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Properties of stationary nonequilibrium states in the thermostatted periodic Lorentz gas:
The multiparticle system
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We study the stationary nonequilibrium states\Ngpoint particles moving under the influence of an electric
field E among fixed obstaclgglisk) in a two-dimensional torus. The total kinetic energy of the system is kept
constant through a Gaussian thermostat that produces a velocity dependent mean field interaction between the
particles. The current and the particle distribution functions are obtained numerically and compared for small
|E| with analytic solutions of a Boltzmann-type equation obtained by treating the collisions with the obstacles
as random independent scatterings. The agreement is surprisingly good for both small ahd Tdrgdatter
system in turn agrees with a self-consistent one-particle evolution expected to holdNh-thelimit.
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|l INTRODUCTION 1/25N V2 constant, i.e.U=v3. It also has the effect of
making the flow &, generated by Eq.(1.1) on the
In this paper we continue our study of the stationary non{4N— 1)-dimensional energy surface non-Hamiltonian when
equilibrium statesSNS of current carrying thermostatted E+0. In fact the phase space volume contraction rate is
systems. In part [1] we described extensive numerical and iven by o(X)=—(2N—1)a(J,U). Another effect of the
analytical investigations of the dependence of the current O&ermostat is to effectively cou,ple all the particles in a mean

the electric field for a model single-particle system |ntro-field way, a(J,U), depending only on the total momentum

duced in[2] and previously studied if3]. Here we study a : > = .
generalization of that model d particles introduced ip4]. of the particies. Note that this is the only coupling between
éhe particles in this system.

The particles, which have unit mass, move among a fixe The change of variablesg—q /L, vi—Vi/vg, t
.. . . i . . i i ) i i'vos
periodic array of disks in a two-dimensional squarevith _two/L, andE—>EL/v§, where 2. is the length of the box,

periodic boundary conditions, see Fig. 1. They are acted o .
by an externalelectrig field E parallel to thex axis and by leaves Eq(1.1 unchangedN, SO that the motion of the system
takes place onSy=(A')"XSy, where Sy={vi|Z_ Vi

a “Gaussian thermostat(The disks are located so that there IR
is a finite horizon, i.e., there is a maximum distance that = NJ- We shall denote bX e Sy a point in the phase space
particle can move before hitting a disc or obstacle of the system. In these units we todk=1, R;=0.39, R,

The equations of motion describing the time evolution of = 0.79, andA is the torus of side 2. ,
the positionsy; and velocitiesy;, i=1, ... N, are Our main interest is in the SNS of this model system. To

be more precise lefo(dX,N)=po(X;N)dX be an initial
G=Vi, q=(gx.0iy)eA’ measure symmetric in thig); ,v;} and absolutely continuous
with respect to the Liouville volumelX projected onSy.
Vi=E—a(J,U)v;+F,dq), (1.)  The time-evolved measurg(dX,E;N) is still absolutely
continuous with respect to the Liouville measure with den-
where sity p;(X,E;N) for any fixed timet. The SNS is expected to
N be described by a Sinai-Ruelle-BoweiSRB) measure
S (1.2 w(dX,E;N), given by the weak limit, ast—c, of
= mi(dX,E;N), when it exists. This limit measure is, in gen-
eral, not absolutely continuous with respect to the Liouville
Here A’ =A\D, with D being the region occupied by the measure, due to the phase space volume contrafSih
disks (obstacles and F s representing the elastic scattering The existence of such a limit was proven, fdr=1 and
that takes place at the surface of the obstacles. The purpofg| €[0,E,] (Eo smal) in [3], but no such result is available
of the Gaussian thermostat, represented by the terrfor N=2, because of the lack of uniform hyperbolicity for
a(J,U)v; in Eq. (1.1), is to maintain the total kinetic energy the zero field system. On the other hand our computer simu-
lations of the dynamics, foN ranging from 1 to 50 andE
from 0.04 to 1.0, strongly support the belief that there exists
*Email address: bonetto@ias.edu a unique limiting measurg.* (dX,E;N) up to quite large
"Email address: ddaems@ulb.ac.be values of|E|, say|E|=E=<1. We expect, however, that the
*Email address: Lebowitz@math.rutgers.edu
SEmail address: Valeria.Ricci@romal.infn.it
or ricci@mat.uniromal.it 1see[1] for an explanation of these values.
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FIG. 2. Conductivityx(E,N) as a function oE for differentN.
FIG. 1. General billiard structure with disks of radiRg andR,
in a periodic box with side lengthl2 N=3 particles are shown.  for symmetry reason. We will denote tikecomponent of the
current byj(E,N) and callx(E,N)=j(E,N)/E the conduc-
projection of x ™ (dX,E;N) on the one-particle phase space tivity. The dependence aX for E— 0 should be given by the
A" XQy, where Q(N) is the ball|v|<N, will yield a  Green-Kubo formula for the zero field conductivity when the
one-particle densityf*(q,v,E;N) absolutely continuous dynamics of the particles are independent. A straightforward
with respect todqdyv; this is proven, for instance, for computation then shows that the zero field conductivity of
coupled Arnold’s cat maps7]. the N particles is
To obtain information abouf* we considered first the
case of weak fields. It is tempting to think that 6+ 0 the k(ON)=C(0)«(0,1) (1.3
singular set on which™ is concentrated will be spread out ) o ) )
more or less uniformly orSy so that ™ will approach with (0, 1) given by the diffusion constant of Bunimovich
weakly the microcanonical measure on the energy surfacnd Sinai8] and
Sy this measure is certainly invariant for the dynamics at
E=0. If this were the case _theh*(q,v,E;l_\l) would ap- CN(0)=Jif+(q,v,0;N)dq dv. (1.4
proach, asE—0, the equilibrium one-particle density ob- V]
tained from the projection of the microcanonical measure:
for large N this would be close to the Maxwellian distribu- FOr the microcanonical distribution we easily find
tion with unit varianc€ We ran computer simulations for
values of the field between 0.04 and 0.12 &hd 2, 5, and Cn(0)= \/_( 1— i+O(N*2) , (1.5
50. In all cases we found a one-particle distribution that is far 8N
from the projection of the microcanonical distribution. Fur-
thermore this distribution appeared to have only very slight 45+
dependence ok for those values of the field; so it appears
that there is a well defined limit of " (q,v,E;N) asE—D0,
and that this limit isnot the projection of the microcanonical 028 gy o
measure: there are correlations between the velocities of th *
particles induced by the field, beyond those corresponding t;
the energy constraint, which remain whEenr- 0. ¥ e
This deviation from the microcanonical distribution is re- o5} g
flected also in the behavior of the average current per particle
in the steady state, given HYE,N) = fvf*(q,v,E;N)dqdv
asE—0. We studied (E,N) numerically as a function d 023 H
and N, see Figs. 2 and 3. In the following we will always 022 |
assume that the electric field is along the positivaxis, E

=E1,. This implies that they component of (E,N) is zero T o1 0z . 0s 04 05

£-=0.04 GK »—4—4
E=0.04 :--¢--+ 1
linear fit -
=0. K
linear fit ------ 1
=0.9 -8
linear fit -
microcanonical @
linear fit

FIG. 3. (E,N) as a function oN~? for differentE. Also plot-
°Note that for largeN the Maxwell distribution is typical for ted is the conductivity obtained from Eql.3) using the actual
points on the energy surface, i.e., the Bedn Sy for which f* is distribution function(see the following sectignfor E=0.04 and
not a Maxwellian has measure (@ith respect todX). Of course  compared with the value obtained by a direct simulation at the same
sinceu™ is singular with respect taX this need not be the case field. Finally, the highest line represents the conductivity obtained
here. from Eq. (1.3 using a microcanonical hypothesis.
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which is inconsistent with our data although the form of theBoltzmann-like equation; sefl3]. We can write either of
dependence ol appears to be similar, see Sec. Il A. these equations in the symbolic form

Let us consider now the behavior of our model system in
the limit N—oo. As the particles interact only through their

average velocity)(X(t)) it seems reasonable to expect that, 9 9 d
for N—o, J will stop fluctuating, i.e., that for “well be- Ept(QrV)"i_E a—q{ViPt(Q,V)}JFE v
haved” initial distributions[9—11] Lo PO
. Ipt
J(X(t))ﬂjt=fvft(v,E)dv, (1.6) X{[E_“(V)V‘]pt(Q'V)}_(W)Con’ (2.9

wheref(v,E) =limy_,.. fi(v,E;N). If this were true in a suf-
ficiently strong sense it would lead to an autonomouswhere we have se&X=(Q,V) (and dropped the explicit de-
Vlasov-type equatiof9—11] for f, wherev would be com-  pendence onE and N). The term on the right hand
puted self-consistently from th@reversible dynamics (dp13;) con Tepresents either the effect of deterministic colli-
S sions with the obstacles as given by E#.1) or a collision
V=E-MUVEFopd Q) (.7 operator independent €}, see Eq(3.1). A similar ansatz for
with \(t)=E-j,. The difficulty with proving this behavior, the irreversible dynamicgl.7) leads to a Boltzmann-Viasov
as compared to the RgP] case, is that trajectorX(t) and ~ €duation for the one particle distribution. These equations
thus alsaJ(X(t)) is not smooth for finite. The problems are €an be solved analytically as a power serieg iand/or nu-
compounded when we consider the-c limit correspond- ~ merically. This is described in Sec. Ill.

ing to the SNS. In Sec. IV we compare some of the moments, including
Based on numerical evidence, we nevertheless believidie current, of the deterministic distributidri (v, E;N) with
that those of the stochastic one. We find surprisingly good agree-

. . ment once the mean free path appearing in the Boltzmann-
lim f*(v,E;N)=f"(v,E)=lim f,(v,E) (1.8 like equations is properly interpreted, see Sec. IV B. We note,
N—e toee however, that a direct computation of the distribution of free
- i . ) . paths in the dynamical systeth.1) shows that it is far from
wheref(v,E) is the solution of the Vlasov equation with a heing exponential, which is the basic assumption of the Mar-
force given by the right hand side of Ed..7), and we define oy process. We therefore have no real explanation for the

for a given functiong observed good agreement. We only note that some features
of the stationary state appear rather robust with respect to the

g(v):J g(q,v)dq. collision processes with the “obstacles,” yielding similar re-

A’ sults for different distributions for the free path. In Sec. V we

discuss some general questions about the relation between

) The integration oveq 'Sf ngces§ary, or at least @swable,this thermostatted model and the Drude model of electrical
since we expect the—c limit of f,(q,v,E) to be singular  gnduction in metal§14].

with respect tadq dv as is theN=1 reversible systerfl.1).
Its projection on the velocity is however expected to be ab-
solutely continuous with respect tv [3,7]. Equation(1.8)
is thus a form of the law of large numbers, which should
hold for smoothp(X,E;N). Something like this was in fact Equation(1.1) can be solved in terms of quadratures be-
proven by Ruelle for the stationary state under some hypothiween collisions with the obstacles so the simulation consists
eses on the thermostatted dynamizg]. To make contact mainly in computing the times of successive collisions. At
with Ruelle’s theorem it is convenient to think dfy as a  each collision there is an instantaneous change in the veloc-
torus of length 2N along they axis (perpendicular t&€) and ity of the colliding particle and consequently also in the cur-
length 2. along thex axis. This does not change the dynam-rent J and thus in the thermostatted force acting on each
ics. particle. Assuming that the system is ergodic we can obtain
To get some analytical handle on the form of the reducednformation about the SNS from time averages over a single
distributions in the SNS, we investigated a model system irrajectory. In practice we used a few initial states and found
which the deterministic collisions with the obstacles are re-a behavior consistent with this assumption. The relative sim-
placed by a stochastic process in which particle velocities getlicity of the dynamics enabled us to get fairly accurate re-
their orientations changed at random times, independentlgults even for 50 particles with relatively small computing
for each particle. This yields a Markov process that replacepower. Our simulations were carried out on a Pentium PC.
the continuity equation for p;(X,E;N) by a linear Error bars are computed by doubling the range of the fluc-
tuations of the time average over the inteM@&l9T, T] where
T is the total number of collisions computed. After the
3The dynamics(1.1) is reversible in the sense that iX is a  change of variables described after Ef}.2) all quantities
solution thenT,RT,X=RX, whereR reverses all velocities. appearing in the graphs are adimensional.

II. NUMERICAL RESULTS
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A. The current LaF Eﬁ'gé — ‘ ' ' ’ ]
Let j(E,N) be the average current in the steady sjate Ll wEii:sqiz \ -~'jﬁ>"“";.* ]
- s d '\(
1 I ”
j(E,N)=(J)M+=f vi*(v,E,N)dv (2.9 el e

with J defined in Eqg.(1.2). As already noted, in all our

2nryolr,E;2)

computations the electric field is along the positiveaxis,
E=EL,, all densities are normalized andE,N) is the x

component of the current defined in E§.1).

In Fig. 2 we plot the conductivityx(E,N)=j(E,N)/E as
a function of the field for different numbers of particlés,
=1, 2, 10, 15, 20, 30, and 50. The averages were computeu
by running simulations in which the total number of colli-

sions with the obstacles varied from®for N=1 to 1¢ for

N=50.

reached only after a very long transient time.
Furthermore, although the current goes to (EasO, the
fluctuations in the current are almost independenEdfo
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FIG. 4. Plot of 27ry(r,E;2) for different values ofE. The

straight dashed line is obtained from the microcanonical distribu-

] ) . tion, Eq. (2.4. The dotted line gives the result for the stochastic
We note that for very small fields the interaction amongmodel.

the particles is very small so that the invariant distribution is
the variables =|v| e[0,/N] and 6 e[ — 7, 7] the angle be-

that longer and longer simulations are required in order to
distinguish the average from the fluctuations when-0.
ForN=2, 5, and 10 we checked whethgk(E,N)/dE—0
as E—0, as required by the symmetry of the problem if

«(E,N) is differentiable at 0. While the results are not de-
finitive they are consistent with such behavior.

In Fig. 3 we plot the conductivity as a function ofNLfor
a few selected values of the field. As can be seen there t

behavior ofk(E,N) can be well fitted foN>2 by the fol-
lowing formula, which is the analogous of E¢L.3) with
Cn(0) given by Eq.(1.5 for E#0: «(E,N)=%(E)+c/N
with 'x(E) =limy_,.. «(E,N) and c independent fronk, at
least within the accuracy of our computatidghe value of
«(E,1) is about 15—-20 % lower than that given by the for-while Fig. 5 is a plot ofzr ¢, (r ,E;2)/E for the same values
mula, depending oE]. ForE=0.04 we have the value of the of the field. Both appear to be almost independenE dbr
conductivity forN=2, 5, and 50 as well as the distribution those values oE so we believe that Figs. 4 and 5 represent

f*(v,E;N). We can therefore check directly E¢L.4) for

f*(v,E;N)zkz (1, E;N)cosk,
=0

j(E,N):wf‘Ndrr2¢1(r,E;N).
0

tween the velocity and thex axis. Expanding " (v,E,N) in
a Fourier series i, we have

2.2)

where only terms in cdsf appear due to the symmetry of the
problem. Note that 2t ¢,(r,E;N) is the stationary probabil-
HEV density for the modulus of while

2.3

In Fig. 4 we plot 27r ¢o(r,E;2) for E=0.04, 0.08, 0.12

a good approximation for the limiting behavi&— 0. Ob-

E=+0. Figure 3 contains both the values obtained directly angerve that, due to the symmety— —E we expect the cor-
those obtained from Eq1.4) for E=0.04. The agreement is
clearly very good. Finally plotted in Fig. 3 is the value of the
conductivity at zero field obtained from E@L.5), i.e., as-
suming that the invariant distribution is microcanonical. Al-
though this assumption is inconsistent with the actual nu-

merical data, the behavior is qualitatively similar.

The smoothness, or rather the lack of smoothness, of the

current as a function oE for N=1 was extensively dis-
cussed in1] and related there to the discontinuities of the

s (r,Es2)E

collision map. The data we have fdi=2 are insufficient to
address this question. However it is expected that the station
ary current will be smoother than it is in the one particle

case, since it is averaged over all particles.

B. Distribution functions
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density function,f*(v,E;N), it is convenient to switch to dotted line gives the result for the stochastic model.
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FIG. 6. Plot of 271 y(r,E;50) for E=0.04. Also shown are the ) L
results from simulations of Eq1.7) and from analytic solutions of _FICE. 8. (_Zomparlson ?Etwee“ the I|m|t.|ng valyes of t_he conduc-
tivity %(E) in the reversible model and in the irreversible model

the corresponding stochastic equation, B3110. For comparison
we also show the microcanonical result, corresponding to a Maxf‘w(E)'
wellian. .
C. The N=o limit
rections to these functions to be 6 E?). For comparison As discussed in Sec. Il A¢(E,N)—%(E) asN—x. We
we also plotted there the results obtained analytically fromtompared thé&(E) obtained from our simulation, see Fig. 3,
the stochastic model discussed in the Introduction and invith that obtained from the irreversible E(L.7). A way to
Sec. lll. do this self-consistently would be to choose the parameter
In Fig. 4 we also plot the “microcanonical” density of in Eq.(1.7) such that

|v,| obtained from the microcanonical ensemble of two par-
ticles with vi+v3=2. The microcanonical one-particle den- 0(E)=f dvv[2F(v.E)=1
sity fmicro(V) IS, Of course, isotropic and the speed distribu-
tion 27|vy|f(|v4,E=0;2) is _ .

and show that for this value of the conductivityk(E) for

1 5 the system described by E€.7) is equal tok(E). Rather
2| Vva|fn([va] [E=0;2) = ;|V1|f S(VitVvy—2)dv, than doing this, we took th&(E) deduced from the simula-
tions as in Fig. 3 and used it to determikgi.e., we sefA
=|vl|H(2—v§), (2.4) =%(E)E? in Eq. (1.7). We then computed, via simulation of

Eqg. (1.7), a new conductivityx(E). In Fig. 8 we compare

whereH(x) is the Heaviside function. This is seen to be veryk(E) and’x(E). The agreement is very good. We observe
different from what we obtain from our simulations or ana-that it follows from Eq.(1.7) that E?%(E)/U(E) =\ so that
lytically from the stochastic model fd&— 0. We did a simi-  this agreement also confirms the self-consistency discussed
lar analysis forN>2 and in Figs. 6 and 7 we present the above.

corresponding results fax=50. As for the reversible dynamics we can write
. };g,i,ix{ ' E=0.08 N=50 —— - B ”
s | F R B=0.08 ime | f (V,E)—go oi(r,E)coske. (2.5
4 k1
04| ¥ g J
sl ;’ Xi‘; | In Figs. 6 and 7 we compare 72 i(r,E;50) and
i % a1 (r,E;50) with 271 ¢po(r,E) and =r ¢p4(r,E), respec-
s 7 5 1 tively. The agreement is very good. As we did fér=2 in
G ooast j ﬂ ] Figs. 4 and 5, we also plotted in Figs. 6 and 7 the results
| ; ] obtained analytically from the stochastic model discussed in
7 ® the Introduction and in Sec. lll. In Fig. 6 we also plot the
0.15 | F ) 1 . . . . . 2
; = microcanonical density, i.e., a Maxwellian wi¢h7) =1.
0.1 | i 4
*
005 1 ,f i*, 1 . THERMOSTATTED STOCHASTIC EVOLUTION
0 0s . s y s We now describe more precisely the stochastic model sys-

tem in which the collisions between particles and obstacles
FIG. 7. Plot ofar 4(r,E;50)/E and comparison with stochas- are replaced by independent random scattering events. The
tic irreversible dynamics foE=0.08. model is specified by writing the right hand side of Ef9),
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the evolution equation for thi-particle phase space density

of our system, which we now calft;(Q,V) to distinguish it
from the mechanicab,(Q,V), as

LR

—F(Q,V,E)]dn.

(—&F(Q’V’E) [F(Q v/ E)

at
(3.9

In Eg. (3.1 n is a unit vector in the direction of the
momentum transfer in a “collision,” [n|=1, v'=v
—2n(n-v;) andV/ is identical toV; except for itsith com-
ponent, which is replaced by . The coefficient ~* multi-

with U=3,r?.

PHYSICAL REVIEW B5 051204

kernel of the collision operator depends only Bnwe get
that F("W(R,k)=0 if |k|>n. FOO(R,0) satisfies the relation

4
3" FO(R,0),

ﬁr. O(rR,0= (3.5
while for FM(R,0') we get the equation
}i) [( —~ 6— r_l,) FO(R,0)+ —F<1>(R 0)=
(3.6

Equations(3.5 and (3.6) are easily solved

plying the collision term is the inverse of the mean free path@nd. together with the fact thaF")(R,0)=0 give us

between collisions, a parameter to be specified.
Equation(1.9) together with Eq(3.1) describes a Markov

process in which particles change the directions of their ve-
locities as if they were undergoing independent random col-

lisions with “phantom obstacles” at a rate equal Ito*|v|
with a uniformly distributed impact paramefdr5]. Between
collisions the particles move according to Ed.1). This

model can be thought of as, and presumably even proven to
be, the Boltzmann-Grad limit of our system, i.e., we place

disks of radiuR randomly in a square of sidewith density
p and then takd&R— 0, p—o such that = 1/2pR stays con-
stant, se¢16].

This system will, like our mechanical system, Ed.1),
conserve energy, so settiEg/izz N the evolution takes place
on Sy. By general argumentgl7,18 we expect that this
system will, forE+ 0 approach, as— o, a unique stationary
densityF(V,E;N), which will satisfy the equation

) coll .
(3.2

For small E we expandF(V,E;N) as a formal power
series inE,

IF(V,E;N)

N
2 &— [E—E~Jvi]F(V,E;N)}=( -

©

F(V,E;N)=F(R,0)=>, E'F"(R,0), (3.3

n=0
where we have setv;=(rjcosé r;sing) and R
=(rq,....fn), Zir2=N, ©=(6y,...,6y). Observe that in

this way we get a singular perturbation problem becdatise
multiplies the highest order derivative in E§.2). Moreover
F*(V,E;N) clearly depends only o&/l so that we can, for
the time being, set=1. Finally we can write, as in the
preceding section,

N

FU(RO)= X FURKII coskia),

kEZ

(3.9

where we have again used the symmetries of the problem.

Substituting Eq(3.4) into Eq. (3.3 one gets a hierarchy
of equations linkingF(™(R,k) to F(""Y(R k'), wherek'
=(kq,....k+1,..ky). From this, and from the fact that the

F(R,0) to first order inE,

N
1
F(R,®)=05( 2‘1 r?—N) ——N=DB
37
3(2N-1)E r; cosé,

2 E O(E?) |,
30
I

(3.7)

whereC is a normalization constant. It is possible to write
out the full hierarchy of equations f6+"(R,k) and see that
they can be solved iteratively but it is not clear that this is
useful. We shall therefore use E®.7) to compare with our
numerical data for small values & To do so we define the
one-particle distributiorf (v,E;N) and develop it in a Fou-
rier series exactly as in E@2.2),

~f(v,E;N)=f dv, - -dvyF(V,E;N)

Z (r,E;N)cogk;6;). (3.9

Before doing any comparisons we consider the stochastic
version of thef;(v,E) obtained from the irreversible dynam-
ics defined by Eq(1.7). Puttingh =E?v, v to be set ta(E)
when compared with the deterministic model, we get

afi(v,E)
ot

e 15
Sy LE-ESw]fi(v.E)}= N (3.9

where the collision term is again given by E8.1) with N
=1. Observe that although E@3.9) contains three param-
eters(E, v andl), it depends only ofEl and vl . Develop-
ing ,(v,E) in a power series ifE we obtain in analogy to
Eq. (3.7

Fi(v,E)=Ce @14 24Er cosh) + O(E?),
(3.10

whereC is a normalization constant.
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To comparef,;(v,E) with the largeN limit of f(v,E;N) ~ . 19El Cr? ;
given in Eqs.(3.8) and(3.9) we need to fix the parameter rgn(rE2)=5— [P (2=15%22 +O0(E°) (4.2

(settingl =1). This can be done self-consistently requiring

with C the same constant appearing in E4.1). The agree-
ment is again very good and we obtain from thd $t0.46

(in the unit discussed in the Introductijors in the previous
case we did the same comparison for five particles, obtaining
Solving Eq.(3.11) for » and using it to compuf® we expect again a very good agreement. Mor_eover, also in_this case the
that value ofl is very close to that obtained fdé= 2. Finally, it

is interesting to check if this agreement remains wihen
—oo, i.e., for the stochastic irreversible E®@.9). As can be
seen from Fig. 7 the agreement is again very good and we
still get the same value for the paramelter0.46.

While we have not proven this equivalence we believe that it Ve were also able to compuig(r,E;2) and¢,(r,E) for
should follow from general considerations: it would follow k.:2 .and 3. Itis also easy to compute the-lowest order con-
formally from showing that, in the limiN—c, E(v,E;N)  tibution to 4(r,E;2) and4(r,E), extending the compu-
factorizes, as is usually the case for systems with mean-fieldation from Sec. lll. Itis thus possible to compare, at least in
type interactions. This is certainly consistent with our nu-this limited situation, the results. Contrary to what we found
merical results. for k=0 and 1, ¢,(r,E;2) is quite different from
Po(r,E;2). Analogously ¢,(r,E) and ¢,(r,E) differ sig-
nificantly. A comparison of the term witk=3 also shows
deviations between the mechanical and the stochastic models
although, surprisingly, much smaller than those foundkfor
A. The distribution of the modulus of v =2. We note, however, that for this comparison we only
have data foE=0.012.

f [v|%f(v,E)dv=1. (3.11)

lim F(v,E;N)=T,(v,E). (3.12

N—c

IV. COMPARISON BETWEEN THE DETERMINISTIC AND
STOCHASTIC TIME EVOLUTION

For N=1 the exact solution, foE=0, of both the sto-
chastic and mechanical modelsfiév,0;1)= 8(v?>—1). For

N=2, we are able to compute the one-particle distribution C. The mean free flight
from Eq.(3.7). This yields In kinetic theory one can define the mean free flight in
c two ways. Denoting by ;(X) the distance traveled by par-
FPo(r,E;2) = . r 7+ O(E?) (4. ticle i before its first collision with an obstacle starting from
= 3, /. 2\32 1 . . . .
r°+(2-r°) the pointXe Sy, |, is the average of’;(X) with respect to

the SRB distributionu™ (dX,E;N) (it clearly does not de-
whereC is a normalization constant. This is plOttEd in Flg 4 pend oni)_ On the other hand we can consider theS@bf
and one can easily see that the agreement with the numericgbints such that particleis undergoing a collision, i.eq; is
solution of the deterministic model is very good. on the boundary of one of the scatterers, theis the aver-
A similar agreement is obtained foi=5 although, as  age of/;(X) on Sk with respect to the projection of the SRB

already said, we were not able to integrate E&8) for  gisyripution . (dX,E:N). Observe that for the stochastic
N>2 so that we computed this integral numerically by simu-m,odel these two quantities are identical.

Ia}ting the process associated to Ef.9) with collision term We computed both, andl, for the mechanical system
given by Eq.(3.1). — . .. with N=2, 5, 50 and for the irreversible dynamics E#.7)
Finally, for N=50 we see in Fig. 6 that our deterministic, | iih E=0.04. This was done by running a very long trajec-

Eq. (1.1), stochastic, Eq(3.9), and irreversible, EA(1.7), {41y and taking the average of the distance traveled by a
models give indistinguishable results. This certainly SuggeStBarticle between two collisions to computeor numerically

the validity of Egs.(1.7) and(3.12) for largeN. integrating /;(X) along the trajectory to compute. The
results appears to be independentN\yfat least within the

B. The first Fourier component of the distribution of v accuracy of our computations, and are
The analysis of the first Fourier component of the distri- |.=0.46
bution of v is less straightforward because we must fit the 0 '
parametet appearing in Eq(3.1). In the stochastic systein l,=0.58.

represents the mean free flight of a particle. The concept of

mean free ﬂlght is not Uniquely defined for the mechanical The value oﬂo agrees very well with the value obtained
model. For this reason we uséds a fitting parameter for from the fit of | reported in the preceding section. This im-
matching g (r,E;N) with 4(r,E;N). We will go back to  plies that the correct way to compare the stochastic and the
the mechanical meaning of this parameter in the followingmechanical model is to udg as the mean free flight param-
section. The casBl=2 is reported in Fig. 5, where, for the eter in Eq.(3.1). This is consistent with the Green-Kubo
periodic case, we used a fielt=0.04 and for the stochastic formula Eq.(1.3). We saw in Sec. Il A that Eq1.3) is well

one we have the expression verified for the conductivity at a small field of the determin-
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1 ‘ ' ' — Wamion ence of an external electric field while undergoing elastic
wh b - | scatterings is often used as a crude model of electrical con-
Vo duction in metals(the Drude model[19,20,14. To obtain
the conductivity the velocity distribution function of the
electrons is then computed from a Boltzmann-type equation,
i e.g., Eq.(3.2: with N=1 and without the thermostatting
] E-J term. By doing this calculation only up to a linear order
3 in E one avoids the problem that without the thermostat Eq.
(3.2 does not have a solution since the system will never be
in a true steady staf®1]. A crucial ingredient in the calcu-
lation is the explicit assumption that f&=0 the distribu-
tion is one corresponding to equilibrium at a given specified
temperaturel, i.e., Maxwellian for a classical system.
25 3 This description of the system of independent electrons
interacting with the lattice of ions only via elastic collision is
FIG. 9. Free path distributiof®(1,0.04;5) compared with an clearly not realistic. It is just used for obtaining a simple
exponential distribution with the same average quick answer for the zer¢smal) field conductivity. For a
more complete description of the steady state in a conductor
istic model. In the case of the stochastic model E3)  one has to consider the system to be in contact with some
reduces to an integral relation betwedH®(R,0) and  reservoir which will absorb the heat generated by the cur-
FO(R,0), see Eqs(3.5 and(3.6) in Sec. Ill. We did not  rent. It is this interaction with some external reservoir that
prove this identity although numerical analysis for sl \yas replaced, in the model considered here, by an artificial
seems to verify it. Finally the agreement betwegyir .O;N)  thermostat. To our surprise, however, we found that this
and ¢(r,0;N) observed in Sec. IVA tells us that the ratio modeling does not lead to a Maxwellian distribution when
between the conductivity for the deterministic and stochasti¢ .0 even wherN is very large. This means that there is no
dynamics is independent ®f at least forE—0. From Eq.  equivalence of ensembleghen it comes to modeling how
(3.7) we know that the conductivity for the stochastic modelthe energy is extracted from the system—at least when there
with one particle and=0 is 31/4 so that also for the deter- s ng direct interactions between the particles other than that
ministic model we have induced by the thermostat. We expéahd have some indi-
K(0,1)=2l,. 4.3 cation[22]) that thi; will chgnge When we include cpllisions
between the particles. Still it raises some caution about
This relation is also very well verified by our computation “thermostats” as a model for the description of stationary
for the one-particle system. nonequilibrium states.
To better compare the deterministic and stochastic models
we also computed the distributid®(/,E;N) of /;(X) with
respect to the SRB distribution. This distribution for five ACKNOWLEDGMENTS
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