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Abstract In this paper we study a model of randomly colliding particles interacting with a
thermal bath. Collisions between particles are modeled via the Kac master equation while
the thermostat is seen as an infinite gas at thermal equilibrium at inverse temperature β.
The system admits the canonical distribution at inverse temperature β as the unique equi-
librium state. We prove that any initial distribution approaches the equilibrium distribution
exponentially fast both by computing the gap of the generator of the evolution, in a proper
function space, as well as by proving exponential decay in relative entropy. We also show
that the evolution propagates chaos and that the one particle marginal, in the large system
limit, satisfies an effective Boltzmann-type equation.

Keywords Kac model · Thermostat · Approach to equilibrium · Propagation of chaos

Mathematics Subject Classifications 47A63 · 15A90

1 Introduction

The master equation approach to kinetic theory has had a revival in recent years. It was
introduced by Kac [1] to model a system of N particles interacting through a Markov process.
In its basic form, after waiting an exponentially distributed time, one selects randomly and
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648 F. Bonetto et al.

uniformly a pair of particles and lets them collide with a random scattering angle. One assumes
a spatially homogeneous situation in which the state of the system is entirely specified by
the velocities of the particles. The time evolution for the probability distribution of finding
the system in a given state is then a linear master equation (albeit in very high dimensions)
called the Kac master equation.

The model is based on clear probabilistic assumptions, and its simplicity allows one to
focus on central issues that are very difficult to study in more fundamental models like
Newtonian mechanics. Kac’s main motivation was to give a rigorous derivation of the non-
linear spatially homogeneous Boltzmann equation ([1], see also [2]). This is based on the
notion of chaotic sequences (which Kac called ‘sequences that have the Boltzmann property’).
A derivation of the Boltzmann equation from the laws of classical mechanics is much more
difficult and so far has only been achieved for situations with very few collisions [3–5].

The Kac master equation also yields some insight into the the central question of approach
to equilibrium for large particle systems. Kac suggested using the gap as a measure for the
rate of approach to equilibrium and he conjectured that it is bounded below by a positive
constant independent of the particle number N [1]. This conjecture was first proved in [6]
and shortly thereafter the gap was computed exactly [7,8].

It turns out that while the gap is a good notion for measuring the rate of approach once
the system is close to equilibrium, this is not the case far away from equilibrium. The gap
measures the rate at which the L2-norm of the deviation from equilibrium tends to zero. Since
probability distributions in N variables that are close to a product have an L2-norm which
is of the order of C N , C > 1, one has to wait times of order N until this norm falls below a
fixed number. This is clearly not physical. Furthermore, in all the exact calculations, the gap
as well as the single particle marginal of the gap eigenfunction approach the corresponding
quantities of the linearized Boltzmann equation, as N → ∞.

A better notion of equilibration is in the entropic sense. It is easy to prove that the relative
entropy of any state (c.f. Eq. (1.5)) is decreasing in time (note that we define entropy with
opposite sign). One would expect the entropy production, i.e. the negative time derivative of
the entropy, to be proportional to the entropy itself because one expects exponential decay of
the entropy. The results in this direction have been disappointing. It turns out that there are
states whose entropy production is inversely proportional to the particle number N . In [9] a
lower bound inversely proportional to N was given while an upper bound of the same order
was proven in [10]. The upper bound was achieved by estimating the entropy production of
a state in which approximately half of the kinetic energy is stored in NδN particles and, of
course, the remaining kinetic energy is stored in N (1 − δN ) particles. It was shown in [10]
that the ratio of entropy production and the entropy is bounded above by CβN−1+β for any
β > 0 provided one chooses δN as a suitable inverse power of N . Clearly, such a state, in
which a few molecules contain half of the total kinetic energy is not observed in nature. This
raises the question of how to characterize those states for which the entropy converges to
zero on a reasonable time scale. Our very preliminary answer is to consider states in which
an ‘overwhelming’ number of particles with kinetic energy per particle of the order β−1 are
in equilibrium and only a few particles, a ‘local’ disturbance are out of equilibrium.

How should one describe such a state in the context of a model that is spatially homo-
geneous in the first place? In this paper we address this question by coupling a system of
particles, ‘the small system out of equilibrium’ to a heat bath, ‘the large system in equilib-
rium’, i.e., we couple the Kac model to a thermostat. This idea is not new. There has been
work in [11] on the (spatially inhomogeneous) Boltzmann equation coupled to a thermostat
where approach to equilibrium was proved. Likewise there has been recent work in [12,13]
that considered particles in an electric field interacting with external scatterers (billiard),
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The Kac Model Coupled to a Thermostat 649

where the thermostat is given by a deterministic friction term while the collision with the
obstacles provide stochasticity.

In the present work we focus exclusively on the approach to equilibrium of a system of
particles in one space dimension having unit mass interacting with a thermostat in the context
of the Kac master equation. There are a number of ways to model this and the route taken here
is to describe the thermostat as the interaction of particles of the Kac system with particles
that are already at equilibrium, i.e., whose distribution is given by a Gaussian with inverse
temperature β. Moreover we assume that the thermostat is much larger than the system so
that every particle in the thermostat collides at most once with a particle in the Kac system.

Calling ft (v), v ∈ R
N , the probability distribution of finding the system with velocities v

at time t , our master equation is given by

∂ f

∂t
= −G f := −λN (I − Q)[ f ] − μ

N∑

j=1

(I − R j )[ f ]. (1.1)

The first term GK := N (I − Q) describes the collision among the particles and has the usual
Kac form

Q[ f ](v) := 1
(N

2

)
∑

i< j

2π∫
−
0

f (vi, j (θ))dθ

with

vi, j (θ) = (v1, . . . , v
∗
i (θ), . . . , v

∗
j (θ), . . . , vN )

v∗
i (θ) = vi cos (θ)+ v j sin (θ) v∗

j (θ) = −vi sin (θ)+ v j cos (θ)

while the second term GT := ∑N
j=1 (I − R j ) describes the interaction with the thermostat

where

R j [ f ] :=
∫

dw

2π∫
−
0

dθ

√
β

2π
e− β

2 w
∗2
j (θ) f (v j (θ, w))

and v j (θ, w) = (v1, . . . , v j cos (θ)+w sin (θ), . . . , vN ), w∗
j (θ) = −v j sin (θ)+w cos (θ).

We use the notation

b∫
−
a

f (θ)dθ = 1

b − a

b∫

a

f (θ)dθ.

In contrast to Kac’s original work, where the configuration space was the constant-energy
sphere, here the configuration space is R

N since the energy is not conserved.
As we will see, the time evolution defined by (1.1) is ergodic and has the unique equilibrium

state

γ (v) :=
∏

j

g(v j ),

where g(v) =
√

β
2π e− β

2 v
2
.

As mentioned before, the approach to equilibrium can be measured in a quantitative
fashion by the gap of the operator G. While not self-adjoint on the space L2(RN , dv), a
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ground state transformation can be performed that brings this operator into a self-adjoint
form on the space L2(RN , γ (v)dv). Writing

f (v) = γ (v)(1 + h(v))

in Eq. (1.1) we get the new equation

∂h

∂t
= −L f := −λN (I − Q)[h] − μ

N∑

j=1

(I − Tj )[h] (1.2)

where

Tj [h] =
∫

dwg(w)
∫
− dθh(v j (θ, w)).

We consider h in the space L2(RN , γ (v)dv) with inner product 〈h1, h2〉 := ∫
h1h2γ dv.

Defining the spectral gap as

	N := inf{|〈h,L h〉| : ||h|| = 1, 〈h, 1〉 = 0}
we get the following:

Proposition 1 We have

	N = μ

2
.

The corresponding eigenfunction is

h	N (v) :=
N∑

i=1

(
v2

i − 1

β

)
.

Thus, the spectral gap does not depend on the parameter λ of the Kac operator. To have a
more precise idea of the role of λ in the equilibration process we also study the “second”
spectral gap defined as

	
(2)
N := inf{|〈h,L h〉| : ||h|| = 1, 〈h, 1〉 = 0, 〈h, h	N 〉 = 0}.

We have the following theorem that renders the gap 	(2)N in an explicit fashion.

Theorem 2 	
(2)
N is given by the lower root a2 of the quadratic equation

x2 −
(
λ
N + 13

8
μ

)
x + μ

(
λ
N + 5

8
μ

)
− 3

8
λ
Nμ

(
3

N + 2

)
= 0, (1.3)

where 
N = 1
2

N+2
N−1 . The corresponding eigenfunction is an even polynomial of degree 4 in

all the vi .

As N → ∞ one finds for the gap

	(2)∞ = min

{
λ

2
+ 5

8
μ,μ

}
. (1.4)

As explained before, a deeper way of understanding the approach to equilibrium is to consider
the entropy production. In the model at hand one is indeed in the lucky situation that the
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The Kac Model Coupled to a Thermostat 651

interaction with the thermostat yields a decay rate for the entropy, uniformly in N . The
relative entropy of a state f with respect to the equilibrium state γ is defined as

S( f |γ ) :=
∫

RN

f (v) log
f (v)
γ (v)

dv. (1.5)

Theorem 3 Let ft be the solution of the master equation (1.1) with initial condition f0. Then

S( ft |γ ) ≤ e−ρt S( f0|γ ),
where

ρ = μ

2
.

The central concept for the derivation of the Boltzmann equation is that of a chaotic
sequence. More precisely, given a distribution f (N )(v) with v ∈ R

N , we can define the k
particle marginal as

f (N )k (v1, . . . , vk) =
∫

f (N )(v)
N∏

i=k+1

dvi .

Definition 4 A sequence of probability distributions { f (N )(v)}∞N=1 on R
N is said to be

chaotic if, ∀k ≥ 1, we have

lim
N→∞ f (N )k (v1, . . . , vk) = lim

N→∞

k∏

j=1

f (N )1 (v j ),

where the above limit is taken in the weak sense.

Consider now a chaotic family of initial conditions f (N )(v) for Eq. (1.1). With a simple
generalization of the proof by Kac [1] (see also [2]), we can show that the solution at time
t , f (N )t (v), is also chaotic. This property is called propagation of chaos. It follows that if we
define

f t (v1) = lim
N→∞

∫
f (N )t (v) dv2 · · · dvN ,

Equation (1.1) gives rise to the effective evolution for f t , that is

Theorem 5 f t (v) is the solution of the following ‘Boltzmann Equation’:

∂ f t (v)

∂t
= 2λ

∫
− dθ

∫
dw
[

f t (v cos θ + w sin θ) f t (−v sin θ + w cos θ)− f t (v) f t (w)
]

+μ
[∫

dw
∫
− dθg(−v sin θ + w cos θ) f t (v cos θ + w sin θ)− f t (v)

]

with f 0(v) as initial condition.

Our proof of propogation of chaos, following the argument in [1], does not establish the
validity of the above equation uniformly in t . One can hope to achieve this by adapting, to
our model, the argument in [14], where propagation of chaos uniform in t is shown for the
Kac model.
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One can linearize the above Boltzmann equation about the ground state and study the
operator associated with this evolution. It turns out that the Hermite polynomials diagonalize
both the collision part and the thermostat, with the nth degree polynomial Hn(v) yielding

eigenvalues 2λ(1 − 2sn) and μ(1 − sn), respectively, where sn :=
2π∫−
0

cosn θdθ . Thus, the

gap is μ
2 , and the “second” gap is λ

2 + 5
8μ, which correspond to the N → ∞ limit of the

respective gaps found at the Master equation level (Theorem 2). Incidentally, the eigenvalue
μ found in the latter (see Eq. (1.4)) does not appear here since the single-particle marginal
of the corresponding eigenfunction vanishes in the limit.

Remark As we will see, the proof of Theorem 3 (in particular, Proposition 15) also proves
that the relative entropy associated with the Boltzmann equation decays at the same rate ρ.

It is interesting to note that if we define the total kinetic energy K ( f ) as

K ( f ) := 1

2

N∑

i=1

∫

RN

v2
i f (v1, . . . , vN )dv1 · · · dvN ,

we get, using Eq. (1.1), that

d K

dt
= −μN K + μ

2

∑

j

∫
dwdv

∫
− dθ

(∑

k

v2
k

)
g(w∗

j (θ)) f (v j (θ, w))

= −μN K + μ

2

∑

j

(∑

k �= j

∫
dvv2

k f (v)

+
∫

dwdv g(w) f (v)
∫
− dθ(v j cos(θ)+ w sin(θ))2

)
,

where the Kac collision gives no contribution as it preserves the total kinetic energy. This
yields

d K

dt
= −μ

2

(
K − N

2β

)
. (1.6)

One can interpret Eq. (1.6) as Newton’s law of cooling. This law, however, is usually stated
in terms of the temperature of the system at time t , i.e.,

1

2
T (t) := K (t)

N
. (1.7)

It is far from clear that Eq. (1.7) can be used to define the temperature of a state far from
equilibrium. To make such an identification one would have to show that the full distribution
ft (v) is close, in a meaningful sense, to a Maxwellian with temperature T (t). In general we
see no reason why this should be true. We believe, however, that in the case of an ‘infinitely
slow’ transformation, i.e. the case where μ is very small relative to λ, the collisions provide
enough ‘mixing’ to guide the evolution along Maxwellians.

The plan of the paper is the following. In Sect. 2.1 the gap is computed and in Sect. 2.2
the rate of decay of the relative entropy is established. In Sect. 3 we show propagation of
chaos and we finish with a few remarks.
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The Kac Model Coupled to a Thermostat 653

2 Approach to Equilibrium: Proof of Statements

Before proceeding with the study of the approach to equilibrium, we observe that by choosing
appropriate units of energy, we can set β = 1 without loss of generality.

2.1 Approach to Equilibrium in L2

In this section we study the lower part of the spectrum of the operator L defined in Eq. (1.2)
acting on the Hilbert space X = L2(RN , γ (v)dv). To distinguish the action of the thermostat
from that of the Kac collisions we define the operators

LT :=
N∑

j=1

(I − Tj ) LK := N (I − Q)

so that

L = μLT + λLK .

It is easy to see that the operator L for the evolution of h is self-adjoint on X . Moreover L
preserves the subspace of X formed by the functions symmetric under permutation of the
variables.

To begin, we report some known or simple results on the spectra of LK and LT . We say
that a function h(v) is radial if it depends only on r2 = ∑

i v
2
i . We call Xr the subspace of

X of radial functions, and X⊥ the subspace of functions orthogonal to the constant function,
i.e. X⊥ = {h ∈ X | 〈h, 1〉 = 0}. We have

Lemma 6 • LK ≥ 0, LT ≥ 0.
• LK [h] = 0 ⇔ h ∈ Xr , and LT [h] = 0 ⇔ h = constant.

Proof All claims follow from the following observations:

2〈(I − Q)h, h〉 = 1
(N

2

)
∑

i< j

∫
− dθ

∫

RN

|h(vi, j (θ))− h(v)|2γ dv ≥ 0

2〈
∑

j

(I − Tj )h, h〉 =
∑

j

(∫− dθ
∫

dvdwg(w)γ (v)|h(v j (θ, w))− h(v)|2) ≥ 0,

the first of which is an identity due to Kac [1]. ��
Notice that the Kac operator alone acting on R

N has a degenerate ground state.
From the above Lemma, we see that the unique equilibrium state corresponding to Eq.

(1.2) is h(v) = 1. The following Theorem is a direct consequence of the results in [7].

Theorem 7 [7] We have that


N := inf{|〈h,LK h〉| : ||h|| = 1, h ⊥ Xr } = 1

2

N + 2

N − 1

and the corresponding eigenfunction is
∑N

j=1 v
4
j − 3

N+2

(∑N
j=1 v

2
j

)2
.

To study the spectrum of LT we use the Hermite polynomials Hα(v) with weight g(v).
More precisely, for α integer, we set

Hα(v) = (−1)αe
v2
2

dα

dvα
e− v2

2
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so that

1. Hα(v) is a polynomial of degree α. Moreover Hα(−v) = (−1)αHα(v).
2. The coefficient of vα in Hα is 1.
3. The Hα are orthogonal in L2(R, gdv). More precisely

∫
Hα1(v)g(v)Hα2(v)dv = √

2πα1!δα1,α2 .

Lemma 8 Hα(v j ) form an orthogonal basis of eigenfunctions for the operator Tj and
Tj Hα = sαHα with sα = 0 if α is odd while

s2α =
∫
− 2π

0 dθ cos2α θ = (2α)!
22αα!2 .

Proof We drop the subscript j here for ease of notation. First, we observe that
∫

T [Hα(v)]Hn(v)g(v)dv =
∫

dwdvg(v)g(w)Hn(v)

∫
− dθHα(v cos θ + w sin θ)

=
∫

dwdvg(v)g(w)Hα(v)
∫
− dθHn(v cos θ + w sin θ).

Since T [Hα(v)] is a polynomial in v of degree α, the first line implies that
∫

T [Hα(v)]Hn(v)

g(v)dv = 0 if n > α. Likewise, the second line implies that
∫

T [Hα(v)]Hn(v)g(v)dv = 0
if α > n. Thus,

T [Hα(v)] = cαHα(v).

By equating the coefficients of vα in the above, we get that cα = ∫− cosα θ = sα . ��
Note that s2(α+1) < s2α and s2α → 0 as α → ∞. Since LT is just the direct sum of

(I − Tj ) we get

Corollary 9 The functions

Hα(v) :=
N∏

i=1

Hαi (vi ),

where α = (α1, . . . , αN ), is an eigenfunction of LT with eigenvalue

σα :=
∑

i

(1 − sαi ).

The set
{

Hα
}
α≥0 form an orthogonal basis of eigenfunctions for LT in X . In particular

LT > 0 on X⊥.

To study the spectral gap, we need to understand the action of LK on products of Hermite
polynomials Hα . We first state and prove the following lemma which helps us restrict our
investigation to even polynomials.

Lemma 10 • Any eigenfunction of μLT +λLK is either even or odd in each variable vi .
• If E is an eigenvalue of μLT + λLK , with an eigenfunction that is odd in

some vi , we have that E ≥ 2λ+ μ.
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The Kac Model Coupled to a Thermostat 655

Proof The first part can be seen by noting that the operator μLT +λLK commutes with the
reflection operator S j [h](v) := h(. . . ,−v j , . . .). For the second part, say (μLT +λLK )h =
Eh, with S1[h] = −h. Then T1[h] = 0. In addition, for any i �= 1,
∫
− dθh(vi,1(θ)) =

∫
− dθh(vi cos θ + v1 sin θ, . . . ,−vi sin θ + v1 cos θ, . . .)

=
∫
− dθh(

√
v2

i + v2
1 cos (ϕ − θ), . . . ,

√
v2

i + v2
1 sin (ϕ − θ), . . .)

=
∫
− dθh(

√
v2

i + v2
1 cos θ, . . . ,

√
v2

i + v2
1 sin θ, . . .)

=
∫
− dθh(−

√
v2

i + v2
1 cos θ, . . . ,

√
v2

i + v2
1 sin θ, . . .) (taking θ→π−θ)

= 0 (using that S1[h] = −h).

Thus,

λNh − λ
N
(N

2

)
∑

i< j,i, j �=1

∫
− dθh(vi, j (θ))+ Nμh − μ

∑

i �=1

Ti [h] = Eh

or

(λN + μN − E) ≤ λ
N
(N

2

)
(

N − 1

2

)
+ μ(N − 1),

which proves the claim. ��

We will thus restrict our attention to the space of functions that are even in all variables vi

and show that the eigenfunction for 	N and 	(2)N lie in this space. To this end we define

L2l = span
{

H2α

∣∣∣
N∑

i=1

2αi = 2l
}
.

Moreover we set

|α| =
N∑

i=1

αi

and

� := {α :
∑

i< j

αiα j �= 0}, that is the set of α in which at least two entries are non-zero.

Lemma 11 In each L2l the eigenvalues of LT are given by σ2α = ∑
j (1 − s2α j ), where

|α| = l. It follows that

• The smallest eigenvalue in each L2l is 1 − s2l and the corresponding eigenfunctions are
precisely linear combinations of H2α(v) with α = (0, . . . , l, . . . , 0).

• minα∈� σ2α = 1. Morover, the minimum is reached when two of the αi ’s are 1 and the
rest are 0.

123
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Proof To prove the first statement, we start by observing that the function J (x) :=
2π∫−
0

cos2x θdθ is strictly convex in x . Consider α such that |α| = l. We need to show that

∑
J (αi ) ≤ J (l)+ (N − 1)J (0)

and that equality is attained if and only if α = (0, . . . l, . . . 0). By convexity, we have that

J (αi ) = J

(
αi

l
l +

∑

j �=i

α j

l
0

)

≤ αi

l
J (l)+

∑

j �=i

α j

l
J (0).

Summing the above over i , we get the result.
The second claim follows from the monotonicity of the s2α and the fact that s2 = 1

2 . ��
Proof of Proposition 1 By Corollary 9 and Lemma 11, we have that LT ≥ 1/2 and thus
L ≥ 1/2 on X⊥. On the other hand, L [∑ H2(vi )] = LT [∑ H2(vi )] = μ

2 (
∑

H2(vi ))

since
∑

H2(vi ), being a radial function is annihilated by the Kac part. Thus,	N = μ/2 and
h	N = ∑N

i=1 H2(vi ) ∈ L2. ��
To compute 	(2)N we need to better understand the action of LK on the L2l . This is done

in the following Lemma, which is actually a generalization of Lemma 8.

Lemma 12 Let A be a self-adjoint operator on L2(RN , γ (v)dv) that preserves the space
P2l , of homogeneous even polynomials in v1, . . . , vN of degree 2l. If

A(v2α1
1 · · · v2αN

N ) =
∑

|β|=|α|
cβv

2β1
1 · · · v2βN

N ,

we get

A(H2α1(v1) · · · H2αN (vN )) =
∑

|β|=|α|
cβH2β1(v1) · · · H2βN (vN ).

Proof First, we observe that A(L2l) ⊂ L2l . Indeed, if f ∈ L2m and g ∈ L2l with m < l, we
have 〈Ag, f 〉 = 〈g, A f 〉 = 0 because A f contains only monomials of degree at most 2m.
This means that

A(H2α1(v1) · · · H2αN (vN )) =
∑

|β|=|α|
kβH2β1(v1) · · · H2βN (vN )

and because

A(v2α1
1 · · · v2αN

N ) =
∑

|β|=|α|
cβv

2β1
1 · · · v2βN

N ,

we get that cβ = kβ for any β by equating the coefficients of the term of maximal degree

v
2β1
1 · · · v2βN

N . ��
Remark • Since LK preserves the spaces P2l , the above Lemma applies to it. Thus, the

action of LK on products of Hermite polynomials H2n(vi ) can be deduced from its action
on products of monomials v2n

i , and the latter turns out to be simpler.
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• Note that L2l is invariant under LK and thus is invariant under L .

In preparation for the proof of Theorem 2 we note that Theorem 7 implies that

〈h,LK h〉 ≥ 〈h,
N (I − B)h〉
where B is the orthogonal projection on radial functions, that is

B[h](v) =
∫

SN−1(|v|)
h(w)dσ(w).

where SN−1(r) is the sphere of radius r in R
N with normalized surface measure dσ(v).

Setting LR := 
N (I − B) we have

〈h,L h〉 ≥ 〈h, (μLT + λLR)h〉
so that

	
(2)
N ≥ inf{〈h, (μLT + λLR)h〉 : ||h|| = 1, h ⊥ L0, L2}, (2.1)

where we have replaced the operator LK with the much simpler projection LR . Note, the
same reasoning as before shows that the space L2l is invariant under LR . For later use we
define

�(α) =
∫

SN−1(1)

v
2α1
1 · · · v2αN

N dσ1(v).

Theorem 13 The smallest eigenvalue al of the operator

LS := μLT + λLR

restricted to the space L2l satisfies the estimates

al ≥ xl ,

where xl is the smaller of the two solutions of the equation

x2 − (λ
N + (2 − s2l)μ) x + (1 − s2l)μ
2 + λ
Nμ = λ
Nμs2l N�(l, 0, . . . 0). (2.2)

Proof The equation for the eigenvalue x of μLT + λLR gives

μ
∑

Tj h + λ
N Bh = (Nμ+ λ
N − x)h.

Observe that if |α| = l, B[v2α1
1 · · · v2αN

N ] is an homogeneous radial polynomial of degree 2l
so that we have

B[v2α1
1 · · · v2αN

N ](r) = �(α)r2l = �(α)
∑

|β|=l

l!
β1! · · ·βN !v

2β1
1 · · · v2βN

N ,

in particular

∑

|α|=l

l!
α1! · · ·αN !�(α) = 1. (2.3)
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Writing a generic function f in L2l as

f =
∑

|α|=l

cαH2α

the eigenvalue equation becomes:

μ
∑

|α|=l

∑

j

s2α j cαH2α + λ
N

[∑

|α|=l

cα�(α)

] ∑

|α|=l

l!
α1! · · ·αN ! H2α

= (Nμ+ λ
N − x)
∑

|α|=l

cαH2α, (2.4)

where we have used that the projection B satisfies the hypothesis of Lemma 12. Thus for
every α

(
μσ2α + λ
N − x

)
cα = Kλ
N

l!
α1! · · ·αN ! , (2.5)

where we set
∑

|α|=l cα�(α) = K . Consider first the case K �= 0, that is (x−λ
N −μσ2α) �=
0 for every α. Rearranging, multiplying both sides by �(α), and adding we get

1

λ
N
=
∑

|α|=l

1

λ
N + μσ2α − x
�(α)

l!
α1! · · ·αN ! . (2.6)

With x moving in from −∞, the first singularity of the right side of Eq. (2.6) occurs when

x = min|α|=l

(
λ
N + μσ2α

) = λ
N + μ(1 − s2l),

where the last equality follows from Lemma 11. The right side of Eq. (2.6) is a positive
increasing function of x until the first singularity. Thus, the smallest eigenvalue is less than
λ
N + μ(1 − s2l). For 0 < x < λ
N + μ(1 − s2l) we get

1

λ
N
= 1

λ
N +(1 − s2l)μ− x
N�(l, 0, . . . 0)+

∑

|α|=l
α∈�

1

(λ
N +μσ2α − x)
�(α)

l!
α1! · · ·αN !

≤ 1

λ
N + (1 − s2l)μ− x
N�(l, 0, . . . 0)+ 1

λ
N + μ− x

∑

|α|=l
α∈�

�(α)
l!

α1! · · ·αN !

≤ 1

λ
N + (1 − s2l)μ− x
N�(l, 0, . . . 0)+ 1

λ
N + μ− x
[1 − N�(l, 0, . . . 0)].

(using eq. (2.3))

It is easily seen that the equation

1

λ
N
= 1

λ
N + (1 − s2l)μ− x
N�(l, 0, . . . 0)+ 1

λ
N + μ− x
[1 − N�(l, 0, . . . 0)]

(2.7)

and (2.2) are equivalent and hence the smallest eigenvalue al ≥ xl .
Note that necessarily xl < λ
N + μ(1 − s2l). Thus, if K = 0, al = λ
N + μσ2α for

some α and hence al ≥ λ
N + μ(1 − s2l) > xl which proves the theorem. ��
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Proof of Theorem 2 Since symmetric functions are preserved under L , the space of sym-

metric Hermite polynomials in L4 with orthonormal basis
{√

2
N (N−1)

∑
i �= j H2(vi )H2(v j ),

√
2

3N

∑
H4(vi )

}
gives rise to two eigenfunctions. The action of μLT + λLK on this space

is represented by the following matrix
⎛

⎝
μ+ 3λ

2(N−1)
−√

3λ
2
√

N−1

−√
3λ

2
√

N−1
5μ
8 + λ

2

⎞

⎠ (2.8)

whose characteristic Eq. is (1.3) and smallest eigenvalue is thus a2. Hence, we immediately
have 	(2)N ≤ a2.

To see the opposite inequality recall that xl is the smaller of the two solutions of the
Eq. (2.7) Since for l ≥ 2, s2l ≤ s4 = 3

8 and �(l, 0, . . . 0) ≤ �(2, 0, . . . 0) = 3
N (N+2) we get

from (2.7)

	
(2)
N ≥ a2.

��

The eigenfunction corresponding to the “second” gap 	(2)N is given by
∑

|α|=2 cαH2α ∈
L4, where cα are symmetric under exchange of indices (see Eq. (2.5)). In fact, Eq. (2.5)
characterizes the symmetric eigenfunctions of μLT + λLR when K �= 0 and the non-
symmetric eigenfunctions when K = 0. This means that solutions x of Eq. (2.6) correspond
to symmetric eigenfunctions alone. Hence, the unique eigenfunction (by extension, also that
of μLT + λLK ) corresponding to a2 is symmetric, which is the physically interesting case.

We eventually do get the optimal bound a2 due to the following reason: The space of
symmetric functions in L4 is spanned by the set {∑i �= j H2(vi )H2(v j ),

∑
H4(vi )}, which

can also be spanned by two functions, one of which is radial (of degree 4) and the other
perpendicular to the radial one. The latter gives the gap 
N for LK . Hence, the action of
LK and LR on the space of symmetric functions in L4 is precisely the same.

In the limit N → ∞, the off-diagonal elements of the matrix (2.8) vanish. Therefore, in
this limit, the eigenvalues x±

2 tend to λ
2 + 5

8μ and μ, which corresponds to the simultaneous
diagonalization of operators LT and LK .

2.2 Approach to Equilibrium in Entropy

It is well known that

S( f |γ ) = 0 ⇔ f = γ,

where S( f |γ ) is defined as in Eq. (1.5). In this section we will prove that S( ft |γ ) decays to
0 exponentially as t → ∞, if ft is the solution of the Master equation (1.1). Indeed Theorem
3 immediately follows from the following proposition.

Proposition 14 Let f0 be a probability density on R
N with finite relative entropy and ft the

solution of the Master equation (1.1) with initial condition f0. We have

d S( ft |γ )
dt

≤ −ρS( ft |γ ), (2.9)
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where

ρ = μ

2
.

The left-hand side of the inequality (2.9) is the entropy production and can be computed
as

d S( ft |γ )
dt

=
∫
∂ ft

∂t
log

ft

γ
+
∫
∂ ft

∂t
= −

∫
(λGK + μGT )[ ft ] log

ft

γ

because
∫

ft = 1. Thus, Proposition 14 will follow if we prove that for any density f with
finite relative entropy, we have

−
∫
(λGK + μGT )[ f ] log

f

γ
≤ −ρ

∫
f log

f

γ
.

Since the relative entropy decreases along the Kac flow, i.e.
∫

GK [ f ] log f
γ

≥ 0 (see [1]), it
is enough to show that

−
∫
μGT [ f ] log

f

γ
≤ −ρ

∫
f log

f

γ
. (2.10)

We first prove the above for the case N = 1. In this case, GT = (I − R).

Proposition 15 Let f be a probability density on R. Then
∫

R[ f ](v) log
f (v)

g(v)
dv =

∫
dvdw

∫
− dθ f (v∗)g(w∗) log

f (v)

g(v)
≤ 1

2

∫
dv f (v) log

f (v)

g(v)
,

where v∗ = v cos θ +w sin θ , w∗ = −v sin θ +w cos θ and g(v) is the Gaussian 1√
2π

e− v2
2 .

Calling f (v) = g(v)G(v), we need to prove that
∫

dv g(v)T [G](v) log G(v) ≤ 1

2

∫
dv g(v)G(v) log G(v), (2.11)

where

T [G](v) :=
∫

dwg(w)

2π∫
−
0

dθG(v cos θ + w sin θ).

The idea will be to show the above inequality by proving that

∫
dv g(v)T [G](v) log T [G](v) ≤ 1

2

∫
dv g(v)G(v) log G(v). (2.12)

We will be invoking the following well-known property of the Ornstein–Uhlenbeck process,
see [15–19].

Theorem 16 Let Ps be the semigroup generated by the 1-dimensional Ornstein–Uhlenbeck
process, that is, Us = Ps[U0] is the solution of the Fokker–Planck equation

∂Us(v)

∂s
= U ′′

s (v)− vU ′
s(v)
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with initial condition U0. For every density G we have
∫

g(v)dv Ps[G](v) log(Ps[G](v)) ≤ e−2s
∫

g(v)dv G(v) log G(v).

Remark The semigroup, which can be represented explicitly as

Ps[G](v) =
∫

dwg(w)G(e−sv +
√

1 − e−2sw), (2.13)

is self-adjoint in L2(R, g(v)dv).

We are now ready to prove Proposition 15.

Proof of Proposition 15 To connect the Ornstein–Uhlenbeck process Ps with the operator T
we set

T [G](v) :=
∫

dwg(w)

π/2∫
−
0

dθG(v cos θ + w sin θ) = 2

π

∞∫

0

ds
e−s

√
1 − e−2s

Ps[G](v),

where we use Eq. (2.13) and the change of variables cos(θ) = e−s . It follows that
∫

dv g(v)T [G] log T [G]

=
∫

dv g(v)

⎛

⎝ 2

π

∞∫

0

ds
e−s

√
1 − e−2s

Ps[G]
⎞

⎠ log

⎛

⎝ 2

π

∞∫

0

ds′ e−s′
√

1 − e−2s′ Ps′ [G]
⎞

⎠

≤
∫

dv g(v)

⎛

⎝ 2

π

∞∫

0

ds
e−s

√
1 − e−2s

Ps[G] log Ps[G]
⎞

⎠ (using convexity ofx log x)

≤ 2

π

∞∫

0

ds
e−s

√
1 − e−2s

e−2s
∫

dv g(v)G log G (using Theorem 16)

= 1

2

∫
dv g(v)G log G.

The next step is to prove the corresponding result for the operator T . Let G = Ge +Go where
Ge is even, i.e. Ge(v) = Ge(−v), and Go is odd, i.e. Go(−v) = −Go(v). Observe that T [G]
is even, T [Go] = 0 and T [Ge] = T [Ge]. While the first two identities follow directly from
the definitions, the last one also uses the fact that

∫
dwg(w)

∫ π
π
2

dθGe(v cos θ + w sin θ) =
∫

dwg(w)
∫ π

2
0 dθGe(−v cos θ − w sin θ) under the change of variables θ → π − θ and

w → −w. Thus,
∫

dv g(v)T [G](v) log T [G](v) =
∫

dv g(v)T [Ge](v) log T [Ge](v)

=
∫

dv g(v)T [Ge](v) log T [Ge](v)

≤ 1

2

∫
dv g(v)Ge(v) log Ge(v)

≤ 1

2

∫
dv g(v)G(v) log G(v),
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where, in the last inequality, we have used that Ge(v) = (G(v) + G(−v))/2 and Jensen’s
inequality. Now that we have established (2.12), we proceed to derive (2.11) from it as
follows:

∫
dv g(v)e(T −I )t G log(e(T −I )t G)

≤ e−t
∞∑

k=0

tk

k!
∫

dv g(v)T k[G](v) log T k[G](v) (by convexity)

≤ e−t
∞∑

k=0

(
t

2

)k 1

k!
∫

dv g(v)G(v) log G(v) (by the previous computation)

= e− t
2

∫
dv g(v)G(v) log G(v).

From the first order terms in the Taylor expansion about t = 0, we get (2.11). ��

The following lemma will help extend the result to N > 1.

Lemma 17 Let f (v) be a probability density on R
N and let its marginal over the jth variable

be denoted by f j (v̂ j ) = ∫
f (v)dv j , where v̂ j = (v1, . . . , v j−1, v j+1, . . . , vN ). Then we

have

N∑

j=1

∫
f j log f j d v̂ j ≤ (N − 1)

∫
f log f dv.

Proof We first observe that from the Loomis–Whitney inequality [20], that is
∫

RN F1(v̂1) · · ·
FN (v̂N ) ≤ ||F1||L N−1 · · · ||FN ||L N−1 for Fj ∈ L N−1(RN−1), it follows that

Z :=
∫ N∏

j=1

f
1

N−1
j dv ≤ 1. (2.14)

Thus we have

∫
f log

⎡

⎢⎣
f

∏
f

1
N−1

j

⎤

⎥⎦ dv = Z
∫

f
∏

f
1

N−1
j

log

⎡

⎢⎣
f

∏
f

1
N−1

j

⎤

⎥⎦
∏

f
1

N−1
j

Z
dv

≥ Z

[∫
f

Z
dv
]

log

[∫
f

Z
dv
]

= − log Z ,

where we have used Jensen’s inequality and the convexity of x log(x). The Lemma follows
easily from the above inequality and (2.14). ��
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Proof of Proposition 14 We first observe that

−
∫

GT [ f ] log
f

γ

=
∑

j

∫
dv
∫

dw
∫
− dθ f (v j (θ, w))g(w

∗
j (θ)) log

f (v)
γ (v)

− N S( f |γ )

=
∑

j

∫
d v̂ j f j (v̂ j )

∫
dv j dw

∫
− dθ

f (v j (θ, w))

f j (v̂ j )
g(w∗

j (θ)) log

(
f (v)

f j (v̂ j )g(v j )

)

+
∑

j

∫
dvdw

∫
− dθ f (v j (θ, w))g(w

∗
j (θ)) log

f j (v̂ j )

γ j (v̂ j )
− N S( f |γ ),

where f j (v̂ j ) := ∫
dv j f (v) and γ j (v̂ j ) := ∫

dv jγ (v), as in Lemma 17. In the first term of
the last line, we can undo the rotation by θ by noting that f j and γ j are independent of v j .

Applying Proposition 15 to f (v)
f j (v̂ j )

(in the second line above) as a function of v j alone we get:

−
∫

GT [ f ] log
f

γ
≤ 1

2

∑

j

∫
dv f (v) log

(
f (v)

f j (v̂ j )g(v j )

)

+
∑

j

∫
dv f (v) log

f j (v̂ j )

γ j (v̂ j )
− N S( f |γ )

= 1

2

∑

j

∫
dv f (v) log

(
f (v)

f j (v̂ j )g(v j )

)
+ 1

2

∑

j

∫
dv f (v) log

f j (v̂ j )

γ j (v̂ j )

+1

2

∑

j

∫
dv f (v) log

f j (v̂ j )

γ j (v̂ j )
− N S( f |γ )

= −1

2
N S( f |γ )+ 1

2

∑

j

∫
dv f (v) log f j (v̂ j )

−1

2

∑

j

∫
dv f (v) log γ j (v̂ j ).

Using Lemma 17 for the second term, and that γ j (v̂ j ) = ∏
i �= j g(vi ) so that∑

j

∫
dv f (v) log γ j (v̂ j ) = (N − 1)

∫
f log γ we get:

−
∫

GT [ f ] log
f

γ
≤ −1

2
S( f |γ )

and this proves (2.10). ��
Remark

• Proposition 14 yields a lower bound on the spectral gap	N as follows: given a function
f of the form

f = γ (1 + εh)

with
∫

hγ = 0 and ε small, one can write

ε

∫
γ
∂h

∂t

(
εh − ε2h2

2
· · ·
)

≤ −ρ
∫
γ (1 + εh)

(
εh − ε2h2

2
· · ·
)
,
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where ρ = μ/2. That is,
∫
γ h
∂h

∂t
≤ −ρ

∫
γ h2

2
.

Thus in L2(RN , γ (v)dv) we get

d

dt
‖h‖ ≤ −ρ

2
‖h‖.

Observe that this is very similar to the result one get from Proposition 1 but ρ < μ. One
may wonder whether ρ is the optimal estimate for the decay rate of the relative entropy.

• In contrast to the Kac model, the presence of the thermostat guarantees that the rate of
convergence is strictly positive uniformly in N . It is fundamental in the above analysis
that the thermostat acts on all particles. The presence of the Kac part gives no contribution
to the above estimate of the exponential decay rate.

3 Propagation of Chaos

We finally turn our attention to the effective Boltzmann equation that emerges in the limit
for N → ∞. The fundamental step to this end is to show that the dynamics defined by Eq.
(1.1) propagates chaos, which is done in this section.

Theorem 18 Let f (N )(v, 0) be a chaotic sequence of initial densities. Then its evolution
under the master equation (1.1), f (N )(v, t), is a chaotic sequence for any fixed t. That is, if

lim
N→∞

∫

RN

ϕ1(v1) · · ·ϕk(vk) f (N )(v, 0) =
k∏

j=1

lim
N→∞

∫

R

ϕ j (v j ) f (N )(v, 0)

for any k ∈ N and any φ1(v1), . . . φk(vk) bounded and continuous, then for any t:

lim
N→∞

∫

RN

ϕ1(v1) · · · ϕk(vk) f (N )(v, t) =
k∏

j=1

lim
N→∞

∫

R

ϕ j (v j ) f (N )(v, t)

for any k ∈ N and any ϕ1(v1), . . . ϕk(vk) bounded and continuous.

The proof follows closely the McKean [2] algebraic version of Kac [1], for the Kac
operator. The idea is to write f (v, t) = e−(λGK +μGT )t f (v, 0), expand the exponential in
series of t , and use the chaotic property of the initial sequence. The key observation is that
GT is a derivation already for finite N (in the sense of Lemma 20). Two main ingredients are
needed:

Lemma 19 The series
∑∞

l=0
tl

l!
∫
ϕ1(v1) · · ·ϕk(vk)(λGK + μGT )

l f (v, 0) converges abs-

olutely if t < 1
4λ+μ .

Proof To prove the lemma, it is enough to show that:

||(λGK + μG ∗
T )

lφ||∞ ≤ (4λ+ 2μ)lm(m + 1) · · · (m + l − 1)||φ||∞ (3.1)

and then follow the proof in [2]. The above statement follows from a simple induction starting
from
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|(λGK + μG ∗
T )φ(v1, . . . , vm)| ≤ |λGKφ| + |μG ∗

T φ| ≤ (4λ+ 2μ)m||φ||∞.
��

Calling

�Kφ := 2
∑

i≤m

∫
− dθ(φ(. . . , vi cos θ + vm+1 sin θ, . . .)− φ),

one can prove, as in [2], that if ϕ1(v1), . . . , ϕk(vk) are bounded and continuous then:

lim
N→∞

∫
(λGK + μG ∗

T )
l [ϕ1 · · · ϕk] f (N )(v, 0)= lim

N→∞

∫
(λ�K +μG ∗

T )
l [ϕ1 · · ·ϕk] f (N )(v, 0).

The main ingredient to re-sum the power series expansion and obtain the Boltzmann
equation is the following “algebraic” Lemma.

Lemma 20 If (φ ⊗ ψ)(v1, . . . , vm+k) := φ(v1, . . . , vm)ψ(vm+1, . . . , vm+k), then

(�K + G ∗
T )[φ ⊗ ψ] = (�K + G ∗

T )[φ] ⊗ ψ + φ ⊗ (�K + G ∗
T )[ψ].

It is now possible to prove Theorem 5 by following the proof in [2] step-by-step.

4 Conclusion and Future Work

We hope to have convinced the reader that master equations of Kac type are reasonable
models for large particle systems interacting with thermal reservoirs. The main advantage is
that physically relevant quantities such the first and second gap can be computed quite easily
and the entropic convergence to equilibrium can be established in a quantitative fashion as
well. Moreover, since propagation of chaos holds, contact is made with a Boltzmann type
equation in one dimension.

There are a number of directions for future research. The generalization to three-
dimensional momentum-conserving collisions [21], while more complicated, should not
pose any new real difficulties. There are other, more severe, assumptions made in our model
that one ought to address.

For example, it is the very nature of a reservoir that it is not influenced by the interaction
with the other N particles. A more realistic situation would be to consider the reservoir as
finite but large. More precisely, consider an initial state of the form γ F where γ is a Gaussian
in M variables with inverse temperatureβ and F a function of N variables with kinetic energy
eN . Thus, M particles are in thermal equilibrium and N particles are not in equilibrium but
with finite energy per particle. Now we let this state evolve under the Kac evolution. Clearly,
this state will evolve to a radial function in N + M variables as t → ∞. One would expect
that this function is close to a Gaussian with a temperature (M

β
+ 2eN )/(M + N ). Assuming

that M >> N , is it true that the entropy has a rate of decay that is uniform in N? Note
that the problem is not to get an estimate on the entropy production of the initial state. The
infinitesimal time evolution is precisely the weak thermostat treated in our paper. The real
issue is to quantify the entropy production at later times for which the state is no longer of
this simple form.

Another important issue is how to understand non-equilibrium steady states in a wider
sense. We believe that the Kac approach to kinetic theory could shed some light on this very
difficult problem. The fact that the particles interact with a single heat reservoir leads to a
non-self-adjoint operator that can be brought into a self-adjoint form using a ground state
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transformation. It is easy to write down the master equation for a system of particles that
interact with, say, two reservoirs at different temperatures. However, the generator cannot
be brought into a self-adjoint form anymore and the equilibrium cannot be found though
an optimization procedure, or at least not an obvious one. In particular the equilibrium is
not a simple function. How, then, can one measure the approach to steady-state for such
systems? Note that the steady-state is, from the point of physics, not an equilibrium state,
since it mediates an energy transport from a reservoir of higher temperature to one of lower
temperature. The solution of this problem would be a small step towards understanding
non-equilibrium steady states.
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