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Thermodynamic entropy production fluctuation in a two-dimensional shear flow model
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We investigate fluctuations in the momentum flux across a surface perpendicular to the velocity gradient in
a stationary shear flow maintained by either thermostated deterministic or by stochastic boundary conditions.
In the deterministic system the fluctuation relation for the probability of large deviations, which holds for the
phase space volume contraction giving the Gibbs ensemble entropy production, never seems to hold for the
flux which gives the hydrodynamic entropy production. In the stochastic case the fluctuation relation is found
to hold for the total flux, as predicted by various exact results, but not for the flux across part of the surface.
The latter appear to satisfy a modified fluctuation relation. Similar results are obtained for the heat flux in a
steady state produced by stochastic boundaries at different temperatures.
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I. INTRODUCTION 1 P.(p)
Iimmlnm:p. 1.3
There has been much effort during the past decade to = T

connect the statistical mechanics of stationary nonequilib- )
rium stateSNS'S with the theory of dissipative dynamical Here(-) represents the average in the SNS. .,
systemg 1]. While most results obtained so far via this ap- _ | N quantito) is formally equal to the “rate of change
proach are more of mathematical than physical interest, thefdl the Gibbs entropy in the SNS. More precisely, if we start
is one potential exception: the fluctuation theof@hand its (e System with a measugey(dX) =po(X)dX, wheredX is
generalizationg3—6]. The original fluctuation theorem was the Liouville measure restricted to the surfatehen, using
stated and numerically checked for a particular “thermo-€velution(1.1),
stated” dynamical system in Reff7]. An heuristic connec-
tion with the relevant properties of reversibility and chaotic- Sg(t)=— Ef pilog pdX= u (o) (o)
ity of the system was also given in that paper. A rigorous dt ! ! H o0 ’
proof of the fluctuation theorem together with a clarification (1.4
of its connection with the theory of the invarial8RB) mea-
sure for a chaotic dynamical system was given in R&f.  where the existence of the limit will hold under the assump-
The phase-space time evolution of such a system is givefions of the GC theorem. Furthermore we will hae) <0
by an equation of the form implying thatSg(t)— — % whenever the limiting state is not
an equilibrium one with zero currenf8,10].
X=F(X), (1.2 Based on relatiofil.4), o,(X) is often called thénormal-
ized) “average entropy production during a time intervél
with F chosen to kee(t) confined to a compact surfage N the SNS. The identification af-., the object of the GC
in the phase space while forcing the system into a nonequih€orem, with entropy production was further strengthened
librium state. The latter requires th&tbe non-Hamiltonian, by the form ofo(X) in many examples of bulk thermostated
with div F(X) = o(X) #0. systems, e.g., those considered by Moran and Hof/&r
Using some very strong assumptions on dynamical systor electrical conduction, and in Reff12] for shear flow. In
tem (1.1), Gallarotti and CoheXGC) proved that in the SRB those systems(X) is given by an expression related to the
measur¢g 8] describing the SNS of this system the probabil-hydrodynamic entropy production and the validity of the
ity distribution P_(p) =(8(p— (X))}, of fluctuation relation, Eq(1.3), was confirmed by numerical
simulations, despite the fact that the conditions of the GC
1 (2 theorem are not satisfied there.
o (X)= —f a(X(t))dt, (1.2 However, such bulk thermostatted systems are very dif-
o) J -2 ferent from realistic systems which are typically driven to
SNS by inputs at their boundaries: the motion in their inte-
satisfies the equality riors is governed by Hamiltonian dynamics which do not
produce any phase-space volume contraction. It is therefore
important, for a comparison with real systems, to consider
*Email address: bonetto@math.rutgers.edu models of dynamical systems in which the thermostats forc-
"Email address: lebowitz@math.rutgers.edu ing the system into SNS operate only near boundaries. Such
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deterministic models were introduced by Chernov and LebdF/dt vanishes in the SNS(o) has a form of entropy
owitz [13] for shear flow and by Gallavotfil] and van production in the left and right heat “reservoirs” which is
Beijeren[14] for heat flux. also equal to the hydrodynamic entropy production in the
We note that the GC theorem has been extended to opesNS[16].

systems in contact with infinite thermal reservoirs which act The situation is different for the thermostatted boundary
on the system but are not changed by it. The simplest modyriven shear flow case considered in Raf)]. o(X) in Eq.
eling of such a situation is via stochastic transitions, inducedy 2) entering the GC theorem for that model, is not clearly
by the reservoirs, betwegn different microstates of the systeny|ated to the hydrodynamic entropy production. The latter
induced by the reservoirg4,6l. Thus, to model a system .\ corresponds to a momentum flux through the system,

carryl\l/lng a r|1|_eat k():urrec;lt and/o(;_? mor_r:_E_ntum flux,thor;e m‘5‘3‘/],\,,(X), for which a fluctuation relation holds for the stochas-
use Maxwetian boundary concitions. 'his means that a Ioalrt'ically driven system. The question is then whether there is

ticle hitting the left(right) wall will be reflected with a Max- still enough equivalence between systems driven determinis-
wellian distribution of velocities corresponding to tempera—tica”y ang stc?chastically so that th}é fluctuation relation for
tures T, (Tg) and mean velocities!, (u arallel to these ; .

L(Te) L(Ur) P Ju(X), derived for the latter, also holds in the former.

walls. ForT #Tg this will induce a SNS with a heat flux, h . hich hh .
while u # ug will (using periodic boundary conditions in the Another question which concermns both heat conduction

flow directions induce a SNS with a shear flow: see Refs.2nd the shear case is whether the fluctuation relation can be
[15,16]. It is expectedhoped that deterministi¢thermostat-  OPserved in real macroscopic physical systems. More pre-
ted and stochastic kinds of boundary modeling will yield cisely, we know that in the linear regime the fluctuation re-
similar SNS's of a macroscopic system away from thelations imply an Onsager type reciprocity relations for the
boundaries. This is what happens in equilibrium systems dfansport coefficient§20,4 which hold not only globally but
least when not in a phase transition region. also locally. Our question is therefore the following: assum-
Such an “equivalence of ensembles” is far from estab-ing that the fluctuation relation holds for some flux crossing
lished for SNS’s. In fact there is, at some level, a profounda surfaceS does it also holdin some form for the flux
difference between thermostatted and stochastically modelgtirough part ofS The reason this is important for the appli-
SNS’s as far asSg is concerned. As already noted, the cability of the fluctuation relation to a real system is that for

former haveSg(t) — — %, andSg(t) —(o)<0, while the lat-  values ofp for which P (p) is of order unity,P.(—p) in Eq.

ter haveSG(t)—>§G, S(t)—0. The origin of the difference (1_'3)’ _Wh'Ch co_rresponds to the flukgoing in the_ opposite
lies in the differences in the measures describing thesgIreCtlon from its usua_l one, €.9., th_e heat flowing from the
SNS’s. Thermostatted SNS’s are described by a SRB me old to the hqt reservorr, 1S so sm:_all IN & macroscopic system
sure which is singular with respect to the induced Lebesgu%‘at the possibility of observing it is effectively zero. A local

measuredX, while the SNS's of stochastically driven sys- ux reversal, on the other hand, may be quite observable: an
Attempt in this direction was indeed made by Ciliberto and

tems are(this can be proven in some case and expected iL hel21]. 1 q b ical i tqat f
general described by measures that are absolutely continu=2"o¢ e[21]. Here we describe numerical investigations o

ous with respect toX [17,18. However, this difference need these questions, for a deterministic gnd stochastically driven

not mean much for a macroscopic system, since quantities G1'€a" flow SNS's and for a stochastic heat flow model.

physical interest are sums of functions which depend only on

a few variables. Their properties are therefore determined by

the reduced distribution functions which can be expected to !l DESCRIPTION OF THE SHEAR FLOW MODEL

be absolutely continuous with respect to the local Lebesgue

measure, i.e., expressible as densities, even when the full ) ) ) ) )

measure is singular and fracfdld]. The system C.OI"ISIStS. cN'unlt mass part|cle.s_ contfimed in
Interestingly enough, it is possible for the boundary@ LXM box with periodic boundary conditions in the

driven pure heat flow case to model the thermostat in such girection, and reflecting boundaries on the walls perpendicu-

way that the expression far(X) appearing in the fluctuation !ar to they direction. The dynamics in the bulk of the system

relation is the same, up to terms whose average vanishes, fisr Hamiltonian, with hard core interactiorishe particles

both the deterministic and stochastic case; see[Rpflt can  have a radius). When a particle collides with the reflecting
be written as walls its outgoing speed is the same as the incoming one,

while the direction of the velocity is chosen in a way which
1 1 dF(X) simulates a moving boundary and creates a shear flow. The
U:(T_L_ T_R) QT Tt ¢ (1.9 boundary transformation we consider is the same as in Refs.
[13,22. Let ¢ and ¢ be the angle that the incomir{gutgo-
so that ing) velocity forms with the positivex direction if the par-
ticle collides with the upper wall or with the negatixedi-
1 rection if the particle collides with the lower wall. In the
T_L_ T_R)<JQ>’ (1.6 thermostatted system the outgoing anglds given by a
function of the incoming angle: = f(¢). The functionf
where Jo(X) is the heat flux through some surface in thewe choose isf(¢)=(m+b)— (7+b)*—¢(¢—2b). This
middle of the system and the average of the time derivativés time reversible, i.e.mr—f(7—f(¢))= ¢; see Fig. 1.

A. Deterministic

(o)=
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FIG. 1. Schematic representation of the dynamics of the system. FIG. 2. Events producing momentum flux.
B. Stochastic production. The momentum flux is equal to the momenta

The dynamics in the interior of the system is the same a§arried by particles crossing a line through the middle of the
before, while the outgoing velocity at the uppgawer wall ~ System plus the exchange of momentum between two collid-
is now chosen as if the particle was coming from a Maxwell-ing particles when their center are on opposite side of the
ian bath at temperatur~* moving at velocityv, (—vo).  lin€; see Fig. 2. o _ _

More precisely we assume that after a collision with the TO be more precise we first introduce a discrete time for
boundary the particle emerges with a velocity that is ranthe system(in a slightly different way from what we did in

domly chosen from a distribution: Ref.[22]). Let X=(q; ,v;) be a phase space poidt,(X) be
the time evolution induced by the dynamics, at{X) be the

1 B 2, 2 first time at which a particle crosses the middle line or two
Pv)=vyexp 7 (vx= epo) +vy) |, (2.1 particles on different sides of this line collide starting from
the phase poinK (we call such a situation aming event

) o ) and letS(X) =® ,x,(X). Finally, let w(X) be the exchange
whereZ is a normalization constant,, is the mearx mo- ¢« momentum at the phase poiXt

mentum of the particle after a collision, arg is 1 if the We now specify the quantity whose fluctuations we will
collision is with the upper wall and-1 if it is with lower  .heck. Given an integer, let
wall. '

In Ref. [22] we checked the validity of the fluctuation 2
relation for the phase-space contraction generated during the X) = Si(X 2.2
collisions of particles with the deterministic thermostatted m(X) i=Z 12 m(SX) 22

boundary. We divided the phase-space contraction into a
contribution due to the lower boundary and one due to thgng
upper one. We found that the fluctuation relation was well

verified for the total phase-space contractiw(X) but not 7.(X)
for the partial ones. PAX)= (2.3
As already noted, there is no apparent connection between (X)),

the phase-space contraction and the hydrodynamic entropy

production which is proportional to the flux of thkecompo- ~ Where the mean-) is taken with respect to the stationary

nent of the momentum across the system. In ReE8] an  measure of the system. Now &k, (p) be the distribution

equality between the average phase space contraction rdtenction of p,(X) and

and the average hydrodynamical entropy production rate was

shown to hold to first order in the shear in the limit in which I1,(p)

the system becomes largat constant densilyi.e., macro- &(p)= (X)) In(H (—p))'

scopic, but the shear rate goes to zero in such a way as to T T

maintain a constant total momentum transfer. This was donsv . . .

under the assumption that before a collision with either wall'* ¢ ¢a" fo,r’mulate our. fluctuation relation for the entropy

the particle velocities are distributed according to a Max_producnon as follows:

wellian. The equality between these averages was supported

by numerical evidence. lim &.(p)=Cp. 2.4
In the present paper we further investigate the possible T

equivalence between phase-space contraction and entropy _ .
Here C is the conversion constant between momentum flow

and entropy production that, from hydrodynam|&2], is

We observe that based on the proof of GC we have no reason fg = 2Un/ Ty Whereuy, is the velocity of the particle near the
expect that such a relation should hold for the partial phase-spadéPper boundary and, is the temperature near the boundary.
contraction. We tested it anyway, since, as already noted, the flu@bserve that this, as well as the following definitions, also
tuation relation appears to hold in more general situations thafinake sense in the stochastic case when the phase-space con-
those covered by the GC theorem, e.g., for the totakre. traction rate is not defined.
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In this setting we define a local entropy production by!ll. NUMERICAL EXPERIMENTS FOR THE SHEAR
looking at all events like the ones described in Fig. 2, that FLOW
occur in a specified part of the middle line of site More

precisely, let We simulated systems witN=20, 40, and 60 particles,

and L and M such that the number densit§=N/LM

=0.034 was fixed. We chose two different ways tolseind
w'(X)zw(X)X[OJ,_](X), (2.5 M. In one case we fbb=M, i.e., a square domain. In the
second case we kedy fixed at the value it had foN= 20,
and increasé proportionally asN is increased. In the deter-

where yA(X)=1 if the location of the momentum transfer ministic case we fixed the energy per particle N-yziviz

event is at a point i\ and 0 otherwise. We now define, ina _ hile in th hasti tixed th I ¢
way analogous to Eq$2.2) and(2.3), the quantitiesr (X), =1, while in the stochastic case we fixed the values o
| | | 8 o and B to reproduce the mean velocity, and temperature
P-(X), IT(p), and£(p), and state our “local fluctuation r _(, )2} observed in théy=60 simulation for the de-
relation” for the entropy production as terministic system. More precisely, we fixady=0.2 and
B~ 1=0.48. Finally the radius was fixed to 1. For each
lim ¢ (p)=Cp. (2.6)  Vvalue ofN andL we followed a single trajectory of the sys-
00 tem for 5x10% timing events, and used it to compute the
distributionsH'T(p). As in Ref.[22] (differently than in Ref.
More generally, we check if a relation of the form [23]) we did not discard any events between two consecutive
' segments of length.

lim g'T(p):c:,p (2.7 A. Stochastic case

T As discussed in Sec.(blso see Sec. V A for further dis-
cussion we expect the fluctuation relation to hold for the
holds. total momentum flux corresponding to the hydrodynamic en-

The stochastic model also permits us to discuss differeffopy production. This can indeed be seen in Fig. 3, in which
kind of transport phenomena. In fact we can set the reciproé-(p) is plotted for 7=300 andN=60 for the rectangular
cal temperatured of the upper and lower walls to different geometry. The dashed line represent the theoretical predic-
values:3" andB . In this case we will also have a transport tion &.(p)=0.76%. Similar results hold foN= 20 and 40.
of heat through the middle of the system. We also ran a The relation in the strong form given by E@.6) appears
simulation for this case, setting,=0 for simplicity; we re- not to hold forl<1, but Eq.(2.7) seems to hold as one
port the results in Sec. IV. Clearly the correct quantity toalways observes a linear behavior&{p) in Fig. 3.
compute is the energy transfered across the middle line when The results forg'T can be used to obtain the behavior of
a particle crosses or a collision happens. the slopeC, as a function of. We report the result in Fig. 4
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FIG. 4. SlopeC, as a function of in the stochastic shear flow fdt=20 (@), N=40 (X), andN=60 (). The left figure is for the
square geometry, while the right one is for the rectangular geometry.

for the three value oN and the two different geometries we Fig. 5, where¢ (p) is plotted forr=100, 200, and 300. The
have used. We observe that in the square box Casge-  dashed line represents the value predicted by(Ed). Al-
creases withN, and seems to reach a limit different from 1, though we still observe a linear behavior, the slope appears
whenN grows. If we just increase the horizontal side of theto be increasing with- so that no limit seems to be reached.
box, keeping its height constai@, increases with\; itis not e will attempt an explanation of this phenomenon in Sec.
clear from the data what, if any, limit is reached when \/,
—. Instead of fixingl we also tried fixing the length We observe that a relation like E(2.7) seems to hold if
XL but found nothing interesting. we look at the partial momentum flux. This is clearly shown
in Fig. 6, where the behavior qt(p) for =0.6 and several
values ofris plotted forN=60 in the rectangular geometry.
The situation looks very different in the deterministic As in the stochastic case we can look at the behavi@, @fs
case. No fluctuation relation seems to hold even when wa function ofl for both geometries. The results are plotted in
consider the full momentum transfer. The result are shown irfrig. 7. As can be seen, the slope depends only very weakly

B. Deterministic case

&-(p)
T
0.8 |
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FIG. 5. Fluctuation relation in the deterministic shear flow in the rectangular geometry for the total momentum fluxd40 (@),
7=200(X), and7=300(<).
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on the size of the system, at least for the square geometrguggest that the fluctuation of the phase-space contraction
The only value for whichC, seems to depend on the size is rate and those of the momentum flux behave differently.
[=0.9.

It is interesting to observe that if the fluctuation relation is IV. HEAT FLOW

true we would expect to observe a slo@e=2u,/T,, as ) » ]
discussed for the stochastic system. In this situation, and 1h€ Stochastic boundary condition permits us to study the

mainly for the square geometry, the valuew varies sig-  Case in which the two walls are kept at different temperatures
nificantly from N=20 to 60, whileC, remain almost con- |+ andT_. In this case the hydrodynamics entropy produc-

stant. This and the result for the total momentum transfefion is proportional to the heat current or energy flux from
the upper wall of the system to the lower one. The events

contributing to an exchange of energy are the same as those
G considered in Fig. 2, but now we consider the kinetic energy
of a particle passing through the middle line or the exchange

T
131 of energy in a collision between two particles that are on
! different sides of the middle line.
111 | Analogously to what we did in Sec. Il we defig¢X) as
[ the energy exchange for a poiXtthat is on the Poincare
| section with
091
| 712 .
| eX)= 2 &(S(X) 4.9
0.7 | i=—1/2
| and
0.5{ |
' e.X)= o) 4.2
I T = T s\ . .
03! (£4X))
I Now let E (e) be the distribution function oé,(X), and
|
0.1 . In( E.(e) )
0.0 0.2 0.4 0.6 0.8 . T (e.X)) \E—e))

As before, we expect that
FIG. 7. SlopeC, as a function ofl in the deterministic shear

flow for N=20 (@), N=40 (X), andN=60 (<) in the rectangular lim &.(e)=Ce, (4.3
geometry. The graph of the square geometry is analogous. T—00
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whereC is the proper conversion constant between heat flovand heat conduction. This is not surprising. As in Refs.
and entropy production: [4,5,16, we consider the stationary probabiliB.(X(t)) on
the space of the trajectories of the system from timeto
_ i_ i time 7. (This can be assumed to be unique; see for example,

T, T_° Refs. [17,24)). Then define the time reversal operation
1((q;,vi))=(g;,v;); then, if X(t) is a possible trajectory so
is [ (X(t)), and we can consider the measBre|P. Then as
in Refs.[4,5] one finds

Similarly we defines|(X), €(X), E'(e), and £ (e), and
check whether

lim £ (e)=Ce. (4.4)

T— 0

The numerical experiments are very similar to the ones de-
scribed in Sec. Ill, but we considered only stochastic bound-
ary conditions with a rectangular geometry. Finally, we fixed ¢
T,.=0.7, T_=0.4, and all the other parameters as in the
shear flow case. The global fluctuation relation is shown in
Fig. 8. There it can be observed that the fluctuations areo.7
smaller than the shear flow case. In fact, for 300, when in

the shear flow case the limiting behavior was reached, we
have just two points for the fluctuation. We interpret the
results as showing an approach to the expected limit. Similar
result are obtained foN=40 and 60. The plots foé (e), 0.5
again, appear very linear, and their slofggsare shown in

Fig. 9. Comments similar to those for the rectangular geom-
etry shear flow hold here. 0.4

C

V. CONCLUSIONS 0.3

We now try to summarize the results of our numerical
experiments. 0.2

A. Global fluctuation 00 0.1 02 03 04 05 06 07 038 0.9 ,;

In the case of the stochastic boundary conditions the fluc- FIG. 9. SlopeC, as a function of in the heat flow model for
tuation relation appears to be satisfied for both shear flom=20 (@), N=40 (x), andN=60 ().
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dP ; good agreement with our numerical data. We were not able

—_(X)=exp{ R(X(7))—R(X(— 7-))+f a(X(t))dt] to check this relation more directly due to the lengthy simu-

dP o7 lations involved, but we hope to come back to this in future
(5.1 work.

) ] ) We already noted that the quantity that enters the GC
for some appropriate functiom(X). Here the left-hand side theorem for our deterministic shear flow model, i.e., the
represents a Radon-Nykodyn derivative aRfX) is a  phase space contraction rate due to collisions, appears to
boundary term. The relation of R¢2] then follows. have little in common with the hydrodynamic entropy pro-

It is easy to see that in the shear flow model  qyction. This is different from models of deterministically
=JZ,a(X) is proportional to the momentum entering the houndary thermostatted heat conduction systems in which
system from the lower wall, minus the momentum leavingthe phase space contraction rate assume the form of an
the system from the upper wall. Due to the conservation okntropy productior[1,4,14. We expect that it is possible
momentum in the bulk of the system the total momentumyo introduce a deterministic forcing term for the shear
flux 7. through the middle of the system is proportional to flow acting only at, or near, the boundary and producing a
o, plus corrections due to the variation of momentum in thephase space contraction rate equal to the hydrodynamic en-
upper and lower halves of the system. We expect these twgopy production; see Ref13]. This would make the fluc-
quantities to fluctuate much less than the momentum flux, aiation relation dependent on the form of the boundary forc-
least if the system is large enough so that we can expect tipg term.
have a fluctuation relation forr,.? Similar considerations
hold for the heat conduction model.

The deterministic case is far less clear. We know that the B. Local fluctuation
average phase-space volume contraction rate is equal to the
hydrodynamic entropy production rate only in some limiting bo
situation; see Ref.13]. Our numerical results, together with

those of Ref[22], show that this equality does not extend to in good agreement with the more general relation, @c).

their fluctuations. We observe, first of all, that although the.l.hiS seems to be contrary to the results obtained in Refs
GC fluctuation relation appears not to h@ldp) is linear in [25] and([5] '

p, so that we can rewrite Eq2.4) as

As we already noted in Ref22] local fluctuations, in
th the stochastic and deterministic case, do not satisfy a
fluctuation law in the form of Eq(2.6) but they appear to be

To resolve this apparent contradiction we note that in
Ref.[25] Gallavotti considered a chain of weakly interacting
£(p)=C.p (5.2 Anosov dynamical systentsand took as a subsystem a finite

T w ' piece of the chain. The phase-space contraction rate is
an extensive quantity, as in the bulk thermostatted systems.

The most striking effect appears to be the divergence of th_gurthermore, correlations in the chain decay exponentially

slopeC. . A possible explanation for this can be based on thd" both space and time. In a system with these characteristics
assumption that the distributidi (p) is close to a Gaussian one can prove that fluctuations of the phase space contrac-
(see[22]), so that T tion rate due to the degree of freedom of the subsystem

satisfy a fluctuation relation with corrections proportional
to the boundary of the subsystem times the correlation
2 length.

T S(n)’ In our situation none of the above characteristics is
present. First of all, we are not able to divide the degrees of
freedom between the subsystem and the rest of the system.
Moreover the phase-space volume contraction is present only

5 at the boundary of the system, and the subsystem does not
2 y include any portion of the boundary. Finally, we expect the
S(7)= ;tZE_T D(t)— ;Zt:E_T |t|D(t) (5.3 correlation length in our system to be very lofmptentially
infinite), i.e., larger that the size of the subsystem considered.
For these reasons we do not expect the arguments in Refs.
is the integral of thew-autocorrelation functionD(t)  [25] and[5] to be applicable to our situation. However, we
=(m(®'(-))m(-))—(m)>. observe that our system is closer to the experimental situa-
Now, whenZ={___D(t) converges to a finite value, the tion described in Ref21], and to possible other experiments
fluctuation relation reduces to the usual Green-Kubo relationone can imagine doing.
On the other hand, if we assume tlgt _ D(t) approaches As in Ref.[22] we do not have any real explanation for
0 whenr—, thenC, has to diverge as !, which is in  the apparent validity of E¢2.7). We think that the fluctua-
tion relation can be extended to a partial relation of the form

where

2We observe, however, that differently from the analysis in Ref.
[4] we do not have aa priori bound on the fluctuation of the total ~ *The paper by Maes deals with a rather more general situation, but
momentum of the system. similar arguments also apply there.
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of Eqg. (2.7 in a wide range of situations. These include a ACKNOWLEDGMENTS
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