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Abstract We investigate analytically and numerically the spatial structure of the non-
equilibrium stationary states (NESS) of a point particle moving in a two dimensional pe-
riodic Lorentz gas (Sinai Billiard). The particle is subject to a constant external electric field
E as well as a Gaussian thermostat which keeps the speed |v| constant. We show that de-
spite the singular nature of the SRB measure its projections on the space coordinates are
absolutely continuous. We further show that these projections satisfy linear response laws
for small E. Some of these projections are computed numerically. We compare these re-
sults with those obtained from simple models in which the collisions with the obstacles are
replaced by random collisions. Similarities and differences are noted.

Keywords Billiard · Green-Kubo · SRB measure · Thermostat

1 Introduction

In this paper we continue our study of nonequilibrium stationary states (NESS) maintained
by a Gaussian thermostat [1, 3–5]. Theoretical analysis and computer simulations show that
the NESS obtained from such artificial model dynamics can give useful information on real
systems maintained in NESS by coupling with heat baths [9].
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Fig. 1 Typical obstacles
placement

Here we focus on the Moran-Hoover (MH) model of a single particle in a periodic billiard
moving under the influence of an electric field E and a Gaussian thermostat that keeps the
kinetic energy constant [11]. The equations of motion are:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = p

ṗ = E − α(p)p + Fobs(x)

α(p) = (p · E)

(p · p)

(1)

where x is the position, p the momentum of the particle with unit mass, and Fobs(x) repre-
sents elastic collision with the obstacles. It is clear from (1) and the fact that collisions with
the obstacles do not change |p| that d

dt
(p · p) = 0. We shall therefore set |p| = 1 from now

on.
The particle moves on a 2-dimensional torus whose side can be chosen to be 1. An

arrangement of the obstacles used for all the simulations presented in this paper is shown
in Fig. 1. The two obstacles have radii r1 = 0.2 and r2 = 0.4. This is also the arrangement
used in our previous works [1, 2] and is chosen to have a finite horizon, i.e. there is an upper
bound for the time between successive collisions of the particle with the obstacles. Moreover
we take E to be along the horizontal x axis, i.e. E = (E,0). The analytical results apply to
general geometries with finite horizons.

The set of states where the particle collides with a given obstacle can be parametrized
by two angles: ϑ ∈ [0,2π ] the angle on the obstacle between the collision point and the
positive x direction, and ψ the angle between the particle velocity and the outgoing normal
to the obstacle at the collision point. To obtain a complete coordinate system for the collision
states we define the coordinate θ = ϑ for obstacle 1 (see Fig. 1) and θ = ϑ +2π for obstacle
2 so that θ ∈ [0,4π]. In these coordinates, the elastic collision is simply represented by the
map C(θ,ψ) = (θ,π − ψ), where ψ ∈ [π/2,3π/2] before collision and ψ ∈ [−π/2,π/2]
after collision. We will call M = [0,4π ] × [−π/2,π/2] the set of possible pairs (θ,ψ)

representing the position of the particle just after a collision. M corresponds to a Poincaré
section of the flow. See Fig. 2 for a depiction of θ and ψ .

Since |p| is constant, the trajectory of the particle can be represented by its position
x(t) and the angle of its momentum with the horizontal axis φ(t). The motion of the parti-
cle between two collisions can be exactly integrated. Moreover one can construct the map
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Fig. 2 Elastic collision

SE(θ,ψ) mapping the position and momentum of the particle just after a collision to its
position and momentum just before the next collision, which may be with the same or a
different obstacle.

In this way we can represent the dynamics in discrete time as the iteration of the map
TE : M → M between successive collisions given by TE = C ◦ SE . Observe that this map
is not continuous (grazing collisions) and that, for E small, the dynamics is a perturbation
of the free billiard dynamics [5].

In our previous works we were primarily concerned with the SRB distribution associated
with TE . Let μ0 be the measure on M given by

μ0 = cos(ψ)χ(θ)dθ dψ/Z (2)

where Z = 4π(r1 +r2) is a normalization constant and χ(θ) = r1 for θ ∈ [0,2π] and χ(θ) =
r2 otherwise. Observe that μ0 is invariant under T0. The SRB distribution μE(dθ, dψ) is
defined as the weak limit of μ0 under the dynamics TE , i.e.

μE = w-limT n
Eμ0. (3)

The measure μE , when it exists and is unique, represents the natural non equilibrium steady
state (NESS) for the system [12]. Clearly μ0 is the SRB measure of T0.

From the SRB measure μE(dθ, dψ) on M for the collision map one can build the SRB
measure mE(dx, dφ) on M = Q × [0,2π ] for the flow generated by (1). Here Q is T\ ob-
stacles. This can be represented as:

mE(A) = 1

τ̄E

∫

M

∫ τE(θ,ψ)

0
IA(XE

t (θ,ψ),
E
t (θ,ψ)) dt μE(dθ, dψ) (4)

where IA is the indicator function of the set A ⊂ M , (XE
t ,
E

t ) is the flow generated by
(1) and τE(θ,ψ) is the time till the next collision when starting at (θ,ψ) ∈ M with τ̄E =∫

M τE(θ,ψ)μE(dθ, dψ) denoting the mean free time.
In [5] it was proved that, for small fields E, |E| < E0, the above model has a unique

NESS described by an SRB measure μE which is singular with respect to the Liouville
measure with Hausdorff dimension given by the standard Kaplan-Yorke formula [10].
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The current j(E) in this NESS is given by

j(E) = mE(v)

where v = (cos(φ), sin(φ)) is the velocity of the particle. This current was shown in [5] to be
given by the Kawasaki formula, cf. [14]. In the limit E → 0 the Kawasaki formula reduces
to the Green-Kubo formula for the conductivity κ which satisfies the Einstein relation [5,
14]. An investigation of the current as a function of the field was carried out in [1]. It was
argued there that the current is not a C1 function of the field E even close to E = 0. The
results of [5] were generalized in [4, 15] to systems where the collision rule or the free flow
dynamics is perturbed.

In none of the above works was the spatial dependence of the singular (with respect to
Lebesgue) measure mE(dx, dφ) studied. This is what we do in this note. We will describe
analytical results and numerical studies of the spacial and angular dependence of the NESS
mE(dx, dφ) when projected on φ ∈ [0,2π ] or on x ∈ Q and related quantities like the local
average velocity.

The outline of the rest of the paper is as follows. In Sect. 2 we introduce the local density,
local average velocity and angular distribution derived from mE . We find their dependence
on position and field strength. We also show there computer generated pictures of the flow
and compare them with the predictions of Green-Kubo formulas at small E. In Sect. 3
we introduce and analyze two simple models in which the deterministic collisions with
fixed obstacles are replaced by random collisions whose times form a Poisson process and
compare their properties with those of the deterministic model. Appendices A–C are devoted
to analytical justification of the claims in Sect. 2. A paper describing results for the case
where the system consists not just of one but of a large number of particles is in preparation.

2 Local Structure of the SRB Measure

We define and study the several projections of the SRB measure mE introduced in the pre-
vious section. For clarity of exposition we delay derivations and justifications to Appen-
dices A–C.

2.1 Local Density and Average Velocity

Two interesting quantities to study are the local density and local average velocity. More
precisely, we define the projected measures on the position x as:

δE(A) =
∫

A×[0,2π)

mE(dx, dφ) (5)

for any A ⊂ Q. This clearly defines a probability measure δE(dx) on Q. Using (4), and
defining

JE
A (θ,ψ) = 1

τ̄E

∫ τ(θ,ψ)

0
IA

(
XE

t (θ,ψ)
)

dt (6)

where IA is the indicator function of the set A, we can represent δE(A) as the integral of a
piecewise smooth function with respect to μE(dθ, dφ):

δE(A) =
∫

M
JE

A (θ,ψ)μE(dθ, dψ). (7)
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Fig. 3 Average local velocity
vE(x) for E = 0.1

Observe that JE
A (θ,ψ) is the relative amount of time the trajectory starting from (θ,ψ)

spends in the set A, that is the amount of time divided by the mean free time τ̄E .
We also define the vector measure for the local average velocity

νE(A) =
∫

A×[0,2π)

(cos(φ), sin(φ))mE(dx, dφ). (8)

Also this measure can be written as the integral of a piecewise smooth function with respect
to μE(dθ, dφ), see (52) below for details.

In Appendix A we show that, for |E| < E0, the integrals in (5) and (8) define abso-
lutely continuous measures. That is δE(dx) = nE(x) dx and νE(dx) = nE(x)vE(x) dx. We
call nE(x) the local density and vE(x) the local average velocity at x. We show that both are
continuous functions of both x and E with n0(x) = const = (Area(Q))−1, and v0(x) = 0.

To visualize the above numerically, we divided the torus of Fig. 1 in a grid of 50 × 50
cells and computed the time average of the velocity of the particle when it crosses a cell.
The results are shown in Fig. 3. We also computed the local density on the same grid.

We now show that the local density nE(x) and the local average velocity vE(x) are linear
in the field E when E → 0, that is

nE(x) = n0(x) + d(x)E + o(E), (9)

vE(x) = k(x)E + o(E) (10)

where d(x) and k(x) can be computed via Green-Kubo-type formulas as follows.
Consider the family of all velocity vectors originating at the point x (at which we are

computing the density or average velocity); they make a one parameter family of phase states
Wx = {(x, φ) | 0 < φ < 2π}. Let ρx be the probability measure on Wx that has a uniform
distribution over φ ∈ [0,2π ]. We can map Wx to the collision space M by taking every
point (x, φ) ∈ Wx to its first collision with ∂Q in the past, under the field-free dynamics.
The image of Wx will then be a collection W0 of curves in M on which we get an induced
probability measure ρ0. Pulling this measure further back (into the past) we get a sequence
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of probability measures ρn = T −n
0 (ρ0), each sitting on a collection Wn = T −n

0 (W0) of curves
in M. With this definition we get that

d(x) = c

[

ρ0(�0,x) +
∞∑

n=1

ρn(�0)

]

(11)

where c = Area(Q)−1 = n0(x), �0 = τ0(θ,ψ) cos(θ + ψ) is the x-distance form the colli-
sion point (θ,ψ) ∈ M to the next collision point and �0,x is the x-distance from the colli-
sion point (θ,ψ) ∈ M to the point x. Observe that ρ0 is supported on points whose trajectory
passes through x before colliding again. The above series converges exponentially, because
the measures ρn converge exponentially fast to the measure μ0 on M (see Theorem 7.31 in
[6]) and μ0(�0) = 0.

Consider now the two signed measures ρc,x and ρs,x on Wx that have densities cosφ and
sinφ, respectively, with respect to ρx. As before, we can map ρc,x and ρs,x on the collision
space M and obtain signed measures ρc

0 and ρs
0 on W0, respectively. We also denote their

images by ρc,s
n = T −n

0 (ρ
c,s
0 ) on Wn for n ∈ Z.

k(x) = 1

2

∞∑

n=−∞

(
ρc

n(�0), ρ
s
n(�0)

)
. (12)

The terms in the series in (12) converge to zero as n → ±∞ exponentially fast, because the
measures ρc,s

n converge to the zero measure; this again follows from Theorem 7.31 in [6].
We note that the perturbation of the density nE(x) and of the local average velocity vE(x)

are linear in E, to the leading order, and the factor of E is given, in both cases, by an infinite
sum of correlations, i.e. the right hand sides of (11) and (12). The error bars on the latter are
invisible but there is no a priori reason why these functions should be smooth. As for the
simulations, there are indeed error bars but we did not compute them explicitly.

We computed numerically the coefficients d and k in (9) and (10) to compare their pre-
dictions with the simulation results shown in Fig. 3. We truncated the infinite sums in (11),
(12) to |n| < 15 since we saw no visible difference arise from taking more terms into consid-
eration. Let l+x = {(x, y) ∈ Q} be the vertical cross section placed at horizontal coordinate x

and l−y = {(x, y) ∈ Q} be the horizontal cross section placed at vertical coordinate y. Finally
let ex = (1,0) and ey = (0,1) be the unit vectors in the horizontal and vertical direction re-
spectively. Figure 4 shows a comparison of the horizontal component (vE(x) · ex) of vE(x)

along l+0.41 with the prediction of (10). In the same way, Fig. 5 shows a comparison of the ver-
tical component (vE(x) · ey) of vE(x) along l−0.41 again with the prediction of (10). In both
figures the pluses represent the results of direct simulation while the crosses are obtained
using the Green-Kubo formula (12).

The comparison of nE(x) with (9) is more difficult. Calling no
E(x) = (nE(x)−n−E(x))/2

and ne
E(x) = (nE(x) + n−E(x))/2 − n0(x), we have that no

E(x) satisfies the same lin-
ear response formula (9) of nE(x) with the same coefficient d(x) but we expect the re-
mainder to be smaller. This is relevant in the present case since ne

E(x) and no
E(x) appear

to be of comparable magnitude. We observe that, due to the symmetry of the problem,
nE(1 − x, y) = n−E(x, y) so that no

E(x, y) = (nE(x, y) − nE(1 − x, y))/2. Figure 6 com-
pares no

E(x) along l+0.41 with (9). Again the pluses represents direct simulation while the
crosses are obtained using the Green-Kubo formula (11).

More generally, given a probability measure ρ(dx, dφ) = l(x, φ) dxdφ absolutely con-
tinuous with respect to the Lebesgue measure on Q let ρE

t (dx, dφ) = lEt (x, φ) dxdφ be its
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Fig. 4 The x component of the average local velocity vE(x) for E = 0.1 and x = 0.41

Fig. 5 The y component of the average local velocity vE(x) for E = 0.1 and y = 0.41

time evolution with respect to the dynamics generated by (1). In a similar way as above, we
can then define:

nE
t (x) =

∫

lEt (x, φ) dφ,

nE
t (x)vE

t (x) =
∫

(cos(φ), sin(φ))lEt (x, φ) dφ.

(13)

The density nE
t (x) clearly satisfies a conservation law:

d

dt

∫

A

nE
t (x) dx = −

∫

∂A

nE
t (x)

(
vE

t (x) · n̂(x)
)
dσ(x) (14)

where A is a subset of Q with smooth enough boundary, n̂(x) is the unit outward normal to
∂A at x and σ(x) is the length element on ∂A.
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Fig. 6 The symmetrized local density no
E

(x) for E = 0.1 and x = 0.41

Taking the limit t → ∞ and assuming that limt→∞ nE
t (x) = nE(x) and limt→∞ vE

t (x) =
vE(x) we obtain

∫

∂A

nE(x)
(
vE(x) · n̂(x)

)
dσ(x) = 0. (15)

The above assumption is not trivial. It is easy to show that, if limt→∞ nE
t (x) exists, it has

to equal nE(x). On the other hand, we do not have a proof for the existence of such a limit.
A similar argument holds for vE

t (x). A complete justification of (15) will thus require further
work but we certainly expect it to be true.

Nonetheless we can test the validity of (15) numerically. Due to the symmetry of Q we
have that the average current j(E) = (j (E),0). Moreover, since the collision are elastic,
vE(x) is tangent to ∂Q for x ∈ ∂Q. It follows from this that

∫

l+x
nE(x)

(
vE(x) · ex

)
dy ≡ j (E),

∫

l+y
nE(x)

(
vE(x) · ey

)
dx ≡ 0

independently on the value of x or y. Both these equations are very well verified.

2.2 Angular Distribution

We now look at the projection of mE on the angle φ. We can define the projected measure
η(dφ) by setting, for a measurable set A ⊂ [0,2π ],

ηE(A) =
∫

M

IA(x, φ)mE(dx, dφ)

where IA is the indicator function of the set A. Again we can write ηE(A) as an integral on
the SRB measure μE(dθ, dψ) as follows. Define the function:

JE
A (θ,ψ) = 1

τ̄E

∫ τE(θ,ψ)

0
IA

(

E

t (θ,ψ)
)

dt. (16)
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Fig. 7 Angular distribution for E = 0.1

Then we have that

ηE(A) =
∫

M
JE

A (θ,ψ)μE(dθ, dφ) = μE(JE
A ).

Using the argument in Appendix A we can show that, for |E| < E0, ηE is absolutely contin-
uous with respect to dφ, i.e. that ηE(dφ) = hE(φ)dφ where hE(φ) is a continuous function
of both φ and E with h0(φ) = const = 1/2π , since the invariant measure m0 is uniform on
Q × [0,2π].

We computed hE(φ) numerically for E = 0.1. The result is shown in Fig. 7. A striking
characteristic of this distribution is the dip around φ = 0. This is somewhat unexpected since
the effect of the field E is to push the velocity of the particle to align with the positive x

direction so that one would expect a maximum at φ = 0 rather than a local minimum (see
also Sect. 3 for a comparison with the stochastic models).

To understand this better we consider, for a given φ, all points (θ,ψ) ∈ M that produce
the outgoing velocity vector (cosφ, sinφ), i.e., we consider

Vφ = {(θ,ψ) ∈ M : ψ + θ = φ (mod 2π)}.
Now M is foliated by the lines {Vφ}, 0 ≤ φ < 2π . Let μ

φ

0 denote the conditional measure
induced by μ0 on the line Vφ . If we use θ as the (only) coordinate on Vφ , then

dμ
φ

0 = Z−1
φ cos(φ − θ)χ(θ) dθ

where Zφ is the normalizing factor

Zφ =
∫

cos(φ−θ)>0
cos(φ − θ)χ(θ) dθ = 2(r1 + r2). (17)

We remind the reader that χ(θ) = r1 and 0 ≤ θ < 2π on the first obstacle and χ(θ) = r2 and
2π ≤ θ < 4π on the second.

Now we consider the conditional distribution of the free flight time function τ0 on each
line Vφ . It turns out that its first moment is constant, i.e., μ

φ

0 (τ0) = τ̄0 for all φ’s, where
τ̄0 = μ0(τ ) is the total (unconditional) mean free time. In other words, the deterministic
collision process is isotropic, on average. This seems to be a novel result in the studies of
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billiards and we prove it in Appendix C. We now argue that the observed dip near φ = 0, for
small E can be traced to the second moment, μ

φ

0 (τ 2
0 ), which is not constant and which for

our obstacles indeed has a local minimum at φ = 0.
We will show that the density hE(φ) satisfies

hE(φ) = 1

2π
+ a(φ)E + o(E) (18)

where a(φ) is given by a Green-Kubo formula

a(φ) = Zφ

Z

1

2τ̄0

∞∑

n=−∞
μ

φ

0

(
τ0 · (�0 ◦ T n

0 )
)
. (19)

Recalling that Z = 4π(r1 + r2) is the normalization of μ0, see text after (2), and Zφ =
2(r1 + r2) is independent of φ, see (17), we have that Zφ/Z = 1/2π . Again we see that the
fluctuations of the density hE are linear in E, to the leading order, and the factor of E is
given by an infinite sum of correlations. The latter converges exponentially fast according
to general results (Theorem 7.31 in [6]).

Usually its central term (n = 0) is the most significant, and it is given by

Zφ

Z

1

2τ̄0
μ

φ

0 (τ0�0) = cosφ

4πτ̄0
μ

φ

0

(
τ 2

0

)
. (20)

The central term explicitly involves the second moment of τ0 restricted to Vφ . Even
though cosφ has a maximum at φ = 0, it may be more than counterbalanced by a dip that the
second moment μ

φ

0 (τ 2
0 ) has near φ = 0. This is exactly what happens in our model shown

in Fig. 1.
To check numerically the above results we proceed like in the case of nE(x) in Fig. 7. We

introduce the odd part of the angular distribution ho
E(φ) = (hE(φ)−h−E(φ))/2 and observe

that it satisfies the linear response equation

ho
E(φ) = a(φ) + o(E) (21)

with a(φ) still given by (19). Again we expect the reminder to be smaller. Finally, due to the
symmetry of our system, we have that ho

E(φ) = (hE(φ) − hE(φ + π))/2.
Figure 8 presents the plot of (21) and the numerically computed plot of ho

E(φ) for E =
0.1. The crosses represent the numerically computed value of h0

E(φ). The pluses come from
the central term of (19). Already at this level the dip is clearly visible and the agreement
is pretty good. Finally the boxes represent (19) truncated at |n| = 20. We have computed
(19) truncating the sum up to |n| = 100 but no significant difference from |n| ≤ 20 can be
observed. This is clearly consistent with a fast convergence in the sum in (19).

Our analysis indicates that the dip at φ = 0 appears to be an artifact of the geometry of
the scatterers chosen for our deterministic model.

3 Random Collision Models

In [2], we introduced a simplified version of the MH model by replacing the collisions with
the fixed obstacles with a Poisson random collision process. More precisely we assume that,
in every time interval dt the particle has a probability equal to λ|p|dt (with |p| in this case
fixed to be 1) to undergo a collision. Between collisions the particle moves according to (1)
without Fobs. When a collision happens we consider two collision rules:
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Fig. 8 Comparison between the angular distribution for E = 0.1 and (59); see details after (20)

I the velocity of the particle after the collision is in direction φ ∈ [0,2π] with probability
density dφ/2π ; or

II an angle η ∈ [−π/2,π/2] is chosen at random with probability proportional to cos(η)dη

and the direction of the velocity is changed according to an elastic collision rules for a
particle colliding with an obstacle with outgoing velocity forming an angle η with the
normal to the obstacle.

We call the models with the above collision rules Model I and Model II.
We can think of Model II as representing a situation in which we have N scatterers with

diameter ε randomly placed in T and we consider the (Boltzmann-Grad) limit in which
N → ∞, ε → 0, such that Nε2 → 0 while Nε → λ−1, the mean free path [13].

Let fα(E,x, φ, t) be the probability density at time t of finding the particle at x with
momentum p = (cosφ, sinφ). Here α = I, II indicates Model I or Model II respectively.
This density satisfies the equation:

∂tfα(E,x, φ, t) − p∂xfα(E,x, φ, t) − E∂θ (sin θfα(E,x, φ, t))

= λ

(∫ π
2

− π
2

pα(η)fα(E,x, φ + 2η + π, t) dη − fα(E,x, φ, t)

)

(22)

where, t ∈ R
+, x ∈ T, the unit torus, E = (E,0) is in the horizontal direction and λ is the

collision rate. Moreover we have pI(η) = π−1 for Model I and pII(η) = cosη/2 for Model II.
It follows from (22) that, when the distribution at time 0, fα(E,x,φ,0) does not depend

on x, the density fα(E,x, φ, t) will also not depend on x for every t > 0. Even if the initial
state does depend on x, it is easy to show [3] that as t → ∞ the system will approach a
stationary density fα(E,φ) which will satisfy the equation:

−E

λ
∂φ (sinφfα(E,φ)) =

∫ π
2

− π
2

pα(η)fα(E,φ + 2η + π)dη − fα(E,φ). (23)

From now on we will set λ = 1 since the stationary fα depends only on E/λ.
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Fig. 9 Comparison between numerical simulations of the stochastic process and the power series expansion
(27) for E = 0.2. See explanation after (27)

We can try to solve this equation as a power series in E. Since E is a singular perturbation
the series will not be convergent for any non zero value of E. However, we expect that it
will be an asymptotic series and accurate for small |E|. Writing

fα(E,φ) =
∞∑

i=0

Eif (i)
α (φ) (24)

yields a hierarchy of equations for i = 0,1,2 . . .:

−∂φ

(
sinφf (i−1)

α (φ)
) =

∫ π
2

− π
2

pα(η)f (i)
α (φ + 2η + π)dη − f (i)

α (φ) (25)

with f (−1)
α ≡ 0. The equation for i = 0 is easily solved and gives, as the unique solution,

f (0)
α ≡ 1, since we require

∫
fα(E,φ)dφ = 2π . To solve the higher order equations we

write

f (i)
α (φ) =

∞∑

n=−∞
f̂ (i)

α (n) cos(nφ)

where we used the symmetry with respect to the direction orthogonal to the field to eliminate
the terms in sin(nθ) and clearly f (i)

α (n) = f (i)
α (−n). In this way, for n 	= 0, (25) becomes

f̂ (i)
α (n) = n

2

(
1 − p̂α(n)

) (
f̂ (i−1)

α (n − 1) − f̂ (i−1)
α (n + 1)

)
(26)

with p̂I(n) = 0 for Model I and p̂II(n) = 1/4n2 for Model II. Finally f (0)
α (n) = δn,0, again

due to the normalization condition. This yields

fI(E,φ) = 1 + E cos(φ) + E2 cos(2φ) + · · · ,
fII(E,φ) = 1 + 3

4
E cos(φ) + 45

64
E2 cos(2φ) + · · · . (27)

We can compare the above results with numerical simulation of the stochastic processes
generating (23). We set E = 0.2 and run both processes for 108 collisions. The results are
plotted in Fig. 9. The crosses refer to Model I while the pluses refer to Model II. Super-
imposed are the graph obtained from (27). As one can see, the fit is very good. This is in
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agreement with our expectation that the series in E is an asymptotic one. In the case of
Model I this can be rigorously justified, see (30) below.

We note that, for both Models, the power series for fα(0.2, φ) has a global maximum for
φ = 0. Since this is not true for the angular distribution of the deterministic MH model, see
Sect. 2.2, we will investigate the behavior of f (E,ψ) near φ = 0 more closely.

3.1 Model I

Equation (23) can be written as:

−E∂φ (sinφfI(E,φ)) = 1 − fI(E,φ) (28)

where we normalize fI as
∫

fI(E,φ)dφ = 2π .
Equation (28) can be solved by introducing the function

h(E,φ) =
(

1 − cosφ

1 + cosφ

) 1
2E

which is a solution of the differential equation ∂φh(E,φ) = h(E,φ)

E sinφ
, and defining

fI(E,φ) = h(E,φ)

sinφ
g(E,φ).

Substituting in (28) we obtain

∂φg(E,φ) = −h(E,φ + π).

Observe that h(E,φ) has a non integrable singularity at φ = π so that, for fI(E,φ) to be
integrable we need g(E,π) = 0. We can thus represent the solution as:

fI(E,φ) = h(E,φ)

E sin(φ)

∫ π

φ

h(E,η + π)dη. (29)

We list below some properties of fI(E,φ) that will be useful in the following. We have two
possible situations:

E < 1 In this case fI(E,φ) is continuous in φ for every φ. Moreover it is easy to see
that fI(E,φ) is C∞ for φ 	= 0,π . For φ = 0,π , if E < 1/n, fI(E,φ) is Cn−1 and
∂n

φfI(E,φ) is Hölder continuous of exponent α for 0 < α < 1/E − n.
E > 1 In this case fI(E,φ) is still C∞ everywhere but for φ = 0,π . At φ = 0 we have a

singularity and fI(E,φ) 
 φ1/E−1. More precisely the function φ1−1/E′
fI(E,φ) is

Hölder continuous of exponent 0 < α < 1/E − 1/E′, for every E′ > E.

Starting form (29) and integrating by part we obtain:

fI(E,φ) = 1 − h(E,φ)

sin(φ)

∫ π

φ

cosηh(E,η + π)dη

= 1 + E cosφ + E
h(E,φ)

sin(φ)

∫ π

φ

cos 2ηh(E,η + π)dη

= 1 + E cosφ + E2 cos(2φ) + E2 h(E,φ)

sin(φ)

∫ π

φ

∂φ[cos 2η sinη]h(E,η + π)dη

=
N∑

i=0

Enf
(i)
I (φ) + ENRN(E,φ). (30)



1234 F. Bonetto et al.

The above expansion coincides with the one obtained in (24)–(26). It is not difficult to see
that |RN(E,φ)| ≤ KCNN !. Since it is clear from (29) that fI (E,φ) is not analytic in E for
small E, this inequality means that, as we discussed previously, the perturbative series for
fI(E,φ) is at least asymptotic. Notwithstanding this, (30) and the regularity properties of
fI(E,φ) tell us that, for E small, fI(E,φ) has a unique maximum at φ = 0 and a unique
minimum at φ = π .

3.2 Model II

We can use the solution of Model I to get more analytical information on Model II. Proceed-
ing as in (28) we write the solution of (23) as

fII(E,φ) = h(E,φ)

E sinφ
g(E,φ)

and obtain the representation for g(E,φ):

∂φg(E,φ) = − 1

4E
h(E,φ + π)

∫ π

−π

∣
∣
∣
∣cos

(
ω − φ

2

)∣
∣
∣
∣
h(E,ω + π)

sin(ω + π)
g(E,ω + π)dω

(31)

from which, reasoning as in Model I, we get

fII(E,φ) = 1

4E sin(φ)
h(E,φ)

∫ π

φ

h(E,η + π)

∫ π

−π

∣
∣
∣
∣cos

(
ω − η

2

)∣
∣
∣
∣f (E,ω + π)dωdη

(32)

for 0 < φ < π . We can then set fII(E,−φ) = fII(E,φ). Observe that the above equation
can be written has as

fII(E,φ) =
∫ π

−π

Q(φ,ω)fII(E,ω)dω (33)

where

Q(φ,ω) = 1

4E sin(φ)
h(E,φ)

∫ π

φ

h(E,η + π)

∣
∣
∣
∣sin

(
ω − η

2

)∣
∣
∣
∣ dη

for 0 < φ < π and Q(−φ,ω) = Q(φ,ω). It is easy to see that Q(φ,ω) > 0 for every φ,ω.
Moreover we have

∫ π

0
Q(φ,ω)dφ = lim

ε→0

∫ π−ε

ε

Q(φ,ω)dφ

= 1

4

∫ π

0
h(E,φ)h(E,φ + π)

∣
∣
∣
∣sin

(
ω − φ

2

)∣
∣
∣
∣ dφ

− 1

4
lim
ε→0

h(E, ε)

∫ π

ε

h(E,η + π)

∣
∣
∣
∣sin

(
ω − η

2

)∣
∣
∣
∣ dη

+ 1

4
lim
ε→0

h(E,π − ε)

∫ π

π−ε

h(E,η + π)

∣
∣
∣
∣sin

(
ω − η

2

)∣
∣
∣
∣ dη

= 1

4

∫ π

0

∣
∣
∣
∣sin

(
ω − φ

2

)∣
∣
∣
∣ dφ (34)
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where we have used that h(E,φ) = h(E,φ + π)−1 and that, for ε small, h(E, ε) 
 ε1/E

while h(E, ε + π) 
 ε−1/E . Proceeding in the same way for −π < φ < 0, we get
∫ π

−π

Q(φ,ω)dφ = 1

4

∫ π

−π

∣
∣
∣
∣sin

(
ω − φ

2

)∣
∣
∣
∣ dφ = 1

for every ω. Finally, in the same way we got the regularity properties of fI(E,φ), we can
see that, if E < 1 then QfII is a Hölder continuous function with Hölder norm bounded by
the L∞ norm of fII. This immediately implies, by the Ascoli-Arzelá theorem, that Q is a
compact linear operator on C0. In this situation we can apply the Krein-Rutman theorem,
see [7, 8], and obtain that there is a unique function fII(E,φ) that satisfies (33). Moreover
fII(E,φ) > 0 for every φ. A similar argument tells us that, for E > 1, there is a unique
solution of (33) and it can be written as

fII(E,φ) = | sin(φ)|1− 1
E l(E,φ)

with l(E,φ) continuous in φ and strictly positive.
Observe that, for any integrable function f (φ), we have

∂φ

∫ π

−π

∣
∣
∣
∣cos

(
ω − φ

2

)∣
∣
∣
∣f (ω + π)dω

= 1

2

∫ π

−π

sgn(ω − φ)

∣
∣
∣
∣sin

(
ω − φ

2

)∣
∣
∣
∣f (E,ω + π)dω,

∂2
φ

∫ π

−π

∣
∣
∣
∣cos

(
ω − φ

2

)∣
∣
∣
∣f (E,ω + π)dω

= −1

4

∫ π

−π

∣
∣
∣
∣cos

(
ω − φ

2

)∣
∣
∣
∣f (E,ω + π)dω + f (φ).

Thus the above integral is always at least C1, while if f (φ) is Cn it is Cn+2. This implies
that fII(E,φ) has the same regularity properties as a function of φ as fI(E,φ). In particular
if E ≤ 1/3, fII(E,φ) is C2 and we can try to compute f ′′

II (E,0) explicitly. Observe that (23)
tells us that

E sinφf ′
II(E,φ) + E cosφfII(E,φ)

= −1

4

∫ π

−π

∣
∣
∣
∣cos

(
ω − φ

2

)∣
∣
∣
∣fII(E,ω + π)dω + fII(E,φ). (35)

Evaluating at φ = 0 we get

fII(E,0) = 1

4(1 − E)

∫ π

−π

cos
(ω

2

)
fII(E,ω + π)dω. (36)

As expected, this equation loose meaning when E ≥ 1 since fII(E,φ) is no more continuous
at φ = 0. We can now differentiate both side of (23) and obtain, after evaluating in φ = 0,

(1 − 2E)f ′
II(E,φ) = 1

8

∫ π

−π

sin
(ω

2

)
fII(E,ω + π)dω = 0

for symmetry reasons. Again this equation make sense only if E < 1/2. Finally, differenti-
ating once more, we get

3Ef ′′
II (E,0) − EfII(E,0) = 1

16

∫ π

−π

cos
(ω

2

)
fII(E,ω)dω − 1

4
fII(E,0) + f ′′

II (E,0).
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Using (36) we get

f ′′
II (E,0) = −3

4

E

1 − 3E
fII(E,0) (37)

that is clearly negative for E < 1/3 so that we have that f (E,φ) has a local maximum at
φ = 0. Observe that expanding this formula to third order in E we get a result in agreement
with the expansion in (27).

Appendix A: Regularity of Projections of SRB Measures

SRB measures are characterized by absolutely continuous conditional distributions on un-
stable manifolds, but generally they are singular. Singularity of a measure μ means that
there is a subset M′ ⊂ M in the phase space M such that μ(M′) = 1 but the Lebesgue
measure of M′ is zero. In that case μ does not have a density on M.

However in physics one rarely observes measures on the entire phase space; it is more
common to observe distributions of some selected variables (e.g., positions or velocities of
selected particles). The distributions of those variables are obtained by projection of the
relevant measure onto the corresponding variables. And the resulting distribution is often
absolutely continuous, with a continuous density, despite the singularity of the measure in
the whole of phase space.

Similar smoothness results hold if, instead of projecting the measure onto certain vari-
able(s), we integrate some smooth functions with respect to all the other variables. For ex-
ample, in (8) we integrate cosφ and sinφ with respect to φ and get an absolutely continuous
distribution with respect to x with a continuous density.

We sketch a proof here that in our Moran-Hoover model the corresponding projections
have continuous bounded densities. Let μE denote the SRB measure on the collision space
with coordinates (θ,ψ) for a given value of E. Since we will consider only a given value
of E, we will suppress the dependence on E in what follows. All estimates are uniform in E.
Consider a projection of μ onto a line transversal (not parallel or perpendicular) to stable
and unstable manifolds and singularity manifolds. For simplicity, let μ be projected onto the
θ axis.

The density of the projection can be computed as

ρ(θ) = lim
δ→0

δ−1μ(Rθ,δ)

where Rθ,δ = {(θ ′,ψ) : θ < θ ′ < θ + δ} is a rectangle in the collision space of size δ in the
θ direction. It is known that the SRB measure μ satisfies

μ(r(θ,ψ) < δ) < Cδ ∀δ > 0 (38)

for some constant C > 0 which is uniform for all small fields E, see [4]. Here r(θ,ψ)

denotes the distance from (θ,ψ) ∈ M to the nearer endpoint of the unstable manifold pass-
ing through (θ,ψ) (that manifold is a smooth curve which is divided by (θ,ψ) into two
segments; so r(θ,ψ) denotes the length of the shorter one).

Now for each unstable manifold W , the intersection W ∩ Rθ,δ is a segment of W that
has length bounded above by C ′δ for some constant C ′ > 0. Hence its relative measure
(within W ) is of the same order as the measure of the segment of length δ at an endpoint
of W . We recall that the conditional densities of SRB measures are Hölder continuous, and
their fluctuations are uniformly bounded [4, 6, 15]. Now (38) implies

m(Rθ,δ) < C ′′δ

for some constant C ′′ > 0, hence ρ(θ) is uniformly bounded.
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Next we prove that ρ(θ) is continuous. For θ1 ≈ θ we have

ρ(θ1) − ρ(θ) = lim
δ→0

μ(Rθ1,δ) − μ(Rθ,δ)

δ
.

Now there are unstable manifolds that cross both rectangles Rθ1,δ and Rθ,δ and those which
cross only one of them; accordingly we have

μ(Rθ1,δ) − μ(Rθ,δ) = �1 + �2,

where �1 accounts for the former, and �2 for the latter. The conditional density of μ on each
unstable manifold is Hölder continuous, and unstable manifolds have uniformly bounded
curvature [4, 15], hence once can easily see that

|�1| ≤ Cδ|θ1 − θ |γ (39)

for some constants C > 0 and γ > 0 (in fact, γ = 1/3 for our model; cf. [6, Corollary 5.30]).
It remains to show that

lim
θ1→θ

lim sup
δ→0

|�2|/δ = 0, (40)

i.e., the contribution from unstable manifolds crossing just one rectangle is negligible.
To estimate �2, denote by F(y) = μ(

⋃
W : |W | < y) be the measure of all the unstable

manifolds of length < y. Then (38) can be written as

F(2δ) +
∫ ∞

2δ

2δ

y
dF (y) ≤ Cδ.

Dividing by δ and taking the limit δ → 0 gives

2
∫ ∞

0

dF(y)

y
< C (41)

(see also [6, Exercise 7.15]). Now let Lθ = {(θ,ψ) : ψ ∈ [−π/2,π/2]} denote the line in
M with the fixed θ coordinate. Denote

Fθ,θ1(y) = μ
(⋃

W : |W | < y, W terminates between Lθ and Lθ1

)
.

Then we have

lim sup
δ→0

|�2|
δ

≤
∫ ∞

0

dFθ,θ1(y)

y
. (42)

Now, as θ1 and θ get closer together, Fθ,θ1(y) monotonically decreases for each fixed y > 0.
Moreover, we have

lim
θ1→θ

Fθ,θ1(y) = 0 ∀y > 0 (43)

because the union of unstable manifolds terminating exactly on the line Lθ has μ-measure
zero. To see this observe that unstable manifolds terminate on singularity lines of the past it-
erations of the collision map T , i.e., on singularity lines of T −n, n > 0. These lines intersect
the line Lθ at countably many points thus there are at most countably many unstable mani-
folds terminating on Lθ . Finally each individual unstable manifold has μ-measure zero, as
is guaranteed by the Poincaré recurrence theorem. Now combining (41)–(43) proves (40).

In smooth hyperbolic systems without singularities all unstable manifolds are long
enough so that �2 = 0. Then the density ρ is not only continuous, but Hölder continu-
ous, according to (39). We believe that in our MH model, too, the main contribution to the
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structure of ρ comes from �1, so that ρ is also Hölder continuous, but our estimate (40) on
�2 is too poor to prove that.

The above argument applies to projections of SRB measures onto some coordinates
(transversal to stable and unstable directions). If, instead of projections, we integrate smooth
functions like in (14), then those functions can be incorporated into conditional densities of
the SRB measure on unstable manifolds, and the argument will work for that situation, too.

Appendix B: Derivation of Green-Kubo formulas

The derivation of (9)–(10) and (18) is based on a Kawasaki-type formula used in linear re-
sponse theory, see [5]. For a small external field E and the corresponding SRB measure μE ,
we can integrate any bounded piecewise Hölder continuous function fE on M as follows:

μE(fE) = μ0(fE) +
∞∑

n=1

μ0

(
(fE ◦ T n

E)(1 − e−E�E )
)
, (44)

where �E denotes the displacement of the particle in the direction of the field (i.e., in the
positive x direction) during its free flight to the next collision. More precisely, for (θ,ψ) ∈
M we set

�E(θ,ψ) =
∫ τE(θ,ψ)

0
cos(
E

t (θ,ψ)) dt (45)

where we use this definition to avoid the ambiguity on the difference between two points on
a torus (periodic boundary conditions). The above Kawasaki-type formula (44) is derived in
[5, (16)].

The function fE may depend on the field E, but it must have a limit f0 = limfE as
E → 0. Since T0 = limE→0 TE and τ0 = limE→0 τE , as well as �0 = limE→0 �E = τ cosφ,
a first order Taylor expansion of the infinite sum in (44) gives

μE(fE) = μ0(fE) + E

∞∑

n=1

μ0

(
(f0 ◦ T n

0 )�0

) + o(E), (46)

see [5, (17)]. The infinite sum in the above equation converges because μ0((f0 ◦ T n
0 )�0) →

μ0(f0)μ0(�0) = 0 exponentially fast as n → ∞ for f0 Hölder continuous (decay of corre-
lations) and μ0(�0) = 0. Note that this sum is independent of E, hence the second term is
linear in E. The first term μ0(fE) will be handled separately for each fE .

B.1 Derivation of (9) and (10)

We first derive (9) for the local density nE(x), which can be represented, according to (7),
by

δ2nE(x) = μE(JE
A ) + o(δ2) (47)

where A = {x′ : ‖x′ − x‖∞ ≤ δ/2} denotes the square in Q with side δ centered on x. We
fix a small δ > 0 and will estimate the integral in (47).

It is convenient to extend the space M by adding the sides of the square A to ∂Q. In other
words, every time a trajectory crosses the boundary of A and enters or exits A we register
a ‘virtual collision’ (the trajectory does not actually change its direction, so the collision
has no effect on the trajectory of the particle, i.e. ∂A plays the role of ‘transparent walls’).
Adding transparent walls with virtual collisions is a useful trick in the study of billiards.
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By adding this transparent wall the phase space of the system is thus extended from
M = [0,4π]×[−π/2,π/2] to MA = [0,4π +4δ]×[−π/2,π/2] where θ ∈ [4π,4π +4δ]
parametrize ∂A. Consistently we must replace the map TE with the new map TE,A con-
structed as in Sect. 1, the SRB measure μE with μE,A defined as in (3) and the function JE

A

with J
E,A
A defined as in (6). The notation J

E,A
A helps keeping track of the fact the A appears

both in the indicator function appearing in (6) and in the phase space MA on which J
E,A
A

is defined. From this follows that J
E,A
A 	= 0 if and only if θ represents a collision taking

place on ∂A and the outgoing velocity points inside A. Indeed, IA(Xt (θ,ψ)) 	= 0 if and
only if Xt (θ,ψ) ∈ A. But in this case the last collision of the trajectory was with ∂A and the
velocity was pointing inside A.

Clearly (46) remains true if we replace μE with μE,A. We apply it to fE = J
E,A
A and get

δ2nE(x) = μ0,A(J
0,A
A ) + μ0,A(χE

A ) + E

∞∑

n=1

μ0,A

(
(J

0,A
A ◦ T n

0,A)�0,A

) + o(E) (48)

where �0,A is defined as in (45) and χE
A = J

E,A
A − J

0,A
A . By direct calculations we get

μ0,A(J
0,A
A ) = δ2

Area(Q)
= δ2n0(x).

Observe that, for every E, J
E,A
A = O(δ) while μ0,A(supp(J

E,A
A )) = O(δ). Moreover, from

(1) we have that |XE
t (θ,ψ) − X0

t (θ,ψ)| = O(Et2) so that J
E,A
A − J

0,A
A = O(δ2E). Thus

even though the term μ0,A(χE
A ) = O(Eδ3) is linear in E, its contribution vanishes in the

limit δ → 0 and we will ignore it. We finally arrive at

nE(x) = n0(x) + δ−2E

∞∑

n=1

μ0,A

(
(J

0,A
A ◦ T n

0,A)�0

) + o(E). (49)

Observe that a trajectory originating from a point x gives a non zero contribution to the n-th
term in the sum only if its n-th collision is with ∂A and the trajectory enters A. Since E and
δ are small, this implies that the (n− 1)-th collision was with a non-virtual obstacle. We can
thus rewrite (49) as

d(x) = δ−2

(

μ0

(
J 0

A�0,A

) +
∞∑

n=1

μ0

(
(J 0

A ◦ T n
0 )�0

)
)

(50)

where we have neglected the trajectories that collide more than once with A, since they
contribute O(δ3) to the integral, and the difference between τ̄E and τ̄E,A, appearing in J

E,A
A ,

since it is O(E) and thus does not contribute at first order.
We still have to discuss the limit δ → 0 in (50). This limit is non trivial since, although

the correlations appearing in the infinite sum decay exponentially for every A, we need to
show that such a decay is uniform in δ. To show this we can take the limit δ → 0 term by
term in the sum. Taking this into account we obtain (9).

We can now derive (10) for the local average velocity vE(x). Similarly to (47) we have

δ2vE(x) = 1

nE(x)
μE(HE

A) + o(δ2), (51)

where

HE
A(θ,ψ) = 1

τ̄E

∫ τE(θ,ψ)

0

(
cos(
E

t (θ,ψ)), sin(
E
t (θ,ψ))

)
IA

(
XE

t (θ,ψ)
)
dt (52)
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and A again denotes the square in Q with side δ centered on x. In this case we will not need
to introduce virtual collisions with A like we did for (9). Applying (44) we obtain

δ2nE(x)vE(x) = μ0(HE
A) + E

∞∑

n=1

μ0

(
(H0

A ◦ T n
0 )�0

) + o(E). (53)

To eliminate the first term μ0(HE
A) we apply an antisymmetrization. Due to the invariance

of μE we have μE(HE
A) = μE(HE

A ◦ T −1
E ), hence, by applying (44) to HE

A ◦ T −1
E , we get

δ2nE(x)vE(x) = μ0(HE
A ◦ T −1

E ) + E

∞∑

n=0

μ0
(
(H0

A ◦ T n
0 )�0

) + o(E). (54)

Next, let J : M → M denote an involution defined by J (θ,ψ) = C(θ,−ψ). Due to the
time reversibility of the perturbed dynamics we have J ◦ TE = T −1

E ◦ J , and therefore
HE

A = −HE
A ◦ J ◦ TE . Also note that μ0 is invariant under both T0 and J . Thus if we add

(53) and (54), the first terms cancel out.
Moreover, the time reversibility of the billiard dynamics implies �0 = −�0 ◦ J ◦ T0 and

H0
A ◦ T n

0 = −H0
A ◦ T −n

0 ◦ J ◦ T0 for all n. Therefore,
(
H0

A ◦ T n
0

) · �0 = [(
H0

A ◦ T −n
0

)
�0

] ◦ J ◦ T0.

Thus adding (57) and (58) together gives

δ2nE(x)vE(x) = 1

2
E

∞∑

n=−∞
μ0

(
(H0

A ◦ T n
0 )�0

) + o(E).

Taking into account (49) we get

kE(x) = 1

2δ2n0(x)

∞∑

n=−∞
μ0

(
(H0

A ◦ T n
0 )�0

)
(55)

where, due to the time reversibility of the dynamics, the term for n and −n in the sum are
equal. To obtain (10) we have used that limδ→0 δ−2μ0((H0

A ◦ T n
0 )�0) = c(ρc

n(�0), ρ
s
n(�0))

with c = n0(x).

B.2 Derivation of (18)

To derive (18), we apply (46) to fE = JE
A(φ,δ), which was defined in (6) and where A(φ, δ)

is the set φ − δ/2 ≤ θ +ψ ≤ φ + δ/2, i.e. the set of velocity vectors that make an angle φ′ ∈
[φ − δ/2, φ + δ/2]. Note that when E = 0, the trajectory is a straight line, so f0 = τ0IA(φ,δ).

As in (47) we can write δhE(φ) = μE(JE
A(φ,δ)) + o(δ). We denote �φ,δ = �0 · IA(φ,δ) and

recall that �0 = τ0 cosφ, so that J 0
A(φ,δ) cosφ = �φ,δ/τ̄0. Thus (46) becomes

δ cosφ hE(φ) = μ0(J
E
A(φ,δ)) cosφ + E

τ̄0

∞∑

n=1

μ0

(
(�φ,δ ◦ T n

0 )�0

)
(56)

and, again due to the invariance of μE , we get

δ cosφ hE(φ) = μ0(J
E
A(φ,δ) ◦ T −1

E ) cosφ + E

τ̄0

∞∑

n=0

μ0
(
(�φ,δ ◦ T n

0 )�0
)

(57)

and (denoting, for brevity, φ− = φ + π )

δ cosφ− hE(φ−) = μ0(J
E
A(φ−,δ)) cosφ− + E

τ̄0

∞∑

n=1

μ0

(
(�φ−,δ ◦ T n

0 )�0

)
. (58)
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In all the above formulas we have suppressed the o(Eδ) terms. Time reversibility implies
JE

A(φ,δ) ◦ T −1
E = JE

A(φ−,δ)
◦ J , where J denotes the time reversal involution. Thus, if we

add (57) and (58), their first terms cancel out. Similarly, we get �0 = −�0 ◦ J ◦ T0 and
�φ−,δ ◦ T n

0 = −�φ,δ ◦ T −n
0 ◦ J ◦ T0 for all n. Therefore,

(
�φ−,δ ◦ T n

0

) · �0 = [(
�φ,δ ◦ T −n

0

)
�0

] ◦ J ◦ T0.

Thus adding (57) and (58) gives

hE(φ) − hE(φ + π) = E

δτ̄0 cosφ

∞∑

n=−∞
μ0

(
(�φ,δ ◦ T n

0 )�0

) + o(E). (59)

This is an infinite sum of correlations which decay exponentially fast [6].
In the case of the billiard shown in Fig. 1 we have that, due to the symmetry of the system,

hE(φ + π) = h−E(φ) so that we get

a(φ) = 1

2δτ̄0 cosφ

∞∑

n=−∞
μ0

(
(�φ,δ ◦ T n

0 )�0

)

= 1

2δτ̄0 cosφ

∞∑

n=−∞
μ0

(
�φ,δ · (�0 ◦ T n

0 )
)

where we used the invariance of μ0 under T0. Finally using the relation �φ,δ = τ0IA(φ,δ) cosφ

and taking the limit δ → 0 gives (19).

Appendix C: Isotropy of the Collision Time

As a motivation for our definition of μ
φ

0 (τ0), we define a directional mean free time as
follows. Given φ ∈ [0,2π ] and δ > 0, let I = IA(φ,δ) be as in Sect. B.2. Due to ergodicity,
we have

lim
n→∞

∑n−1
i=0 τ0(T

i
0 (θ,ψ))I (T i

0 (θ,ψ))
∑n−1

i=0 I (T i
0 (θ,ψ))

= μ0(τ0I )

μ0(I )
(60)

for almost every (θ,ψ) ∈ M, and we call the limit (if it exists)

τ̄φ = lim
δ→0

μ0(τ0I )

μ0(I )

the directional mean free time (corresponding to the angle φ). Now arguing as in Sect. B.2
we get

lim
δ→0

δ−1μ0(τ0I ) =
∫

τ(φ − θ, θ) cos(φ − θ)χ(θ) dθ (61)

and

lim
δ→0

δ−1μ0(I ) =
∫

cos(φ − θ)χ(θ) dθ = Zφ, (62)

recall (17). Therefore

τ̄φ = μ
φ

0 (τ0)

is the conditional expectation of τ defined in Sect. 2.2.
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Now it is easy to see that cos(φ −θ)χ(θ) dθ is the length element in the direction orthog-
onal to the outgoing velocity vector (i.e., in the direction φ +π/2). Therefore the integral in
(61) is equal to the area of the billiard table, which is 1 − π(r2

1 + r2
2 ) in our case. Thus

τ̄φ = μ
φ

0 (τ0) = 1 − π(r2
1 + r2

2 )

2(r1 + r2)
,

which is constant (independent of φ).
The above argument generalizes to any Sinai billiard with convex obstacles B1, . . . ,Bp .

For each obstacle Bk and angle φ we denote by widthφ(Bk) the “width” of Bk in the direction
orthogonal to φ, i.e., the length of the projection of Bk onto a line orthogonal to all velocities
running at the angle φ. Then by the above argument we have

τ̄φ = Area(Q)
∑

k widthφ(Bk)
. (63)

This formula holds for each φ except directions in which billiard trajectories can run indefi-
nitely without collisions. If the horizon is finite, no such trajectory exists, and (63) holds for
every φ. If the obstacles are circular disks, as they are in our studies, the “width” of Bk is
just its diameter, and comparing (63) with (64) we see that τ̄φ is constant, i.e., independent
of φ.

It is not hard to see that averaging τ̄φ over φ gives

1

2π

∫ π

−π

τ̄φ dφ = τ̄0 = μ0(τ0),

the classical (unconditional) mean free path, which is known to be

τ̄0 = π · Area(Q)

length(∂Q)
, (64)

see [6, Section 2.13]. If τ̄φ is constant, then of course τ̄φ = τ̄0 for all φ.
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