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Thermodynamic entropy production fluctuation in a two-dimensional shear flow model
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We investigate fluctuations in the momentum flux across a surface perpendicular to the velocity gradient in
a stationary shear flow maintained by either thermostated deterministic or by stochastic boundary conditions.
In the deterministic system the fluctuation relation for the probability of large deviations, which holds for the
phase space volume contraction giving the Gibbs ensemble entropy production, never seems to hold for the
flux which gives the hydrodynamic entropy production. In the stochastic case the fluctuation relation is found
to hold for the total flux, as predicted by various exact results, but not for the flux across part of the surface.
The latter appear to satisfy a modified fluctuation relation. Similar results are obtained for the heat flux in a
steady state produced by stochastic boundaries at different temperatures.
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I. INTRODUCTION

There has been much effort during the past decade
connect the statistical mechanics of stationary nonequ
rium states~SNS’s! with the theory of dissipative dynamica
systems@1#. While most results obtained so far via this a
proach are more of mathematical than physical interest, th
is one potential exception: the fluctuation theorem@2# and its
generalizations@3–6#. The original fluctuation theorem wa
stated and numerically checked for a particular ‘‘therm
stated’’ dynamical system in Ref.@7#. An heuristic connec-
tion with the relevant properties of reversibility and chaot
ity of the system was also given in that paper. A rigoro
proof of the fluctuation theorem together with a clarificati
of its connection with the theory of the invariant~SRB! mea-
sure for a chaotic dynamical system was given in Ref.@2#.

The phase-space time evolution of such a system is g
by an equation of the form

Ẋ5F~X!, ~1.1!

with F chosen to keepX(t) confined to a compact surfaceS
in the phase space while forcing the system into a none
librium state. The latter requires thatF be non-Hamiltonian,
with div F(X)5s(X)Þ0.

Using some very strong assumptions on dynamical s
tem ~1.1!, Gallarotti and Cohen~GC! proved that in the SRB
measure@8# describing the SNS of this system the probab
ity distribution Pt(p)5^d„p2pt(X)…&, of

st~X!5
1

t^s& E2t/2

t/2

s„X~ t !…dt, ~1.2!

satisfies the equality
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lim
t→`

1

t^s&
ln

Pt~p!

Pt~2p!
5p. ~1.3!

Here ^•& represents the average in the SNS.
The quantitŷ s& is formally equal to the ‘‘rate of change’

of the Gibbs entropy in the SNS. More precisely, if we st
the system with a measurem0(dX)5r0(X)dX, wheredX is
the Liouville measure restricted to the surfaceS then, using
evolution ~1.1!,

ṠG~ t !52
d

dt E r t logr tdX5m t~s! ——→
t→`

^s&,

~1.4!

where the existence of the limit will hold under the assum
tions of the GC theorem. Furthermore we will have^s&,0
implying thatSG(t)→2` whenever the limiting state is no
an equilibrium one with zero currents@9,10#.

Based on relation~1.4!, st(X) is often called the~normal-
ized! ‘‘average entropy production during a time intervalt’’
in the SNS. The identification ofs` , the object of the GC
theorem, with entropy production was further strengthen
by the form ofs(X) in many examples of bulk thermostate
systems, e.g., those considered by Moran and Hoover@11#
for electrical conduction, and in Ref.@12# for shear flow. In
those systemss(X) is given by an expression related to th
hydrodynamic entropy production and the validity of th
fluctuation relation, Eq.~1.3!, was confirmed by numerica
simulations, despite the fact that the conditions of the G
theorem are not satisfied there.

However, such bulk thermostatted systems are very
ferent from realistic systems which are typically driven
SNS by inputs at their boundaries: the motion in their in
riors is governed by Hamiltonian dynamics which do n
produce any phase-space volume contraction. It is there
important, for a comparison with real systems, to consi
models of dynamical systems in which the thermostats fo
ing the system into SNS operate only near boundaries. S
©2001 The American Physical Society29-1
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deterministic models were introduced by Chernov and L
owitz @13# for shear flow and by Gallavotti@1# and van
Beijeren@14# for heat flux.

We note that the GC theorem has been extended to o
systems in contact with infinite thermal reservoirs which
on the system but are not changed by it. The simplest m
eling of such a situation is via stochastic transitions, indu
by the reservoirs, between different microstates of the sys
induced by the reservoirs@4,6#. Thus, to model a system
carrying a heat current and/or a momentum flux, one m
use Maxwellian boundary conditions. This means that a p
ticle hitting the left~right! wall will be reflected with a Max-
wellian distribution of velocities corresponding to tempe
tures TL(TR) and mean velocitiesuL(uR) parallel to these
walls. ForTLÞTR this will induce a SNS with a heat flux
while uLÞuR will ~using periodic boundary conditions in th
flow directions! induce a SNS with a shear flow; see Re
@15,16#. It is expected~hoped! that deterministic~thermostat-
ted! and stochastic kinds of boundary modeling will yie
similar SNS’s of a macroscopic system away from t
boundaries. This is what happens in equilibrium system
least when not in a phase transition region.

Such an ‘‘equivalence of ensembles’’ is far from esta
lished for SNS’s. In fact there is, at some level, a profou
difference between thermostatted and stochastically mod
SNS’s as far asSG is concerned. As already noted, th
former haveSG(t)→2`, andṠG(t)→^s&,0, while the lat-
ter haveSG(t)→S̄G , ṠG(t)→0. The origin of the difference
lies in the differences in the measures describing th
SNS’s. Thermostatted SNS’s are described by a SRB m
sure which is singular with respect to the induced Lebes
measuredX, while the SNS’s of stochastically driven sy
tems are~this can be proven in some case and expecte
general! described by measures that are absolutely cont
ous with respect todX @17,18#. However, this difference nee
not mean much for a macroscopic system, since quantitie
physical interest are sums of functions which depend only
a few variables. Their properties are therefore determined
the reduced distribution functions which can be expected
be absolutely continuous with respect to the local Lebes
measure, i.e., expressible as densities, even when the
measure is singular and fractal@19#.

Interestingly enough, it is possible for the bounda
driven pure heat flow case to model the thermostat in suc
way that the expression fors(X) appearing in the fluctuation
relation is the same, up to terms whose average vanishes
both the deterministic and stochastic case; see Ref.@1#. It can
be written as

s5S 1

TL
2

1

TR
D JQ1

dF~X!

dt
, ~1.5!

so that

^s&5S 1

TL
2

1

TR
D ^JQ&, ~1.6!

where JQ(X) is the heat flux through some surface in t
middle of the system and the average of the time deriva
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dF/dt vanishes in the SNS.̂s& has a form of entropy
production in the left and right heat ‘‘reservoirs’’ which i
also equal to the hydrodynamic entropy production in
SNS @16#.

The situation is different for the thermostatted bounda
driven shear flow case considered in Ref.@13#. s(X) in Eq.
~1.2!, entering the GC theorem for that model, is not clea
related to the hydrodynamic entropy production. The lat
now corresponds to a momentum flux through the syst
JM(X), for which a fluctuation relation holds for the stocha
tically driven system. The question is then whether there
still enough equivalence between systems driven determ
tically and stochastically so that the fluctuation relation
JM(X), derived for the latter, also holds in the former.

Another question which concerns both heat conduct
and the shear case is whether the fluctuation relation ca
observed in real macroscopic physical systems. More p
cisely, we know that in the linear regime the fluctuation r
lations imply an Onsager type reciprocity relations for t
transport coefficients@20,4# which hold not only globally but
also locally. Our question is therefore the following: assu
ing that the fluctuation relation holds for some flux crossi
a surfaceS does it also hold~in some form! for the flux
through part ofS. The reason this is important for the app
cability of the fluctuation relation to a real system is that f
values ofp for which Pt(p) is of order unity,Pt(2p) in Eq.
~1.3!, which corresponds to the fluxJ going in the opposite
direction from its usual one, e.g., the heat flowing from t
cold to the hot reservoir, is so small in a macroscopic sys
that the possibility of observing it is effectively zero. A loc
flux reversal, on the other hand, may be quite observable
attempt in this direction was indeed made by Ciliberto a
Laroche@21#. Here we describe numerical investigations
these questions for a deterministic and stochastically dri
shear flow SNS’s and for a stochastic heat flow model.

II. DESCRIPTION OF THE SHEAR FLOW MODEL

A. Deterministic

The system consists ofN unit mass particles contained i
an L3M box with periodic boundary conditions in thex
direction, and reflecting boundaries on the walls perpend
lar to they direction. The dynamics in the bulk of the syste
is Hamiltonian, with hard core interactions~the particles
have a radiusr!. When a particle collides with the reflectin
walls its outgoing speed is the same as the incoming o
while the direction of the velocity is chosen in a way whic
simulates a moving boundary and creates a shear flow.
boundary transformation we consider is the same as in R
@13,22#. Let w andc be the angle that the incoming~outgo-
ing! velocity forms with the positivex direction if the par-
ticle collides with the upper wall or with the negativex di-
rection if the particle collides with the lower wall. In th
thermostatted system the outgoing anglec is given by a
function of the incoming anglew:c5 f (w). The functionf
we choose isf (w)5(p1b)2A(p1b)22w(w22b). This
is time reversible, i.e.,p2 f „p2 f (w)…5w; see Fig. 1.
9-2
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B. Stochastic

The dynamics in the interior of the system is the same
before, while the outgoing velocity at the upper~lower! wall
is now chosen as if the particle was coming from a Maxwe
ian bath at temperatureb21 moving at velocityv0 (2v0).
More precisely we assume that after a collision with t
boundary the particle emerges with a velocity that is r
domly chosen from a distribution:

P~v !5
1

Z
vy expS b

2
„~vx2eyv0!21vy

2
…D , ~2.1!

whereZ is a normalization constant,v0 is the meanx mo-
mentum of the particle after a collision, andey is 1 if the
collision is with the upper wall and21 if it is with lower
wall.

In Ref. @22# we checked the validity of the fluctuatio
relation for the phase-space contraction generated during
collisions of particles with the deterministic thermostatt
boundary. We divided the phase-space contraction int
contribution due to the lower boundary and one due to
upper one. We found that the fluctuation relation was w
verified for the total phase-space contractions(X) but not
for the partial ones.1

As already noted, there is no apparent connection betw
the phase-space contraction and the hydrodynamic ent
production which is proportional to the flux of thex compo-
nent of the momentum across the system. In Ref.@13# an
equality between the average phase space contraction
and the average hydrodynamical entropy production rate
shown to hold to first order in the shear in the limit in whic
the system becomes large~at constant density!, i.e., macro-
scopic, but the shear rate goes to zero in such a way a
maintain a constant total momentum transfer. This was d
under the assumption that before a collision with either w
the particle velocities are distributed according to a Ma
wellian. The equality between these averages was suppo
by numerical evidence.

In the present paper we further investigate the poss
equivalence between phase-space contraction and en

1We observe that based on the proof of GC we have no reaso
expect that such a relation should hold for the partial phase-s
contraction. We tested it anyway, since, as already noted, the
tuation relation appears to hold in more general situations t
those covered by the GC theorem, e.g., for the totals here.

FIG. 1. Schematic representation of the dynamics of the syst
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production. The momentum flux is equal to the mome
carried by particles crossing a line through the middle of
system plus the exchange of momentum between two co
ing particles when their center are on opposite side of
line; see Fig. 2.

To be more precise we first introduce a discrete time
the system~in a slightly different way from what we did in
Ref. @22#!. Let X5(qi ,v i) be a phase space point,F t(X) be
the time evolution induced by the dynamics, andt(X) be the
first time at which a particle crosses the middle line or tw
particles on different sides of this line collide starting fro
the phase pointX ~we call such a situation atiming event!
and letS(X)5Ft(X)(X). Finally, let p(X) be the exchange
of x momentum at the phase pointX.

We now specify the quantity whose fluctuations we w
check. Given an integert, let

pt~X!5 (
i 52t/2

t/2

p„Si~X!… ~2.2!

and

pt~X!5
pt~X!

^pt~X!&,
~2.3!

where the mean̂•& is taken with respect to the stationa
measure of the system. Now letPt(p) be the distribution
function of pt(X) and

jt~p!5
1

^pt~X!&
lnS Pt~p!

Pt~2p! D .

We can formulate our ‘‘fluctuation relation for the entrop
production’’ as follows:

lim
t→`

jt~p!5Cp. ~2.4!

HereC is the conversion constant between momentum fl
and entropy production that, from hydrodynamics@22#, is
C52ub /Tb whereub is the velocity of the particle near th
upper boundary andTb is the temperature near the bounda
Observe that this, as well as the following definitions, a
make sense in the stochastic case when the phase-space
traction rate is not defined.

to
ce
c-
n

. FIG. 2. Events producing momentum flux.
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FIG. 3. Fluctuation relation for
the momentum flux in the stocas
tic shear flow with a rectangula
geometry. The filled circles~d!
represent the experimental valu
for the total momentum flux, with
error bars, for t5400 and N
560, while the dashed line is the
theoretical prediction. The othe
data represent the partial fluctua
tion relation for l 50.9 ~h!, l
50.6 ~L!, and l 50.3 ~3!. In all
three cases,t5400.
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In this setting we define a local entropy production
looking at all events like the ones described in Fig. 2, t
occur in a specified part of the middle line of sizelL. More
precisely, let

p l~X!5p~X!x@0,lL #~X!, ~2.5!

wherexA(X)51 if the location of the momentum transfe
event is at a point inA and 0 otherwise. We now define, in
way analogous to Eqs.~2.2! and~2.3!, the quantitiespt

l (X),
pt

l (X), Pt
l (p), and jt

l (p), and state our ‘‘local fluctuation
relation’’ for the entropy production as

lim
t→`

jt
l ~p!5Cp. ~2.6!

More generally, we check if a relation of the form

lim
t→`

jt
l ~p!5Clp ~2.7!

holds.
The stochastic model also permits us to discuss diffe

kind of transport phenomena. In fact we can set the recip
cal temperatureb of the upper and lower walls to differen
values:b1 andb2. In this case we will also have a transpo
of heat through the middle of the system. We also ra
simulation for this case, settingv050 for simplicity; we re-
port the results in Sec. IV. Clearly the correct quantity
compute is the energy transfered across the middle line w
a particle crosses or a collision happens.
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III. NUMERICAL EXPERIMENTS FOR THE SHEAR
FLOW

We simulated systems withN520, 40, and 60 particles
and L and M such that the number densityd5N/LM
50.034 was fixed. We chose two different ways to setL and
M. In one case we fixL5M , i.e., a square domain. In th
second case we keepM fixed at the value it had forN520,
and increaseL proportionally asN is increased. In the deter
ministic case we fixed the energy per particle (1/2N)S iv i

2

51, while in the stochastic case we fixed the values ofv0
and b to reproduce the mean velocityub and temperature
Tb5^(v2u)2& observed in theN560 simulation for the de-
terministic system. More precisely, we fixedv050.2 and
b2150.48. Finally the radiusr was fixed to 1. For each
value ofN andL we followed a single trajectory of the sys
tem for 53108 timing events, and used it to compute th
distributionsPt

l (p). As in Ref.@22# ~differently than in Ref.
@23#! we did not discard any events between two consecu
segments of lengtht.

A. Stochastic case

As discussed in Sec. I~also see Sec. V A for further dis
cussion! we expect the fluctuation relation to hold for th
total momentum flux corresponding to the hydrodynamic
tropy production. This can indeed be seen in Fig. 3, in wh
jt(p) is plotted for t5300 andN560 for the rectangular
geometry. The dashed line represent the theoretical pre
tion j`(p)50.769p. Similar results hold forN520 and 40.

The relation in the strong form given by Eq.~2.6! appears
not to hold for l ,1, but Eq. ~2.7! seems to hold as on
always observes a linear behavior ofjt

l (p) in Fig. 3.
The results forjt

l can be used to obtain the behavior
the slopeCl as a function ofl. We report the result in Fig. 4
9-4
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FIG. 4. SlopeCl as a function ofl in the stochastic shear flow forN520 ~d!, N540 ~3!, andN560 ~L!. The left figure is for the
square geometry, while the right one is for the rectangular geometry.
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for the three value ofN and the two different geometries w
have used. We observe that in the square box caseCl de-
creases withN, and seems to reach a limit different from
whenN grows. If we just increase the horizontal side of t
box, keeping its height constant,Cl increases withN; it is not
clear from the data what, if any, limit is reached whenN
→`. Instead of fixingl we also tried fixing the lengthl
3L but found nothing interesting.

B. Deterministic case

The situation looks very different in the determinist
case. No fluctuation relation seems to hold even when
consider the full momentum transfer. The result are show
05612
e
in

Fig. 5, wherejt(p) is plotted fort5100, 200, and 300. The
dashed line represents the value predicted by Eq.~2.4!. Al-
though we still observe a linear behavior, the slope appe
to be increasing witht so that no limit seems to be reache
We will attempt an explanation of this phenomenon in S
V.

We observe that a relation like Eq.~2.7! seems to hold if
we look at the partial momentum flux. This is clearly show
in Fig. 6, where the behavior ofjt

l (p) for l 50.6 and several
values oft is plotted forN560 in the rectangular geometry
As in the stochastic case we can look at the behavior ofCl as
a function ofl for both geometries. The results are plotted
Fig. 7. As can be seen, the slope depends only very we
FIG. 5. Fluctuation relation in the deterministic shear flow in the rectangular geometry for the total momentum flux witht5100 ~d!,
t5200 ~3!, andt5300 ~L!.
9-5
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FIG. 6. Approach to a limit of
the right hand side of Eq.~2.7! for
the deterministic case. In this cas
l 50.6, while t5100 ~d!, 300
~3!, 500 ~L!, and 700~h!.
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on the size of the system, at least for the square geom
The only value for whichCl seems to depend on the size
l 50.9.

It is interesting to observe that if the fluctuation relation
true we would expect to observe a slopeCl52ub /Tb , as
discussed for the stochastic system. In this situation,
mainly for the square geometry, the value ofub varies sig-
nificantly from N520 to 60, whileCl remain almost con-
stant. This and the result for the total momentum trans

FIG. 7. SlopeCl as a function ofl in the deterministic shea
flow for N520 ~d!, N540 ~3!, andN560 ~L! in the rectangular
geometry. The graph of the square geometry is analogous.
05612
ry.

d

r

suggest that the fluctuation of the phase-space contrac
rate and those of the momentum flux behave differently.

IV. HEAT FLOW

The stochastic boundary condition permits us to study
case in which the two walls are kept at different temperatu
T1 andT2 . In this case the hydrodynamics entropy produ
tion is proportional to the heat current or energy flux fro
the upper wall of the system to the lower one. The eve
contributing to an exchange of energy are the same as t
considered in Fig. 2, but now we consider the kinetic ene
of a particle passing through the middle line or the excha
of energy in a collision between two particles that are
different sides of the middle line.

Analogously to what we did in Sec. II we define«(X) as
the energy exchange for a pointX that is on the Poincare´
section with

«t~X!5 (
i 52t/2

t/2

«„Si~X!… ~4.1!

and

et~X!5
«t~X!

^«t~X!&
. ~4.2!

Now let Et(e) be the distribution function ofet(X), and

jt~e!5
1

^«t~X!&
lnS Et~e!

Et~2e! D .

As before, we expect that

lim
t→`

jt~e!5Ce, ~4.3!
9-6
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FIG. 8. Fluctuation relation for
the total energy flux in the hea
flow model. The experimental val
ues are plotted with an error ba
for t5100 ~d!, t5200 ~3!, and
t5300 ~L! and N520. The
dashed line is the theoretical pre
diction.
o

d
nd
ed
he
i

a

w
he
il

m

a

u
o

fs.

ple,
n

whereC is the proper conversion constant between heat fl
and entropy production:

C5
1

T1
2

1

T2
.

Similarly we define« l(X), el(X), Et
l (e), and jt

l (e), and
check whether

lim
t→`

jt
l ~e!5Cle. ~4.4!

The numerical experiments are very similar to the ones
scribed in Sec. III, but we considered only stochastic bou
ary conditions with a rectangular geometry. Finally, we fix
T150.7, T250.4, and all the other parameters as in t
shear flow case. The global fluctuation relation is shown
Fig. 8. There it can be observed that the fluctuations
smaller than the shear flow case. In fact, fort5300, when in
the shear flow case the limiting behavior was reached,
have just two points for the fluctuation. We interpret t
results as showing an approach to the expected limit. Sim
result are obtained forN540 and 60. The plots forjt

l (e),
again, appear very linear, and their slopesCl are shown in
Fig. 9. Comments similar to those for the rectangular geo
etry shear flow hold here.

V. CONCLUSIONS

We now try to summarize the results of our numeric
experiments.

A. Global fluctuation

In the case of the stochastic boundary conditions the fl
tuation relation appears to be satisfied for both shear fl
05612
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w

and heat conduction. This is not surprising. As in Re
@4,5,16#, we consider the stationary probabilityPt(X(t)) on
the space of the trajectories of the system from time2t to
time t. ~This can be assumed to be unique; see for exam
Refs. @17,24#!. Then define the time reversal operatio
I ((qi ,v i))5(qi ,v i); then, if X(t) is a possible trajectory so

is I (X(t)), and we can consider the measureP̄5IP. Then as
in Refs.@4,5# one finds

FIG. 9. SlopeCl as a function ofl in the heat flow model for
N520 ~d!, N540 ~3!, andN560 ~L!.
9-7



e
ng
o

um
to
th
tw
,

ct

th
o
ng
h
to
h

th
th
n

e
io

ble
u-
re

GC
he
s to
o-
ly
ich

f an

ar
a
en-

rc-

fy a

efs.

in
g

te
is

ms.
ally
tics

trac-
tem
al
ion

is
of

tem.
only

not
he

red.
efs.
e
tua-
ts

r

rm

ef
l , but

F. BONETTO AND J. L. LEBOWITZ PHYSICAL REVIEW E64 056129
dP

dP̄
~X!5expH R~X~t!!2R„X~2t!…1E

2t

t

s„X~ t !…dtJ
~5.1!

for some appropriate functions(X). Here the left-hand side
represents a Radon-Nykodyn derivative andR(X) is a
boundary term. The relation of Ref.@2# then follows.

It is easy to see that in the shear flow modelst

5*2t
t s(X) is proportional to the momentum entering th

system from the lower wall, minus the momentum leavi
the system from the upper wall. Due to the conservation
momentum in the bulk of the system the total moment
flux pt through the middle of the system is proportional
st plus corrections due to the variation of momentum in
upper and lower halves of the system. We expect these
quantities to fluctuate much less than the momentum flux
least if the system is large enough so that we can expe
have a fluctuation relation forpt .2 Similar considerations
hold for the heat conduction model.

The deterministic case is far less clear. We know that
average phase-space volume contraction rate is equal t
hydrodynamic entropy production rate only in some limiti
situation; see Ref.@13#. Our numerical results, together wit
those of Ref.@22#, show that this equality does not extend
their fluctuations. We observe, first of all, that although t
GC fluctuation relation appears not to holdjt(p) is linear in
p, so that we can rewrite Eq.~2.4! as

jt~p!5Ctp. ~5.2!

The most striking effect appears to be the divergence of
slopeCt . A possible explanation for this can be based on
assumption that the distributionPt(p) is close to a Gaussia
~see@22#!, so that

Ct5
2

S~t!
,

where

S~t!5
2

t (
t52t

2

D~ t !2
2

t2 (
t52t

t

utuD~ t ! ~5.3!

is the integral of thep-autocorrelation functionD(t)
5^p(F t(•))p(•)&2^p&2.

Now, when( t52t
t D(t) converges to a finite value, th

fluctuation relation reduces to the usual Green-Kubo relat
On the other hand, if we assume that( t52t

t D(t) approaches
0 whent→`, thenCt has to diverge ast21, which is in

2We observe, however, that differently from the analysis in R
@4# we do not have ana priori bound on the fluctuation of the tota
momentum of the system.
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good agreement with our numerical data. We were not a
to check this relation more directly due to the lengthy sim
lations involved, but we hope to come back to this in futu
work.

We already noted that the quantity that enters the
theorem for our deterministic shear flow model, i.e., t
phase space contraction rate due to collisions, appear
have little in common with the hydrodynamic entropy pr
duction. This is different from models of deterministical
boundary thermostatted heat conduction systems in wh
the phase space contraction rate assume the form o
entropy production@1,4,14#. We expect that it is possible
to introduce a deterministic forcing term for the she
flow acting only at, or near, the boundary and producing
phase space contraction rate equal to the hydrodynamic
tropy production; see Ref.@13#. This would make the fluc-
tuation relation dependent on the form of the boundary fo
ing term.

B. Local fluctuation

As we already noted in Ref.@22# local fluctuations, in
both the stochastic and deterministic case, do not satis
fluctuation law in the form of Eq.~2.6! but they appear to be
in good agreement with the more general relation, Eq.~2.7!.
This seems to be contrary to the results obtained in R
@25# and @5#.

To resolve this apparent contradiction we note that
Ref. @25# Gallavotti considered a chain of weakly interactin
Anosov dynamical systems,3 and took as a subsystem a fini
piece of the chain. The phase-space contraction rate
an extensive quantity, as in the bulk thermostatted syste
Furthermore, correlations in the chain decay exponenti
in both space and time. In a system with these characteris
one can prove that fluctuations of the phase space con
tion rate due to the degree of freedom of the subsys
satisfy a fluctuation relation with corrections proportion
to the boundary of the subsystem times the correlat
length.

In our situation none of the above characteristics
present. First of all, we are not able to divide the degrees
freedom between the subsystem and the rest of the sys
Moreover the phase-space volume contraction is present
at the boundary of the system, and the subsystem does
include any portion of the boundary. Finally, we expect t
correlation length in our system to be very long~potentially
infinite!, i.e., larger that the size of the subsystem conside
For these reasons we do not expect the arguments in R
@25# and @5# to be applicable to our situation. However, w
observe that our system is closer to the experimental si
tion described in Ref.@21#, and to possible other experimen
one can imagine doing.

As in Ref. @22# we do not have any real explanation fo
the apparent validity of Eq.~2.7!. We think that the fluctua-
tion relation can be extended to a partial relation of the fo

.
3The paper by Maes deals with a rather more general situation

similar arguments also apply there.
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of Eq. ~2.7! in a wide range of situations. These include
system of particles under the influence of an electric field
a Gaussian thermostat; see Refs.@23# and @26# for more de-
tails. We think that for the asymmetric simple exclusion p
cess, one should be able to find an analytical justification
this behavior.
05612
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