DSo5he)(d/)]-(A3)

Define
f,Xl ..... Xs )d_ef 0')5 f( + (51)( )++ (§5) ))|
((// _‘9§11----a§s ‘/f ngO,al (// gswoyas((/f {1=={g=0>
whereas
def def
fxa- Xs<¢>=§ XX yywi) (So())  and Sgt *S<w>=§ Sy S (P)WEMSo( ).

def def
Writing Sh (1) = S, ()WL %), and O Sow) () = =, SE*(WE(So( %)), with S5*(1)
=No(¥) 5yy, We get

(Os—l 5h>€<1. . .5hzs) ().
(A4)

FXX0500 Xs . .
xaéhi(w—ahi(so(w)):—ei( . 5h:~~5h:)<w>—

s=0

Finally, the recursive equation for the Taylor coefficients&bf(t//) is

. p f§+,x1 ..... Xs § y
5h§k+1)(‘//): - pé:o ( L1N )\+1(Som(l//§)))s;0 k1+'2ks=k (S—| 5h(|§l). . '5h(|is)) (Sg( lﬂ))
k=1
P (S(g;,xl ..... Xs )
-1/cm X1 ... ohXs
+3 11 x (sowg)))sgz I = e
k=1
X(Sh(h)). (AS)

A similar equation holds fok=¢".
From now on, the construction of the conjugation function goes on as in the linear case with
similar considerations. We have only to take in account the fact that a tree ofkondeit. €) does
not necessarily haviebranches, because of the term on the last line€ld (to be called a vertex
of type 0. Since the number of lines entering a vertex of type 8% one can easily prove that
the numberb, of branches of a tree of orddris bounded byk=b,=<2k—1, so that nothing
qualitatively changes in the bounds and the proof of analyticitylgfproceed as in Secs. Il and
VI.
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2. Unstable direction

The perturbed unstable direction in the pdin{y) is given by the equation

(DSWE) (h () =w.”, (h(Sp(¥))L"(). (AB)

def
Setting W(ﬁ(he(w)) = v(f)(w), it is convenient to rearrange the terms of the equation in the
following way:

(DSov ) (1) =N (v (So( ) = L5 (1h)v 7 (So( ) — (D) (hel ) 0 ()
~[DSy(he()) = DSo(#) 0. (). (A7)

Defining v {7 (¢) ==,V (y)wil (), and using again the considerations of Sec. IV, we finally
get

NP IVE) =N (P, )VEUSo(9) = + SLEP () VY (So(9)

_62 — VP Sh* . K ()
e} sl €,y € €

YiXq 1eee Xg
_521 ( OS—!V(E’?))/ghzl"'5his)(¢)

def
[with (DS wiP) () = S ()W (Spy)]. Again, because of the third term on the r.h.s.
of Eq. (A7), the number of branches of a tree appearing in the constructiafV/adnd 6L is
greater(in general than the order of the tree itself. This is not a problem, since one can easily
realize that, again, the numbleg of branches of a tree of ordéris such thak=b,<2k.

3. SRB interactions

Following the proof in Sec. IV and, proceeding as in Secs. V and VI, one proves analyticity
of the SRB distribution. In fact, the onliglight) difference in the construction of SRB potentials
is in the telescopic cutting necessary to represeht V andA as sums of local functions of spin
variables. Notice that now each tree node is associated to the product of a node fdéipggipn
[e.g., in the case of a tree contributingdb, f, can be a derivative dfor a derivative ofSy, see
(A5)] times a product of local Lyapunov exponents, like the faclbﬁzoxjrl(s{)”(ng))
def
= 6+(p,sg(”)(1,//§)) in (A5); the analogous expression appearing in a vertex wi) = — will
be denoted byﬂ_(p,sg(")¢§). So the total node function associated to a vertexill now be of
the form

def

FU(P(v), S5 () = 0 40 (P(v),58" (4 DT, (S5 (), (A8)

wherev ' is the vertex immediately following. The telescopic expansidb.l) has to be done
separatelyfor each of the factors in the above equatiafy) is Holder continuou§ getting in the

end potentials with the same kind of decay rate. The bounds are not qualitatively changed and the
subsequent analysis of Sec. V follows so that, by suitably modifying the decimation procedure,
analyticity of SRB measure can be proved. We point out that a main difference in the proof of
convergence of the cluster expansion is that now the unperturbed potentials are not vanishing, but
have support only on timelike segmehtsZ, and are exponentially decaying with the diameter of

I. For this reason one cannot proceed exactly as in Sec. VI. The standard way to treat this problem
(see Ref. ¥, is to choose a length such that the unperturbed interactions on getdiam(l)
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>r, are small enough for the cluster expansion. Then one fixes the size Bitloeksb=r, and
the size of theH-blocks, h, such that the Perron—Frobenius theorem is true forréueiced
partition function Z(B® , 7 L), in which only the interacton on sets
Ic(BPUHPIUBPHY), dlam(|)<r are taken in account.

APPENDIX B: GREEN-KUBO FORMULA AND LARGE DEVIATION

In this section we deal with an application. We introduce ltieal phase space contraction
rate’ on a volumeV,C V\ averaged on a tim&,, given by

ef

1 _
7 w) [y 2 100lde(DS)v, (S (v, (BD)

elr,

def
with Ag=VyXlg andlg=[—Ty/2,To/2]N7Z. We prove a Green—Kubo formula foyAO, from

which it will come out that generically its mean valge is strictly negative. Furthermore, we can
show the large fluctuations oon aroundy, satisfy a large deviation principle, namely they are

asymptotically described by a strictly convére energy functional £7): it can be obtained as
the Legendre transform of the generating functiorél) = Pas (£) [see Eq(6.29].
0

For the rest of the Appendix the SRB interaction will be calef; }xcd+1, to remind that
they are derived from the unstable restrictionDo, .
Theorem B1: Given § such thatn, <0,

(1) P(¢) is analytic and strictly convex id, for |e|<eg, |{|<1, with €, small enough; and
(2) the GreerKubo formula is valid:

92P"(0)] .—o= — 392P"(0)| 0. (B2)

Theorem B2: Given § such thatn, <0,

(1) the free energy E) is analytic in #, for |e|<ey, and pe[P'(—1),P'(1)];
(2) if [a,b]C[P’(—1),P’(1)], then

1
lim ﬁlog,u A ma,elabl)= max —AF(7,7,), (B3)
‘A0|~>oc nela,b]

def
with AF(7,7:) = F(n) —F(7,).

1. Local phase space contraction rate
Repeating the construction of SRB potentials leadinéB®), we set

def 1 XNAg#0

MNelCa) = [r o 2 (o), (B4)
XC
for a suitable potentiady , satisfying
nx
Ipull<ce <dcXpnx] e <R, (B5)
i=1

for somec, «, y>0 andv=|e€|”. From the invariance under time translations of the SRB measure,
we have
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def 1 1
7= lim 7 uSlogldetDS,)y )= im w7, )= lim — 3 gy
|v0|ﬂw| ol [Ag|—o Ao\le ol XNAg#0
Sy e~ Exna#0%x (03 +{Exn A 2 0bx(0x)
lim lim d¢log (B6)

T
|A0‘~>OO‘A‘4>OO|AO| EO_Ae_EXnA#(D‘ﬁX((TX)

e
It is easy to show the last expression is equal to the one with the summation&@ver 0 and
XN Ay#0 replaced byXC A, and without the limit inA (since the correction is only a border
effect; or simply using again the cluster expansion developed in Sec).\thDhis way, defining
the generating function %) as

def 1 E(,Ae*ZXCAW%wx)(ox)
P lim — log— ' .
(0= \A|H°C|A| > e*EXCMb;(Ux) (B7)
O'A
we finally get

Analyticity is achieved by cluster expansipne do not need small, but we can take, say|<1,
since{¢x}x areO(e)].

2. Green—Kubo formula

Consider the case in whicd is the Arnold’s cat map defined HAL).
Using the definition of pressurd@7) and the fast convergence properties of the cluster ex-
pansion ofP(¢), we find

. MﬁRB( ~Zici; |og\det|_osg|+gz,-€| IogldetDS:he"SU)
P({)= lim —log
|A‘~>w|A| M

ﬁ%B(e j<i, log/detLe so\) ! (B9Y)

where

(1) the matrixL=L~h, was introduced in Sec. Il B above;

(2 ,uSRB is the unperturbed SRB measuredify) is a local Hdder continuous observable, it
is defined as

2, O(Co(p|apc))
pSREO)= lim — : (B10)
2,1
[A]—o LN
and, independently of the boundary conditions, it is equal to the Lebesgue measure.
DefiningU, as

U,=log|detL|— ¢ log|detSy *>DS,°h,], (B11)

SRB ;

and using thauy’y” is the Lebesgue measure @R, we find

1 fdlpefzjelTUg(SW
P({)= lim — —, (B12
|A|~>OC|A| [ dyre™ Zie1;Yo(So¥)

so thatP’(0) is equal to
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1 J dy log|detS; DS, (h(Shy)) e Zie1 VoS
P'(0)= lim —r >,

|A|Hoc|A|j€|T

) (B13)
f d¢e—zje|Tuo<sgw)

SinceP’(0)| .~ is trivially=0, we can try to see i# P’ (0)|.—¢ is different from zerdif it were

P’(0) would be different from zero foe#0 small enough Recalling thatf () is the perturbing
function andf(y) is its projection on théth site, we get

P Olom i 1 3 [ S o)

— lim — W g g
_|A|I|Toc|A|J;T gg\:/ f(ZTr)ZWN)\ P (S (619

N

Sincef is periodic we havel P’ (0)|.-,=0.
A straightforward calculation shows that

1 1 dip . . .
> 92P"(0)] c=o= |A|I|TacWJ§T fm{'ﬁ[so D2f(Shyy) Sh(1)(Shi) ]

——Tr[(soloﬂsow)ﬂ— > Tr(S; "D (Shy) Tr¥(Sy 1D F(S) ¢))

j"ely
(B15)

where T is the trace restricted to tHanperturbeglunstable manifold. The preceding expression

can be rewritten in a more convenient way. Using the explicit expressioh@f, Eq.(3.5), and
defining Ag=U ¢ nnoynn(§), we find that the first term in Eq2.15 is equal to

E U ay g1 g } 1
p=0 fm)\alfo W) (— AP é:Z(Szp Par )
«G=* p= T

lé=<1

ag o a ap gap +1-p,

(B16)
le<1

Integrating by parts, we see that the sum of the second and third terms (@.[E§.is equal to

1 dij o g s g
22 | o “lf°1°l<¢>[x“2ffsz+x2 € (g,

(B17)
=1

Combining the three contributions, we finally find
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dw a “2
3§P'(0)|5:0=_ z Z fmxalfo 0”((/,))\012]‘5 & SO‘/’)

aj==* peZ

lé<1

. 1 ”n
~ lim IAIJ . )sz( 3 TS 'Di(Sh] =——a P"(0)] =0,

A
(B18)

that is the expected Green—Kubo relatieee Ref. 11

From Egs.(2.18 and(2.8), we see that, foe small enoughy . is negative and, generically,
strictly negativethe condition forf to begenericis just that the first line in Eq.2.18 is different
from Q].

Let us now compute Ed2.18) in a special case, essentially the simplest possible. Let

€ (p) = 2@ sin(gi—yt), € (p=0. (B19)

nenn

Substituting such choice in EQ.18, we find

difg  diy . 2d
9?P"(0)| —o= ; f N2 co(g— ) (v -€)2=— , (B20
Ol—o=-22 | o e oS upve-&?=— -, (B20)
whereé;=(1,0) and we used that, = (1/y1+\% —\/J1+\?).

So, choosingeeR small enough and different from zereg,, =P’ (0)=—[d/(1+\ " ?)]€?
+0(€%)<0. Furthermore, if.eR has modulus smaller than B({) is strictly convex[since
1/2P"(0)=—P’(0)>0 andP(¢) is analytic for|{|<1 ande small enough

3. Large deviations

In the present section we shall prove a large deviations property farWe will follow the
classical strategy set up in Refs. 22 and(it2particular we will refer to the formulas in Sec. 5 of
the lattej. The proof below will hold in the case, <0, namely in the generic case or, to be
definite, in the case the perturbation is chosen as in(Etp).

Thanks to the convexity oP(¢{), given ne[P’'(—1),P'(1)], there exists a unique point
Z(n) e[ —1,1] such thatP’ (Z(7))=»; considering such a poing and its neighbor of radius,

I s(7), such that s(»)C[P'(—1),P’(1)], from the “large deviation property Ill", Sec. 5 of Ref.
12, we get

SR 5, el 5(7))=0(1)eCl1aheOUoroD expf[ P(Z( 7)) — P(0)—Z(5) 7]|Agl}. (B21)

In our caseP(0)=0. Still for ne[P'(—1),P'(1)], we define the free energly(») as the
Laplace transform of the generating functiBf{):

def

F(n)=maxX{n—P(O}=2Z(n)n—P(Z(n)); (B22)
¢

therefore, forl 5()C[P’(—1),P'(1)],
wSR8(7, el 5(7))=0(1)eP0Maeloroh expf — | Ao|AF (7, 7:)}; (B23

whereAF (7, 77+)d=efF(77)— F(7.) [indeedF(7.)=—P(0)=0].
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Finally, if [a,b]C[P’(—1),P’(1)], it is suitable to takeSA0=|A0|‘ﬁ, 0<8<1, and divide
def
the interval [a,b] in |b—al|Ay|? identical disjoint subintervals centered ip,=a+(n
—1/2)5A0. We find

[b—al[Aql?
pSF Yy elabl)= 2wy el ()

=O(1)|Ag|PeCtol" P1g0UoNa expf| Ao| max [—AF(7,7,)]},
nela,b]

(B24)

namely the result in the second theorem.
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