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Properties of stationary nonequilibrium states in the thermostatted periodic Lorentz gas:
The multiparticle system
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We study the stationary nonequilibrium states ofN-point particles moving under the influence of an electric
field E among fixed obstacles~disk! in a two-dimensional torus. The total kinetic energy of the system is kept
constant through a Gaussian thermostat that produces a velocity dependent mean field interaction between the
particles. The current and the particle distribution functions are obtained numerically and compared for small
uEu with analytic solutions of a Boltzmann-type equation obtained by treating the collisions with the obstacles
as random independent scatterings. The agreement is surprisingly good for both small and largeN. The latter
system in turn agrees with a self-consistent one-particle evolution expected to hold in theN→` limit.
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I. INTRODUCTION

In this paper we continue our study of the stationary n
equilibrium states~SNS! of current carrying thermostatte
systems. In part I@1# we described extensive numerical a
analytical investigations of the dependence of the curren
the electric field for a model single-particle system intr
duced in@2# and previously studied in@3#. Here we study a
generalization of that model toN particles introduced in@4#.
The particles, which have unit mass, move among a fi
periodic array of disks in a two-dimensional squareL with
periodic boundary conditions, see Fig. 1. They are acted
by an external~electric! field E parallel to thex axis and by
a ‘‘Gaussian thermostat.’’~The disks are located so that the
is a finite horizon, i.e., there is a maximum distance tha
particle can move before hitting a disc or obstacle!.

The equations of motion describing the time evolution
the positionsqi and velocitiesvi , i 51, . . . ,N, are

q̇i5vi , qi5~qi ,x ,qi ,y!PL8

v̇i5E2a~J,U !vi1Fobs~qi !, ~1.1!

where

a~J,U !5
J•E

U
, J5

1

N (
i 51

N

vi , U5
1

N (
i 51

N

vi
2. ~1.2!

Here L85L\D, with D being the region occupied by th
disks ~obstacles! andFobs representing the elastic scatterin
that takes place at the surface of the obstacles. The pur
of the Gaussian thermostat, represented by the t
a(J,U)vi in Eq. ~1.1!, is to maintain the total kinetic energ
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2 constant, i.e.,U5v0
2. It also has the effect of

making the flow F t generated by Eq.~1.1! on the
(4N21)-dimensional energy surface non-Hamiltonian wh
EÞ0. In fact the phase space volume contraction rate
given by s(X)52(2N21)a(J,U). Another effect of the
thermostat is to effectively couple all the particles in a me
field way, a(J,U), depending only on the total momentu
of the particles. Note that this is the only coupling betwe
the particles in this system.

The change of variables,qi→qi /L, vi→vi /v0 , t
→tv0 /L, andE→EL/v0

2, where 2L is the length of the box,
leaves Eq.~1.1! unchanged, so that the motion of the syste
takes place onSN5(L8)N3SN , where SN5$vi u( i 51

N vi
2

5N%. We shall denote byXPSN a point in the phase spac
of the system. In these units we tookU51, R150.39, R2
50.79, andL is the torus of side 2.1

Our main interest is in the SNS of this model system.
be more precise letm0(dX,N)5r0(X;N)dX be an initial
measure symmetric in the$qi ,vi% and absolutely continuou
with respect to the Liouville volumedX projected onSN .
The time-evolved measurem t(dX,E;N) is still absolutely
continuous with respect to the Liouville measure with de
sity r t(X,E;N) for any fixed timet. The SNS is expected to
be described by a Sinai-Ruelle-Bowen~SRB! measure
m1(dX,E;N), given by the weak limit, ast→`, of
m t(dX,E;N), when it exists. This limit measure is, in gen
eral, not absolutely continuous with respect to the Liouvi
measure, due to the phase space volume contraction@5,6#.
The existence of such a limit was proven, forN51 and
uEuP@0,E0# ~E0 small! in @3#, but no such result is availabl
for N>2, because of the lack of uniform hyperbolicity fo
the zero field system. On the other hand our computer si
lations of the dynamics, forN ranging from 1 to 50 andE
from 0.04 to 1.0, strongly support the belief that there exi
a unique limiting measurem1(dX,E;N) up to quite large
values ofuEu, say uEu5E<1. We expect, however, that th

1See@1# for an explanation of these values.
©2002 The American Physical Society04-1
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projection ofm1(dX,E;N) on the one-particle phase spa
L83V (N) , where V (N) is the ball uvu<AN, will yield a
one-particle densityf 1(q,v,E;N) absolutely continuous
with respect todq dv; this is proven, for instance, fo
coupled Arnold’s cat maps@7#.

To obtain information aboutf 1 we considered first the
case of weak fields. It is tempting to think that forE→0 the
singular set on whichm1 is concentrated will be spread ou
more or less uniformly onSN so that m1 will approach
weakly the microcanonical measure on the energy sur
SN : this measure is certainly invariant for the dynamics
E50. If this were the case thenf 1(q,v,E;N) would ap-
proach, asE→0, the equilibrium one-particle density ob
tained from the projection of the microcanonical measu
for large N this would be close to the Maxwellian distribu
tion with unit variance.2 We ran computer simulations fo
values of the field between 0.04 and 0.12 andN52, 5, and
50. In all cases we found a one-particle distribution that is
from the projection of the microcanonical distribution. Fu
thermore this distribution appeared to have only very sli
dependence onE for those values of the field; so it appea
that there is a well defined limit off 1(q,v,E;N) as E→0,
and that this limit isnot the projection of the microcanonica
measure: there are correlations between the velocities o
particles induced by the field, beyond those correspondin
the energy constraint, which remain whenE→0.

This deviation from the microcanonical distribution is r
flected also in the behavior of the average current per par
in the steady state, given byj (E,N)5*vf 1(q,v,E;N)dq dv
asE→0. We studiedj (E,N) numerically as a function ofE
and N, see Figs. 2 and 3. In the following we will alway
assume that the electric field is along the positivex axis, E
5E1x . This implies that they component ofj (E,N) is zero

2Note that for largeN the Maxwell distribution is typical for
points on the energy surface, i.e., the setB on SN for which f 1 is
not a Maxwellian has measure 0~with respect todX!. Of course
sincem1 is singular with respect todX this need not be the cas
here.

FIG. 1. General billiard structure with disks of radiusR1 andR2

in a periodic box with side length 2L, N53 particles are shown.
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for symmetry reason. We will denote thex component of the
current byj (E,N) and callk(E,N)5 j (E,N)/E the conduc-
tivity. The dependence onN for E→0 should be given by the
Green-Kubo formula for the zero field conductivity when t
dynamics of the particles are independent. A straightforw
computation then shows that the zero field conductivity
the N particles is

k~0,N!5CN~0!k~0,1! ~1.3!

with k~0, 1! given by the diffusion constant of Bunimovic
and Sinai@8# and

CN~0!5E 1

uvu
f 1~q,v,0;N!dq dv. ~1.4!

For the microcanonical distribution we easily find

CN~0!5ApS 12
3

8N
1O~N22! D , ~1.5!

FIG. 2. Conductivityk(E,N) as a function ofE for differentN.

FIG. 3. k(E,N) as a function ofN21 for differentE. Also plot-
ted is the conductivity obtained from Eq.~1.3! using the actual
distribution function~see the following section! for E50.04 and
compared with the value obtained by a direct simulation at the s
field. Finally, the highest line represents the conductivity obtain
from Eq. ~1.3! using a microcanonical hypothesis.
4-2
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which is inconsistent with our data although the form of t
dependence onN appears to be similar, see Sec. II A.

Let us consider now the behavior of our model system
the limit N→`. As the particles interact only through the
average velocityJ„X(t)… it seems reasonable to expect th
for N→`, J will stop fluctuating, i.e., that for ‘‘well be-
haved’’ initial distributions@9–11#

J„X~ t !…→ j t5E vf t~v,E!dv, ~1.6!

wheref t(v,E)5 limN→` f t(v,E;N). If this were true in a suf-
ficiently strong sense it would lead to an autonomo
Vlasov-type equation@9–11# for f t wherev̇ would be com-
puted self-consistently from the~irreversible! dynamics3

v̇5E2l~ t !v1Fobs~q! ~1.7!

with l(t)5E• j t . The difficulty with proving this behavior
as compared to the Ref.@9# case, is that trajectoryX(t) and
thus alsoJ„X(t)… is not smooth for finitet. The problems are
compounded when we consider thet→` limit correspond-
ing to the SNS.

Based on numerical evidence, we nevertheless bel
that

lim
N→`

f 1~v,E;N!5 f̂ 1~v,E![ lim
t→`

f̂ t~v,E! ~1.8!

where f̂ t(v,E) is the solution of the Vlasov equation with
force given by the right hand side of Eq.~1.7!, and we define
for a given functiong

g~v!5E
L8

g~q,v!dq.

The integration overq is necessary, or at least desirab
since we expect thet→` limit of f̂ t(q,v,E) to be singular
with respect todq dv as is theN51 reversible system~1.1!.
Its projection on the velocity is however expected to be
solutely continuous with respect todv @3,7#. Equation~1.8!
is thus a form of the law of large numbers, which shou
hold for smoothr0(X,E;N). Something like this was in fac
proven by Ruelle for the stationary state under some hyp
eses on the thermostatted dynamics@12#. To make contact
with Ruelle’s theorem it is convenient to think ofLN as a
torus of length 2LN along they axis~perpendicular toE! and
length 2L along thex axis. This does not change the dynam
ics.

To get some analytical handle on the form of the redu
distributions in the SNS, we investigated a model system
which the deterministic collisions with the obstacles are
placed by a stochastic process in which particle velocities
their orientations changed at random times, independe
for each particle. This yields a Markov process that repla
the continuity equation for r t(X,E;N) by a linear

3The dynamics~1.1! is reversible in the sense that ifTtX is a
solution thenTtRTtX5RX, whereR reverses all velocities.
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Boltzmann-like equation; see@13#. We can write either of
these equations in the symbolic form

]

]t
r t~Q,V!1(

i

]

]qi
$vir t~Q,V!%1(

i

]

]vi

3$@E2a~V!vi #r t~Q,V!%5S ]r t

]t D
coll

, ~1.9!

where we have setX5(Q,V) ~and dropped the explicit de
pendence onE and N!. The term on the right hand
(]r t /] t)coll represents either the effect of deterministic co
sions with the obstacles as given by Eq.~1.1! or a collision
operator independent ofQ, see Eq.~3.1!. A similar ansatz for
the irreversible dynamics~1.7! leads to a Boltzmann-Vlasov
equation for the one particle distribution. These equatio
can be solved analytically as a power series inE and/or nu-
merically. This is described in Sec. III.

In Sec. IV we compare some of the moments, includ
the current, of the deterministic distributionf 1(v,E;N) with
those of the stochastic one. We find surprisingly good agr
ment once the mean free path appearing in the Boltzma
like equations is properly interpreted, see Sec. IV B. We no
however, that a direct computation of the distribution of fr
paths in the dynamical system~1.1! shows that it is far from
being exponential, which is the basic assumption of the M
kov process. We therefore have no real explanation for
observed good agreement. We only note that some feat
of the stationary state appear rather robust with respect to
collision processes with the ‘‘obstacles,’’ yielding similar r
sults for different distributions for the free path. In Sec. V w
discuss some general questions about the relation betw
this thermostatted model and the Drude model of electr
conduction in metals@14#.

II. NUMERICAL RESULTS

Equation~1.1! can be solved in terms of quadratures b
tween collisions with the obstacles so the simulation cons
mainly in computing the times of successive collisions.
each collision there is an instantaneous change in the ve
ity of the colliding particle and consequently also in the cu
rent J and thus in the thermostatted force acting on ea
particle. Assuming that the system is ergodic we can ob
information about the SNS from time averages over a sin
trajectory. In practice we used a few initial states and fou
a behavior consistent with this assumption. The relative s
plicity of the dynamics enabled us to get fairly accurate
sults even for 50 particles with relatively small computin
power. Our simulations were carried out on a Pentium P
Error bars are computed by doubling the range of the fl
tuations of the time average over the interval@0.9T,T# where
T is the total number of collisions computed. After th
change of variables described after Eq.~1.2! all quantities
appearing in the graphs are adimensional.
4-3
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A. The current

Let j (E,N) be the average current in the steady statem1,

j ~E,N!5^J&m15E vf 1~v,E,N!dv ~2.1!

with J defined in Eq.~1.2!. As already noted, in all ou
computations the electric field is along the positivex axis,
E5E1x , all densities are normalized andj (E,N) is the x
component of the current defined in Eq.~2.1!.

In Fig. 2 we plot the conductivityk(E,N)5 j (E,N)/E as
a function of the field for different numbers of particles,N
51, 2, 10, 15, 20, 30, and 50. The averages were comp
by running simulations in which the total number of col
sions with the obstacles varied from 109 for N51 to 108 for
N550.

We note that for very small fields the interaction amo
the particles is very small so that the invariant distribution
reached only after a very long transient time.

Furthermore, although the current goes to 0 asE→0, the
fluctuations in the current are almost independent ofE so
that longer and longer simulations are required in order
distinguish the average from the fluctuations whenE→0.
For N52, 5, and 10 we checked whetherdk(E,N)/dE→0
as E→0, as required by the symmetry of the problem
k(E,N) is differentiable at 0. While the results are not d
finitive they are consistent with such behavior.

In Fig. 3 we plot the conductivity as a function of 1/N for
a few selected values of the field. As can be seen there
behavior ofk(E,N) can be well fitted forN.2 by the fol-
lowing formula, which is the analogous of Eq.~1.3! with
CN(0) given by Eq.~1.5! for EÞ0: k(E,N)5k̃(E)1c/N
with k̃(E)5 limN→` k(E,N) and c independent fromE, at
least within the accuracy of our computation.@The value of
k(E,1) is about 15–20 % lower than that given by the fo
mula, depending onE#. ForE50.04 we have the value of th
conductivity forN52, 5, and 50 as well as the distributio
f 1(v,E;N). We can therefore check directly Eq.~1.4! for
EÞ0. Figure 3 contains both the values obtained directly a
those obtained from Eq.~1.4! for E50.04. The agreement i
clearly very good. Finally plotted in Fig. 3 is the value of th
conductivity at zero field obtained from Eq.~1.5!, i.e., as-
suming that the invariant distribution is microcanonical. A
though this assumption is inconsistent with the actual
merical data, the behavior is qualitatively similar.

The smoothness, or rather the lack of smoothness, of
current as a function ofE for N51 was extensively dis-
cussed in@1# and related there to the discontinuities of t
collision map. The data we have forN>2 are insufficient to
address this question. However it is expected that the sta
ary current will be smoother than it is in the one partic
case, since it is averaged over all particles.

B. Distribution functions

To study the space independent part of the one par
density function,f 1(v,E;N), it is convenient to switch to
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the variablesr 5uvuP@0,AN# anduP@2p,p# the angle be-
tween the velocityv and thex axis. Expandingf 1(v,E,N) in
a Fourier series inu, we have

f 1~v,E;N!5 (
k50

`

ck~r ,E;N!cosku, ~2.2!

where only terms in cosku appear due to the symmetry of th
problem. Note that 2prc0(r ,E;N) is the stationary probabil-
ity density for the modulus ofv while

j ~E,N!5pE
0

AN
dr r 2c1~r ,E;N!. ~2.3!

In Fig. 4 we plot 2prc0(r ,E;2) for E50.04, 0.08, 0.12
while Fig. 5 is a plot ofprc1(r ,E;2)/E for the same values
of the field. Both appear to be almost independent ofE for
those values ofE so we believe that Figs. 4 and 5 represe
a good approximation for the limiting behaviorE→0. Ob-
serve that, due to the symmetryE→2E we expect the cor-

FIG. 4. Plot of 2prc0(r ,E;2) for different values ofE. The
straight dashed line is obtained from the microcanonical distri
tion, Eq. ~2.4!. The dotted line gives the result for the stochas
model.

FIG. 5. Plot ofprc1(r ,E;2)/E for different values ofE. The
dotted line gives the result for the stochastic model.
4-4



om

f
ar
n-
u

ry
a-

e

,

r

-

f

ve

ssed

ults
in

e

ys-
les
The

f

a

-

uc-
el

PROPERTIES OF STATIONARY NONEQUILIBRIUM . . . PHYSICAL REVIEW E65 051204
rections to these functions to be ofO(E2). For comparison
we also plotted there the results obtained analytically fr
the stochastic model discussed in the Introduction and
Sec. III.

In Fig. 4 we also plot the ‘‘microcanonical’’ density o
uv1u obtained from the microcanonical ensemble of two p
ticles with v1

21v2
252. The microcanonical one-particle de

sity f micro(v) is, of course, isotropic and the speed distrib
tion 2puv1u f m(uv1u,E50;2) is

2puv1u f m~ uv1u,E50;2!5
1

p
uv1u E d~v1

21v2
222!dv2

5uv1uH~22v1
2!, ~2.4!

whereH(x) is the Heaviside function. This is seen to be ve
different from what we obtain from our simulations or an
lytically from the stochastic model forE→0. We did a simi-
lar analysis forN.2 and in Figs. 6 and 7 we present th
corresponding results forN550.

FIG. 6. Plot of 2prc0(r ,E;50) for E50.04. Also shown are the
results from simulations of Eq.~1.7! and from analytic solutions o
the corresponding stochastic equation, Eq.~3.10!. For comparison
we also show the microcanonical result, corresponding to a M
wellian.

FIG. 7. Plot ofprc1(r ,E;50)/E and comparison with stochas
tic irreversible dynamics forE50.08.
05120
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C. The NÄ` limit

As discussed in Sec. II A,k(E,N)→k̃(E) asN→`. We
compared thek̃(E) obtained from our simulation, see Fig. 3
with that obtained from the irreversible Eq.~1.7!. A way to
do this self-consistently would be to choose the parametel
in Eq. ~1.7! such that

Û~E!5E dvuvu2 f̂ 1~v,E!51

and show that for this value ofl the conductivityk̂(E) for
the system described by Eq.~1.7! is equal tok̃(E). Rather
than doing this, we took thek̃(E) deduced from the simula
tions as in Fig. 3 and used it to determinel, i.e., we setl
5k̃(E)E2 in Eq. ~1.7!. We then computed, via simulation o
Eq. ~1.7!, a new conductivityk̂(E). In Fig. 8 we compare
k̂(E) and k̃(E). The agreement is very good. We obser
that it follows from Eq.~1.7! that E2k̂(E)/Û(E)5l so that
this agreement also confirms the self-consistency discu
above.

As for the reversible dynamics we can write

f̂ 1~v,E!5 (
k50

`

fk~r ,E!cosku. ~2.5!

In Figs. 6 and 7 we compare 2prc0(r ,E;50) and
prc1(r ,E;50) with 2prf0(r ,E) and prf1(r ,E), respec-
tively. The agreement is very good. As we did forN52 in
Figs. 4 and 5, we also plotted in Figs. 6 and 7 the res
obtained analytically from the stochastic model discussed
the Introduction and in Sec. III. In Fig. 6 we also plot th
microcanonical density, i.e., a Maxwellian with^v1

2&51.

III. THERMOSTATTED STOCHASTIC EVOLUTION

We now describe more precisely the stochastic model s
tem in which the collisions between particles and obstac
are replaced by independent random scattering events.
model is specified by writing the right hand side of Eq.~1.9!,

x-

FIG. 8. Comparison between the limiting values of the cond
tivity k̃(E) in the reversible model and in the irreversible mod
k`(E).
4-5
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the evolution equation for theN-particle phase space densi
of our system, which we now callFt(Q,V) to distinguish it
from the mechanicalr t(Q,V), as

S ]F~Q,V,E!

]t D
coll

5 l 21(
i 51

N E
~n•vi !,0

~vi8•n!

2
@F~Q,V i8 ,E!

2F~Q,V,E!#dn. ~3.1!

In Eq. ~3.1! n is a unit vector in the direction of the
momentum transfer in a ‘‘collision,’’ unu51, v85v
22n(n•vi) andV i8 is identical toV i except for itsi th com-
ponent, which is replaced byvi8 . The coefficientl 21 multi-
plying the collision term is the inverse of the mean free p
between collisions, a parameter to be specified.

Equation~1.9! together with Eq.~3.1! describes a Markov
process in which particles change the directions of their
locities as if they were undergoing independent random
lisions with ‘‘phantom obstacles’’ at a rate equal tol 21uvu
with a uniformly distributed impact parameter@15#. Between
collisions the particles move according to Eq.~1.1!. This
model can be thought of as, and presumably even prove
be, the Boltzmann-Grad limit of our system, i.e., we pla
disks of radiusR randomly in a square of sideL with density
r and then takeR→0, r→` such thatl 51/2rR stays con-
stant, see@16#.

This system will, like our mechanical system, Eq.~1.1!,
conserve energy, so setting(vi

25N the evolution takes place
on SN . By general arguments@17,18# we expect that this
system will, forEÞ0 approach, ast→`, a unique stationary
densityF(V,E;N), which will satisfy the equation

(
i 51

N
]

]vi
$@E2E•Jvi #F~V,E;N!%5S ]F~V,E;N!

]t D
coll

.

~3.2!

For small E we expandF(V,E;N) as a formal power
series inE,

F~V,E;N!5F~R,Q!5 (
n50

`

EnF ~n!~R,Q!, ~3.3!

where we have set vi5(r i cosui ,ri sinui) and R
5(r 1 ,...,r N), ( i r i

25N, Q5(u1 ,...,uN). Observe that in
this way we get a singular perturbation problem becausE
multiplies the highest order derivative in Eq.~3.2!. Moreover
F1(V,E;N) clearly depends only onE/ l so that we can, for
the time being, setl 51. Finally we can write, as in the
preceding section,

F ~n!~R,Q!5 (
kPZ1

N
F ~n!~R,k!)

i 51

N

cos~kiu i !, ~3.4!

where we have again used the symmetries of the proble
Substituting Eq.~3.4! into Eq. ~3.3! one gets a hierarchy

of equations linkingF (n)(R,k) to F (n21)(R,k i), where k i

5(k1 ,...,ki11,...,kN). From this, and from the fact that th
05120
h
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kernel of the collision operator depends only onR we get
that F (n)(R,k)50 if uku.n. F (0)(R,0) satisfies the relation

]

]r i
F ~0!~R,0!5

4

3
r iF

~1!~R,0i !, ~3.5!

while for F (1)(R,0i) we get the equation

(
i

H S 2
r i

U
2

1

r i
DF ~1!~R,0i !1

]

]r i
F ~1!~R,0i !J 50

~3.6!

with U5( i r i
2. Equations~3.5! and ~3.6! are easily solved

and, together with the fact thatF (1)(R,0)[0 give us
F(R,Q) to first order inE,

F~R,Q!5CdS (
i 51

N

r i
22ND F 1

S (
i

r i
3D ~2N21!/3

1
3~2N21!E

4

r i cosu i

S (
i

r i
3D ~2N12!/31O~E2!G ,

~3.7!

whereC is a normalization constant. It is possible to wri
out the full hierarchy of equations forF (n)(R,k) and see that
they can be solved iteratively but it is not clear that this
useful. We shall therefore use Eq.~3.7! to compare with our
numerical data for small values ofE. To do so we define the
one-particle distributionf̃ (v,E;N) and develop it in a Fou-
rier series exactly as in Eq.~2.2!,

f̃ ~v,E;N!5E dv2¯dvNF̃~V,E;N!

5 (
k50

`

c̄k~r ,E;N!cos~kiu i !. ~3.8!

Before doing any comparisons we consider the stocha
version of thef i(v,E) obtained from the irreversible dynam
ics defined by Eq.~1.7!. Puttingl5E2n, n to be set tok̄(E)
when compared with the deterministic model, we get

]

]v
$@E2E2nv# f̃ i~v,E!%5S ] f̃ i~v,E!

]t
D

coll

, ~3.9!

where the collision term is again given by Eq.~3.1! with N
51. Observe that although Eq.~3.9! contains three param
eters~E, n and l!, it depends only onEl andn l 21. Develop-
ing f̃ i(v,E) in a power series inE we obtain in analogy to
Eq. ~3.7!

f̃ i~v,E!5Ce2~8/9l !nr 3
~112nEr cosu!1O~E2!,

~3.10!

whereC is a normalization constant.
4-6
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To comparef̃ i(v,E) with the largeN limit of f̃ (v,E;N)
given in Eqs.~3.8! and ~3.9! we need to fix the parametern
~settingl 51!. This can be done self-consistently requiring

E uvu2 f̃ i~v,E!dv51. ~3.11!

Solving Eq.~3.11! for n and using it to computef̃ i we expect
that

lim
N→`

f̃ ~v,E;N!5 f̃ i~v,E!. ~3.12!

While we have not proven this equivalence we believe tha
should follow from general considerations: it would follo
formally from showing that, in the limitN→`, F̃(v,E;N)
factorizes, as is usually the case for systems with mean-fi
type interactions. This is certainly consistent with our n
merical results.

IV. COMPARISON BETWEEN THE DETERMINISTIC AND
STOCHASTIC TIME EVOLUTION

A. The distribution of the modulus of v

For N51 the exact solution, forE50, of both the sto-
chastic and mechanical models isf (v,0;1)5d(v221). For
N52, we are able to compute the one-particle distribut
from Eq. ~3.7!. This yields

r c̃0~r ,E;2!5
Cr

r 31~22r 2!3/21O~E2!, ~4.1!

whereC is a normalization constant. This is plotted in Fig.
and one can easily see that the agreement with the nume
solution of the deterministic model is very good.

A similar agreement is obtained forN55 although, as
already said, we were not able to integrate Eq.~3.8! for
N.2 so that we computed this integral numerically by sim
lating the process associated to Eq.~1.9! with collision term
given by Eq.~3.1!.

Finally, for N550 we see in Fig. 6 that our deterministi
Eq. ~1.1!, stochastic, Eq.~3.9!, and irreversible, Eq.~1.7!,
models give indistinguishable results. This certainly sugge
the validity of Eqs.~1.7! and ~3.12! for largeN.

B. The first Fourier component of the distribution of v

The analysis of the first Fourier component of the dis
bution of v is less straightforward because we must fit t
parameterl appearing in Eq.~3.1!. In the stochastic systeml
represents the mean free flight of a particle. The concep
mean free flight is not uniquely defined for the mechani
model. For this reason we usedl as a fitting parameter fo
matchingc̃1(r ,E;N) with c1(r ,E;N). We will go back to
the mechanical meaning of this parameter in the follow
section. The caseN52 is reported in Fig. 5, where, for th
periodic case, we used a fieldE50.04 and for the stochasti
one we have the expression
05120
it

d-
-

n

cal

-

ts

-

of
l

g

r c̃1~r ,E;2!5
1

2

9El

4

Cr2

@r 31~22r 2!3/2#2 1O~E3! ~4.2!

with C the same constant appearing in Eq.~4.1!. The agree-
ment is again very good and we obtain from the fitl 50.46
~in the unit discussed in the Introduction!. As in the previous
case we did the same comparison for five particles, obtain
again a very good agreement. Moreover, also in this case
value of l is very close to that obtained forN52. Finally, it
is interesting to check if this agreement remains whenN
→`, i.e., for the stochastic irreversible Eq.~3.9!. As can be
seen from Fig. 7 the agreement is again very good and
still get the same value for the parameterl .0.46.

We were also able to computeck(r ,E;2) andfk(r ,E) for
k52 and 3. It is also easy to compute the lowest order c
tribution to c̃k(r ,E;2) andf̃k(r ,E), extending the compu-
tation from Sec. III. It is thus possible to compare, at leas
this limited situation, the results. Contrary to what we fou
for k50 and 1, c2(r ,E;2) is quite different from
c̃2(r ,E;2). Analogouslyf2(r ,E) and f̃2(r ,E) differ sig-
nificantly. A comparison of the term withk53 also shows
deviations between the mechanical and the stochastic mo
although, surprisingly, much smaller than those found fok
52. We note, however, that for this comparison we on
have data forE50.012.

C. The mean free flight

In kinetic theory one can define the mean free flight
two ways. Denoting byl i(X) the distance traveled by par
ticle i before its first collision with an obstacle starting fro
the pointXPSN , l 0 is the average ofl i(X) with respect to
the SRB distributionm1(dX,E;N) ~it clearly does not de-
pend oni!. On the other hand we can consider the setSN

i of
points such that particlei is undergoing a collision, i.e.,qi is
on the boundary of one of the scatterers, thenl 1 is the aver-
age ofl i(X) onSN

i with respect to the projection of the SR
distribution m1(dX,E;N). Observe that for the stochast
model these two quantities are identical.

We computed bothl 0 and l 1 for the mechanical system
with N52, 5, 50 and for the irreversible dynamics Eq.~1.7!
with E50.04. This was done by running a very long traje
tory and taking the average of the distance traveled b
particle between two collisions to computel 1 or numerically
integrating l i(X) along the trajectory to computel 0 . The
results appears to be independent ofN, at least within the
accuracy of our computations, and are

l 050.46,

l 150.58.

The value ofl 0 agrees very well with the value obtaine
from the fit of l reported in the preceding section. This im
plies that the correct way to compare the stochastic and
mechanical model is to usel 0 as the mean free flight param
eter in Eq. ~3.1!. This is consistent with the Green-Kub
formula Eq.~1.3!. We saw in Sec. II A that Eq.~1.3! is well
verified for the conductivity at a small field of the determi
4-7
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istic model. In the case of the stochastic model Eq.~1.3!
reduces to an integral relation betweenF (0)(R,0) and
F (0)(R,0i), see Eqs.~3.5! and ~3.6! in Sec. III. We did not
prove this identity although numerical analysis for smallN
seems to verify it. Finally the agreement betweenc0(r ,0;N)
and c̃0(r ,0;N) observed in Sec. IV A tells us that the rat
between the conductivity for the deterministic and stocha
dynamics is independent ofN at least forE→0. From Eq.
~3.7! we know that the conductivity for the stochastic mod
with one particle andE50 is 3l /4 so that also for the deter
ministic model we have

k~0,1!5 3
4 l 0 . ~4.3!

This relation is also very well verified by our computatio
for the one-particle system.

To better compare the deterministic and stochastic mo
we also computed the distributionP(l ,E;N) of l i(X) with
respect to the SRB distribution. This distribution for fiv
particles andE50.04 is shown in Fig. 9 together with a
exponential law with the same average, i.e., the distribu
one would obtain running the same simulation for the s
chastic case. We did similar computations forE50.04 and
N52, 10, and 50. The results are again independent ofN.

V. CONCLUSIONS

To put our study here in a physical context, we note tha
system of noninteracting electrons moving under the in

FIG. 9. Free path distributionP( l ,0.04;5) compared with an
exponential distribution with the same average
i,

05120
ic

l

ls

n
-

a
-

ence of an external electric field while undergoing elas
scatterings is often used as a crude model of electrical c
duction in metals~the Drude model! @19,20,14#. To obtain
the conductivity the velocity distribution function of th
electrons is then computed from a Boltzmann-type equat
e.g., Eq.~3.2!: with N51 and without the thermostatting
E•J term. By doing this calculation only up to a linear ord
in E one avoids the problem that without the thermostat E
~3.2! does not have a solution since the system will never
in a true steady state@21#. A crucial ingredient in the calcu-
lation is the explicit assumption that forE50 the distribu-
tion is one corresponding to equilibrium at a given specifi
temperatureT, i.e., Maxwellian for a classical system.

This description of the system of independent electro
interacting with the lattice of ions only via elastic collision
clearly not realistic. It is just used for obtaining a simp
quick answer for the zero~small! field conductivity. For a
more complete description of the steady state in a condu
one has to consider the system to be in contact with so
reservoir, which will absorb the heat generated by the c
rent. It is this interaction with some external reservoir th
was replaced, in the model considered here, by an artifi
thermostat. To our surprise, however, we found that t
modeling does not lead to a Maxwellian distribution wh
E→0 even whenN is very large. This means that there is n
equivalence of ensembleswhen it comes to modeling how
the energy is extracted from the system—at least when th
is no direct interactions between the particles other than
induced by the thermostat. We expect~and have some indi-
cation@22#! that this will change when we include collision
between the particles. Still it raises some caution ab
‘‘thermostats’’ as a model for the description of stationa
nonequilibrium states.
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