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Decay of Information for the Kac Evolution

F. Bonetto , R. Han and M. Loss

Abstract. We consider a system of M particles in contact with a heat
reservoir of N � M particles. The evolution in the system and the reser-
voir, together with their interaction, is modeled via the Kac’s master
equation. We chose the initial distribution with total energy N + M and
show that if the reservoir is initially in equilibrium, that is, if the initial
distribution depends only on the energy of the particle in the reservoir,
then the entropy of the system decays exponentially to a very small value.
We base our proof on a similar property for the Information. A similar
argument allows us to greatly simplify the proof of the main result in
Bonetto et al. (Commun Math Phys 363(3):847–875, 2018).
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1. Introduction

In 1955, Mark Kac [6] introduced a simple model to study the evolution of
a gas of N particles undergoing pairwise collisions. Instead of following the
deterministic evolution of the particle till a collision takes place, it is assumed
that collisions happen randomly with every particle undergoing, on average,
a given number of collision per unit time. Moreover, when a collision takes
place, the energy of the two particles is randomly redistributed between them.
In such a situation, one can neglect the position of the particles and focus on
their velocities. Finally, to obtain a model as simple as possible, one assumes
that the particles move in one space dimension. This naturally leads to an
evolution governed by a master equation for the probability distribution F (v),
where v ∈ R

N describes the velocities of the particles.
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The Kac’s master equation has proved to be very useful for understanding
foundational issues of kinetic theory. In this context, Kac invented propaga-
tion of chaos and gave a satisfactory derivation of the spatially homogeneous
Boltzmann–Kac equation. All this is explained in great detail in Kac’s original
work [6,7] and will not be repeated here.

Kac’s master equation also provides a natural setting to study approach
to equilibrium.

Exponential convergence to equilibrium in the sense of L2 distance with
a rate independent of N was conjectured by Kac, and it was established in [5],
while this rate was explicitly computed in [3]. A more natural way to define
approach to equilibrium is via the entropy. This provides a better setting since
the entropy, in general, grows only linearly with the number of particles. There
is no result of exponential decay of entropy with a rate that is uniform in N
for the original Kac model. Moreover, estimates of the entropy production rate
seem to point to a slow decay of the entropy, at least for short times, see [4,9].

In a recent papers [1,2], a different approach is proposed. One considers
a small system with M particles in contact with a large heat reservoir with
N particles. The probability distribution of the system plus reservoir is thus
F (v,w), where v ∈ R

M ,w ∈ R
N . Here, v = (v1, . . . , vM ) describes the parti-

cles of the system and w = (wM+1, . . . , wN+M ) the particles of the reservoir.
The evolution is given by the Kac’s master equation

∂F

∂t
= LF, F (v,w, 0) = F0(v,w), (1)

where

L =
λS

M − 1

∑

1≤i<j≤M

(Rij − I)

+
λR

N − 1

∑

M<i<j≤N+M

(Rij − I) +
μ

N

M∑

i=1

M+N∑

j=M+1

(Rij − I) , (2)

and Rij is given as follows. For 1 ≤ i < j ≤ M , one has

(RijF )(v,w) =
∫ π

−π

ν(dθ) dθ F (rij(θ)−1(v,w)), (3)

where

rij(θ)−1(v,w) = (v1, . . . , vi cos θ − vj sin θ, . . . , vi sin θ + vj cos θ, . . . , vM ,w).
(4)

The other Rijs are defined analogously. The Ri,j represents the effect of a
collision between particle i and particle j. The particles move in one dimension,
and upon collision energy is randomly redistributed between the two colliding
particle. The probability distribution ν(dθ) plays the role of the scattering
cross section. More assumptions will be made below.

Various constants have a simple interpretation in that λS is the rate at
which one particle from the system will scatter with any other particle in the
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system and similarly for λR. Likewise, μ is the rate at which a single particle
of the system will scatter with any particle in the reservoir.

The main point in [1,2] is an analysis of the evolution of a state where
the reservoir is initially in equilibrium but the system is not. In this context,
equilibrium means that the initial distribution for the reservoir is given by a
Maxwellian (Gaussian) function:

F0(v,w) = f0(v)e−π|w|2 (5)

where we chose units in such a way that the inverse temperature is β = 2π.
As time progresses, the system and the reservoir interact and their joint state
relax to a global equilibrium. On the other hand, the rate at which a particular
particle from the reservoir will scatter with a particle in the system is given by
μM/N . Hence, when N is large compared to M , this process is suppressed and
one expects that the reservoir does not move far from its equilibrium. This is
indeed what was proved in [1] where the reader will find additional information
on the physical ideas behind this model.

Remark 1.1. As observed in [1,2], the evolution in (1), (2) lends itself to a
different interpretation. If we take

λS =
2λ(M − 1)
N + M − 1

, λR =
2λ(N − 1)
N + M − 1

, μ =
2λN

N + M − 1
then we have that

L = λ(M + N)(Q − I) Q =
1(

M + N
2

)
M+N∑

1=i<j

Ri,j .

In this setting, together with the initial condition (5), (1) represents the evo-
lution of a Kac system with N + M particle where, initially, N particle are in
equilibrium, while M are out of equilibrium that is a “local perturbation.”

The central result in [2] concerns the entropy of the marginal on the
system of the full distribution defined as:

f(v, t) = [MeLtF0](v, t) :=
∫

RN

[
eLtF0

]
(v,w)e−π|w|2dw, (6)

Its entropy with respect to the Maxwellian distribution γ(v) = eπ|v|2 is given
by

S̃(f(·, t)) :=
∫

RM

f(v, t) log
(

f(v, t)
e−π|v|2

)
dv.

Note that the entropy can be written in another way, which is easier to analyze.
If we set

f0(v) = e−π|v|2h0(v) , (7)

then because any rotationally invariant distribution is invariant under the
Kac’s time evolution, we get

eLtF0(v,w) = e−π(|v|2+|w|2) [
eLth0

]
(v,w)
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It follows that we can write f(v, t) = e−π|v|2h(v, t) where

h(v, t) :=
∫

RN

[
eLth0

]
(v,w)e−π|w|2dw

and, thus,

S(h(·, t)) :=
∫

RM

h(v, t) log(h(v, t))e−π|v|2 dv = S̃(f(·, t)). (8)

The following theorem was proved in [2]:

Theorem 1.2. Let ν(dθ) = ρ(θ)dθ be a probability distribution with an abso-
lutely convergent Fourier series such that

∫ π

−π

ν(dθ) sin θ cos θ = 0. (9)

The entropy of f(v, t) relative of to the thermal state e−π|v|2 then satisfies

S̃(f(·, t)) ≤
[

M

N + M
+

N

N + M
e−tμρ(N+M)/N

]
S̃(f0),

where

μρ = μ

∫ π

−π

ρ(θ) sin2(θ) dθ,

and f0 is the initial condition of the system introduced in (5).

Remark 1.3. In [2], the extra condition that N > M is added to Theorem 1.2.
The proof of the theorem presented below does not require any condition on
N and M , and on closer inspection this condition is also unnecessary for the
proof presented in [2].

Remark 1.4. Condition (9) follows from the natural assumption of microscopic
reversibility, that is, ρ(θ) = ρ(−θ). In our setting, it is only needed in the proof
of the summation rule in Lemma 2.1.

The point about Theorem 1.2 is that when the size of the reservoir N
is large compared to the size of the system M , the entropy of the marginal
converges exponentially fast to a small value with a rate that is essentially
independent of the size of the system. Observe, however, that the limiting
state f̃(v) = limt→∞ f(v, t) is, in general, not a Maxwellian distribution so
that S(f̃) > 0. The assumption on the initial condition of the system is very
weak and, as explained in [2], the theorem is essentially sharp.

There are, however, some unsatisfactory aspects of this result or rather its
proof. For one, the assumption on the smoothness of the collision probabilities
is rather complicated and is there for technical reasons. More importantly,
while the proof has a natural ring to it, it is rather involved. More serious is
that the method does not seem to carry over to the standard Kac model which
operates on the sphere S

M+N−1(
√

N + M). The proof uses the expansion in
terms of collision histories and estimates the contribution to the entropy by
a fixed number of collisions using Nelson’s hyper-contractive estimate and
then estimates the correlations using Brascamp–Lieb-type inequalities together
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with a re-summation of the series. It is very unclear how to carry such a
program over to the sphere case. Despite the wonderful analogy between large-
dimensional spheres and Gauss space, the connection is not uniform enough
that Theorem 1.2 carries over to the sphere case.

The point of this paper is to remedy the faults described above. A very
natural way to think about such problem is to think in terms of the infor-
mation. There is a well-known connection between entropy and information
which was used by Ledoux [8] to give a very simple proof of Nelson’s sharp
hyper-contractive estimate. Not only does this argument yield the inequality,
but it delivers all the functions for which there is equality.

The information of a function f > 0, normalized with respect to Gauss
measure e−π|v|2dv, is given by

I(f) =
∫

RM

|∇f(v)|2
f(v)

e−π|v|2dv. (10)

Let Ps be the Ornstein–Uhlenbeck semigroup on R
d defined by

[Psf ](x) =
∫

Rd

f(e−sx +
√

1 − e−2sy)e−π|y|2dy. (11)

In our context, d could be equal to M or M + N depending on the function
space it acts on.

An important relation between the entropy and information is given by
the equation

S(f) =
∫

RM

f log(f)e−π|v|2dv =
∫ ∞

0

I(Psf)ds. (12)

The connection between information and entropy for the various Kac models
that we study will be explored further in Sect. 3, which will allow us to pass
from decay of Information to that of Entropy.

Our first result is a version of the previously mentioned theorem in terms
of the information.

Theorem 1.5. Assume that ν is a probability measure on the circle subject to
the condition

∫ π

−π

ν(dθ) sin θ cos θ = 0. (13)

Then,

I(h(·, t)) ≤
[

M

N + M
+

N

N + M
e−tμν(N+M)/N

]
I(h0),

where

μρ = μ

∫ π

−π

ν(dθ) sin2(θ),

and h0 is as introduced in (5) and (7).

As a corollary we have
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Corollary 1.6. Theorem 1.2 continuous to hold under the assumption that the
probability measure ν satisfies the condition

∫ π

−π

ν(dθ) sin θ cos θ = 0. (14)

We turn now our attention to the original setting of Kac’s model as an
evolution on S

M+N−1(
√

M + N). The master equation is the same as (1) and
(2), but now the distribution F is a function in L1(SM+N−1(

√
M + N)) where

the measure is taken to be the normalized uniform measure on the sphere. It is
obvious that the constant function 1 is an equilibrium state. Under additional
assumption on ν(dθ), one can show that it is the unique equilibrium state;
however, this issue will not be considered here.

We implement the idea of system versus reservoir in the following fashion.
We assume that the initial condition F0(v,w) is a function that is invariant
under all rotations that fix the variables v, i.e., F0(v,w) depends on w only
through |w|.

Given an arbitrary distribution F (v,w), we define its marginal to be the
average of F over all rotation that fix the vector v. In other words, denoting
the operation of taking the marginal with respect to the w variables by N , we
have

NF (v,w) =
∫

SO(N)

F (v, R−1w)dR (15)

where we integrate over the normalized Haar measure on SO(N). Hence, NF
depends on v and |w| only. As before, we consider the Entropy

S(F ) =
∫

S
M+N−1(

√
M+N)

F log(F )dσ

where σ denotes the normalized volume measure on S
M+N−1(

√
M + N). Like-

wise, the information of a state F is given by

I(F ) =
∫

S
M+N−1(

√
M+N)

|∇F |2
F

dσ (16)

where the length |∇F |2 is taken with respect to metric on the sphere. In this
case, our theorems are similar to the ones mentioned before but not quite as
sharp.

Theorem 1.7. As before, let ν be a measure on the circle that satisfies
∫

S

ν(dθ) sin θ cos θ = 0.

Let F0(v,w),v ∈ R
M ,w ∈ R

N be a distribution in L1(SM+N−1(
√

M + N))
invariant under all rotations that fix the variable v. Then,

I(N eLtF0) ≤
[
2
(

M

M + N
+ e−μt N

M + N

)
+

M

N

]
I(F0).

As a corollary, we get
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Corollary 1.8. With the assumption as in Theorem 1.7, we have that

S(N eLtF0) ≤
[
2
(

M

M + N
+ e−μt N

M + N

)
+

M

N

]
S(F0).

One notes that the result does not appear to be optimal in various re-
spects. For one the rate is a bit worse than the one in the Gaussian case.
Moreover, the estimate is not sharp at time t = 0. What is more interesting is
that as t tends to infinity, the various quantities do not go to zero. We know,
however, that the information and the entropy do tend to zero as time tends to
infinity. As noted after Theorem 1.2, in the Maxwellian case the asymptotic s-
tate of the system is not a Maxwellian distribution so that the information and
entropy need not vanish. In the spherical case, however, the constant function
is the unique equilibrium state and thus the asymptotic state of the system.
We suspect that although the entropy becomes small very fast, it may take a
very long time to bring it to zero. In other words, we suspect that an estimate
of the type

S(N eLtF0) ≤ e−μtS(F0)

might be wrong for large times. During the evolution, the full state, i.e., the
reservoir together with the system, gets correlated and our estimate provides
a bound on how large this correlation can get. It might, however, take a long
time for the evolution to bring this correlation to zero. This is, of course, pure
speculation and it would be nice to find a way to complete the picture.

Observe that a distribution as in (5), restricted to the sphere
S

M+N−1(
√

M + N), delivers a distribution that depends on w only through
|w|, while the converse is clearly not true. This seems to suggest that it may
be possible to extend Theorem 1.2 to a larger set of initial condition, at the
cost of less optimal estimates, using Corollary 1.8. Due to the differences in
the definition of marginal in (6) and (15), we were unable to exploit this con-
nections.

Finally, although the most interesting case is when N is much larger then
M , we observe that for N = 1 and with the rates chosen as in Remark 1.1,
Theorem 1.2 tells us that the entropy decreases form S(h0) to (1− 1

M+1 )S(h0)
with an exponential rate 1. This looks consistent with the estimates of slow
entropy decrease in [4,9].

The paper is organized as follows: In Sect. 2, we give a proof of Theorem
1.5 and in Sect. 3, we review the connection between entropy and information
which leads to the proof of Corollary 1.6. In Sect. 4, we present the proof of
Theorem 1.7 which together with the remarks on the connection of entropy
with the information yields Corollary 1.8.

2. Proof of Theorem 1.5

It will be convenient to write the generators L in the form:

L = Λ(Q − I)
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where

Λ =
1
2
(λSM + λRN + 2μM)

and

Q =
λS

(M − 1)Λ

∑

1≤i<j≤M

Rij +
λR

(N − 1)Λ

∑

M<i<j≤N+M

Rij +
μ

NΛ

M∑

i=1

M+N∑

j=M+1

Rij ,

which is a convex combination of rotational averages. The time evolution is
then given by

eLt = e−Λt
∞∑

k=0

Λktk

k!
Qk

and

Qk =
∑

α1,...,αk

λα1 · · · λαk
Rα1 · · · Rαk

where the αj range over all possible choices of colliding particles and λαj
is

a weight that has one of the three values λS

(M−1)Λ , λR

(N−1)Λ and μ
NΛ . Note that∑

α λα = 1. Recall that

Ri,jh0(v,w) =
∫ 2π

0

h0(r−1
i,j (θ)(v,w))ν(dθ)

where ri,j(θ) is the rotation in the plane specified by the pair i, j by the angle
θ. Hence,

Qkh0(v,w) =
∑

α1,...,αk

λα1 · · · λαk

∫ 2π

0

· · ·
∫ 2π

0

h0([Πk
j=1rαj

(θαj
)]−1(v,w))ν(dθα1) · · · ν(dθαk

)

Next, we write the (M + N) × (M + N) rotation as:

[Πk
j=1rαj

(θαj
)] =

[
A(α, θ) B(α, θ)
C(α, θ) D(α, θ)

]

where A is M × M , D is N × N , B is M × N , and C is N × M . Here, α
denotes the k-tuple of pairs and likewise θ denotes the k-tuple of angles. Next,
we consider the function

hα,θ(v,w) = h0(A(α, θ)Tv + C(α, θ)Tw)

and take its marginal

M[hα,θ](v) =
∫

RN

h0(A(α, θ)Tv + C(α, θ)Tw)e−π|w|2dw
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and compute the Information

I(M[hα,θ]) =

∫

RM

| ∫
RN A(α, θ)∇h0(A(α, θ)Tv + C(α, θ)Tw)e−π|w|2dw|2∫

RN h0(A(α, θ)Tv + C(α, θ)Tw)e−π|w|2dw
e−π|v|2dv

which, using Schwarz’s inequality, is bounded above by
∫

RM

∫

RN

|A(α, θ)∇h0(A(α, θ)Tv + C(α, θ)Tw)|2
h0(A(α, θ)Tv + C(α, θ)Tw)

e−π|w|2dw e−π|v|2dv .

Changing variables

v′ = A(α, θ)Tv + C(α, θ)Tw,w′ = B(α, θ)Tv + C(α, θ)Tw

yields the bound

I(M[hα,θ]) ≤
∫

RM

|A(α, θ)∇h0(v)|2
h0(v)

e−π|v|2dv. (17)

Using the convexity of the Information and (17), we find that

I(h(·, t)) ≤ e−Λt
∞∑

k=0

Λktk

k!

∫

RM

∇h0(v)T K∇h0(v)
h0(v)

e−π|v|2dv, (18)

where

K :=
∑

α1,...,αk

λα1 · · · λαk

∫

[0,2π]k
ν(dθ1) · · · ν(dθk)A(α, θ)T A(α, θ).

The following lemma was proved in [2]. For the readers’ convenience, we
include the proof in “Appendix.”

Lemma 2.1. Assume that
∫ 2π

0
ν(dθ) cos θ sin θ = 0. Then, K = CkIM , where

Ck :=

[
M

N + M
+

N

M + N

(
1 − μν

M + N

ΛN

)k
]

. (19)

Applying Lemma 2.1 to (18) clearly yields Theorem 1.5. �

3. Connection Between Information and Entropy

First, we briefly mention some general connections between the Information
and Entropy. Recall the Ornstein–Uhlenbeck semigroup on R

d as defined in
(11),

[Psf ](x) =
∫

Rd

f(e−sx +
√

1 − e−2sy)e−π|y|2dy,

with its generator

L =
1
2π

Δ − x · ∇,

that satisfies ∫

Rd

(∇f) · (∇g) e−π|x|2dx = −
∫

Rd

f (Lg) e−π|x|2dx. (20)
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Let I(f) be the information of f as defined in (10),

I(f) =
∫

RM

|∇f(v)|2
f(v)

e−π|v|2dv.

We have

I(Psf) = e−2s

∫

RM

|Ps(∇f)(x)|2
Ps(f)(x)

e−π|x|2dx,

here Ps(∇f) := (Ps(∂1f), Ps(∂2f), ..., Ps(∂Mf)). Schwarz’s inequality shows
that

I(Psf) ≤ e−2s

∫

RM

∫

RM

|∇f(e−sx +
√

1 − e−2sy)|2
f(e−sx +

√
1 − e−2sy)

e−π(|x|2+|y|2)dxdy

and a simple change of variables yields

I(Psf) ≤ e−2sI(f). (21)

Using (20), we can link the information with the derivative of the entropy, that
is,

d

ds
S(Psf) =

d

ds

∫

RM

Psf log(Psf)e−π|x|2dx

=
∫

RM

L(Psf) log(Psf)e−π|x|2dx = −I(Psf)

that proves (12).
Combining (21) and (12), we immediately get

S(Psf) =
∫ ∞

s

I(Ptf)dt ≤ e−2s

∫ ∞

0

I(Ptf)dt = e−2sS(f)

Moreover, the logarithmic Sobolev inequality is now an easy consequence. In-
deed, we obtain

S(f) =
∫ ∞

0

I(Psf)ds ≤ I(f)
∫ ∞

0

e−2sds =
1
2
I(f).

Now, we further explore the connections between the Information and
Entropy for the Kac’s models, which show that estimates on the Information
transfer to estimates on the Entropy. For the Kac’s model on R

M+N , we have

Lemma 3.1. Assume that for any probability distribution H(v,w) in
L1(RM+N , e−π(|v|2+|w|2)dv dw), one has

I(M(eLtH)) ≤ C(t)I(M(H)),

where M(H) is the marginal of H as defined in (6) and C(t) does not depend
on H. Then,

S(M(eLtH)) ≤ C(t)S(M(H)).



Decay of Information for the Kac Evolution

Proof. First, by (12), we have

S(MeLtH) =
∫ ∞

0

I(PsM(eLtH))ds. (22)

Observe that

eLtPs = Pse
Lt. (23)

This follows since the generator of the Kac evolution is an average over rota-
tions and Ps commutes with rotations. Also, by a simple change of variables,
one easily sees that

PsM = MPs. (24)

Applying (23) and (24) in (22), we have

S(MeLtH) =
∫ ∞

0

I(PsM(eLtH))ds =
∫ ∞

0

I(MeLt(PsH))ds

≤ C(t)
∫ ∞

0

I(M(PsH))ds = C(t)S(M(H)).

This proves the claimed result. �

Very similar is the situation with the spherical Kac model. Again, we
exploit an important symmetry; the generator of the Kac master equation
being an average over rotations commutes with the spherical Laplacian

eΔseLt = eLteΔs. (25)

Let H(v,w) be a probability distribution on S
M+N−1(

√
M + N). In (15), we

defined its marginal as the average of H over all rotation that fix the vector
v. If eΔs is the heat semi-group on the sphere, then

eΔsN = N eΔs. (26)

This follows from the fact that the spherical Laplacian and hence the heat
semi-group commutes with rotations. We have the following analogy to (12).

Lemma 3.2. Let H(v,w) be a probability distribution on S
M+N−1(

√
M + N).

Then,

S(N (eLtH)) =
∫ ∞

0

I(eΔsN (eLtH))ds.

Similar to Lemma 3.1, we have

Lemma 3.3. Assume that for any probability distribution

I(N (eLtH)) ≤ C(t)I(N (H))

where C(t) does not depend on H. Then,

S(N (eLtH)) ≤ C(t)S(N (H)).

The proof uses (25) and (26). It is very similar to that of Lemma 3.1,
and we shall omit it here.
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4. Proof of Theorem 1.7

Let F (v,w) be a smooth function on the sphere S
M+N−1(

√
M + N), or al-

ternatively a function on R
M+N homogeneous of degree zero. The variable

v ∈ R
M and w ∈ R

N . We denote by LF its angular momentum, i.e., the
angular momentum is for 1 ≤ i < j ≤ M

(vi∂vj
− vj∂vi

)F,

for 1 ≤ i ≤ M < j ≤ M + N it is

(vi∂wj
− wj∂vi

)F,

and for M < i < j ≤ M + N

(wi∂wj
− wj∂wi

)F.

We write
|LF |2 = |LintF |2 + |LoutF |2,

where
{

|LintF |2 :=
∑

1≤i<j≤M |(vi∂vj − vj∂vi)F |2 +
∑

1≤i≤M<j≤M+N |(vi∂wj − wj∂vi)F |2,
|LoutF |2 :=

∑
M<i<j≤M+N |(wi∂wj − wj∂wi)F |2.

In particular, if a function F is independent of w, then

|LF |2 = |LintF |2. (27)

The Information I(F ), as defined in (16), written in terms of the angular
momentum is

I(F ) =
∫

S
M+N−1(

√
M+N)

|LF |2
F

dσ.

In the following, let R be the rotation in SO(M + N) which we write as

R =
(

A B
C D

)
.

Let G be the average

G(v,w) :=
∫

SO(N)

F (ATv + CT STw, BTv + DT STw)dS

=
∫

SO(N)

F ◦ R−1(v, STw)dS.

First, we prove

Lemma 4.1.

I(G) ≤ I(F ) −
∫

S
M+N−1(

√
M+N)

|Lout(F ◦ R−1)|2
F ◦ R−1

dσ.
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Proof. Let us note that since G is independent of w, we have by (27),

I(G) =
∫

S
M+N−1(

√
M+N)

|LG|2
G

dσ =
∫

S
M+N−1(

√
M+N)

|LintG|2
G

dσ.

By Cauchy–Schwartz inequality, the right-hand side above is controlled by
∫

S
M+N−1(

√
M+N)

∫

SO(N)

|Lint(F ◦ R−1(v, STw))|2
F ◦ R−1(v, STw)

dS dσ

=
∫

S
M+N−1(

√
M+N)

∫

SO(N)

|L(F ◦ R−1(v, STw))|2
F ◦ R−1(v, STw)

− |Lout(F ◦ R−1(v, STw))|2
F ◦ R−1(v, STw)

dS dσ.

Our claimed result then simply follows from the invariance of angular momen-
tum with respect to rotations. �

From now on, we assume F is invariant under rotations acting on w. Thus,
LoutF = 0. However, with non-generic rotation R−1, |Lout(F ◦R−1)| > 0. Our
next lemma gives an explicit formula for the contribution of this term. In
order to state it, let us note that by the rotation invariance of F in the second
variable,

∇wF = �(v, |w|)w (28)

for some function �.

Lemma 4.2. We have
∫

S
M+N−1(

√
M+N)

|Lout(F ◦ R−1)|2
F ◦ R−1

dσ =
∫

S
M+N−1(

√
M+N)

Σ1

F
dσ,

where

Σ1 := |Cv|2|C∇vF |2 − (Cv · C∇vF )2

+
|w|2
N

[|C(�v − ∇vF )|2Tr(DT D) − |DT C(�v − ∇vF )|2] .

The proof follows from a long computation. We leave it to “Appendix”.
Combing Lemmas 4.1 with 4.2, we have, after another long but direct

computation, the following.

Lemma 4.3. We have
∫

S
M+N−1(

√
M+N)

|LG|2
G

dσ ≤
∫

S
M+N−1(

√
M+N)

Σ2

F
dσ

where

Σ2 = |v|2|A∇vF |2 + |Av|2|∇vF |2 − 2(v · ∇vF )(Av · A∇vF )

+
(

1 − M − 1
N

)
|w|2|A(�v − ∇vF )|2 +

M

N
|w|2|(�v − ∇vF )|2.
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The proof of this lemma is presented in “Appendix”.
We come now to the proof of Theorem 1.7. As in the proof of Theorem

1.5, we have that

I(N eLStF0) ≤ e−Λt
∞∑

k=0

(M + N)ktk

k!

∑

α1,...,αk

∫ 2π

0
ν(dθα1 ) · · ·

∫ 2π

0
ν(dθαk )I(NF0◦R−1(α, θ)).

(29)
By Lemmas 2.1 and 4.3, we find

∑

α1,...,αk

∫ 2π

0
ν(dθα1) · · ·

∫ 2π

0
ν(dθαk

)I(NF0 ◦ R−1(α, θ))

≤
∫

S
M+N−1(

√
M+N)

Ck

2|v|2|∇vF0|2 − 2(v · ∇vF0)2 +
(
1 − M−1

N

) |w|2|�v − ∇vF0)|2
F0

+
M

N

∫

S
M+N−1(

√
M+N)

|w|2|�v − ∇vF0|2
F0

dσ.

Inserting this estimate into Equation (29) yields

I(N eLStF0) ≤
(

M

M + N
+ e−μt N

M + N

)

×
∫

S
M+N−1(

√
M+N)

2|v|2|∇vF0|2 − 2(v · ∇vF0)2 +
(
1 − M−1

N

)
|w|2|�v − ∇vF0)|2

F0
dσ

+
M

N

∫

S
M+N−1(

√
M+N)

|w|2|�v − ∇vF0|2
F0

dσ.

Elementary estimates yield

I(N eLStF0) ≤
[
2
(

M

M + N
+ e−μt N

M + N

)
+

M

N

] ∫

S
M+N−1(

√
M+N)

|LF0|2
F0

dσ,

which is the claimed result. �
Publisher’s Note Springer Nature remains neutral with regard to jurisdiction-
al claims in published maps and institutional affiliations.

Appendix A: Proofs of Lemmas 4.2 and 4.3

A.1 Proof of Lemma 4.2

We have

I :=

∫

S
M+N−1(

√
M+N)

|Lout(F ◦ R−1)|2
F ◦ R−1

dσ

=

∫

S
M+N−1(

√
M+N)

∑out |ωi(C∇vF + D∇wF )j − ωj(SC∇vF + D∇wF )i|2
F

dσ,

where the argument of the functions is of the form (ATv+CTw, BTv+DTw),
and

∑out :=
∑

M+1≤i<j≤N+M . Next, we change variable v = Av + Bw,
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w = Cv + Dw, we have

I =
∫

S
M+N−1(

√
M+N)

dσ

∑out |(Cv + Dw)i(C∇vF + D∇wF )j − (Cv + Dw)j(C∇vF + D∇wF )i|2
F

=:
∫

S
M+N−1(

√
M+N)

Σ0

F
dσ

By (28), we have

Σ0 =
out∑

|(Cv + Dw)i(C∇vF + �Dw)j − (Cv + Dw)j(C∇vF + �Dw)i|2

=
out∑

|(Cv + Dw)i(C(∇vF − �v))j − (Cv + Dw)j(C(∇vF − �v))i|2.
Now we average over the directions of the vector w. Recall that the function
F does not depend on this direction nor does �. Denote such an average by
〈·〉. Hence, we get, after averaging over each pair (i, j),

〈Σ0〉 =
out∑

|(Cv)i(C(∇vF − �v))j − (Cv)jC(∇vF − �v))i|2

+
out∑ 〈

|(Dw)i(C(∇vF − �v))j − (Dw)j(C(∇vF − �v))i|2
〉

= |Cv|2|C∇vF |2 − (Cv · C∇vF )2

+
〈
|Dw|2

〉
|C(∇vF − �v)|2 −

〈
(w,DT C(∇vF − �v))2

〉

where we used that 〈ωi〉 = 0. Next, by using that

〈ωi ωj〉 =
|w|2
N

δij ,

we have

〈Σ0〉 =|Cv|2|C∇vF |2 − (Cv · C∇vF )2

+
|w|2
N

[
Tr(DT D)|C(�v − ∇vF )|2 − |DT C(�v − ∇vF )|2]

Finally, just note that due to the fact that F does not depend on the direction
of w, we have

I =
∫

S
M+N−1(

√
M+N)

〈Σ0〉
F

dσ.

This proves the lemma. �

A.2 Proof of Lemma 4.3

Combining Lemma 4.1 with 4.2, it suffices to show

|LF |2 − Σ1 ≤ Σ2. (30)
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Using the rotation invariance of F in the second variable, we write

|LF |2 =
∑

i<j

|vi∂vj
F − vj∂vi

F |2 +
∑

i

∑

j

|wj∂vi
F − vi∂wj

F |2.

= |v|2|∇vF |2 − (v · ∇vF )2 + |w|2|∇vF |2 + |v|2|w|2�2 − 2|w|2�(v · ∇vF )
= |v|2|∇vF |2 − (v · ∇vF )2 + |w|2|�v − ∇vF |2.

It remains, thus, to estimate

|v|2|∇vF |2 − (v · ∇vF )2 + |w|2|�v − ∇vF |2
−|Cv|2|C∇vF |2 + (Cv · C∇vF )2

−|w|2
N

[|C(�v − ∇vF )|2TrDT D − |DT C(�v − ∇vF )|2] (31)

Since R is a rotation, we have that
(

A B
C D

)(
AT CT

BT DT

)
=

(
IM 0
0 IN

)

and
(

AT CT

BT DT

)(
A B
C D

)
=

(
IM 0
0 IN

)
.

Using this we get that

TrDT D = N − TrBT B = N − M + TrAT A,AT A + CT C = IM

and

DT C = −BT A.

Using these relations (31) becomes

|v|2|∇vF |2 − (v · ∇vF )2 + |w|2|�v − ∇vF |2

− (|v|2 − |Av|2)(|∇vF |2 − |A∇vF |2) + [(v, ∇vF ) − (Av · A∇vF )]2

− |w|2
N

[
(|(�v − ∇vF )|2 − |A(�v − ∇vF )|2)(N − TrBT B) − |BT A(�v − ∇vF )|2]

which can be simplified to

|v|2|A∇vF |2 + |Av|2|∇vF |2 − |Av|2|A∇vF |2 + (Av · A∇vF )2

− 2(v · ∇vF )(Av · A∇vF )

+ |w|2|A(�v − ∇vF )|2

+
|w|2
N

[
(|(�v − ∇vF )|2 − |A(�v − ∇vF )|2)TrBT B + |BT A(�v − ∇vF )|2]

.
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Since AAT + BBT = IM and TrBT B = TrBBT = M − TrAAT , we obtain
an upper bound

|v|2|A∇vF |2 + |Av|2|∇vF |2 − |Av|2|A∇vF |2 + (Av · A∇vF )2

− 2(v · ∇vF )(Av · A∇vF )

+ |w|2|A(�v − ∇vF )|2

+
|w|2
N

[
(|(�v − ∇vF )|2 − |A(�v − ∇vF )|2)M + |A(�v − ∇vF )|2] .

which can be simplified to

|v|2|A∇vF |2 + |Av|2|∇vF |2 − |Av|2|A∇vF |2 + (Av · A∇vF )2

− 2(v · ∇vF )(Av · A∇vF )

+
(

1 − M − 1
N

)
|w|2|A(�v − ∇vF )|2 +

M

N
|w|2|(�v − ∇vF )|2.

Regarding the terms quartic in A we do not know how to handle but
noting that −|Av|2|A∇vF |2 + (Av · A∇vF )2 ≤ 0 we get the bound

|LF |2 − Σ1 ≤ |v|2|A∇vF |2 + |Av|2|∇vF |2 − 2(v · ∇vF )(Av · A∇vF )

+
(

1 − M − 1
N

)
|w|2|A(�v − ∇vF )|2 +

M

N
|w|2|(�v − ∇vF )|2 = Σ2,

as claimed. �

A.3 Proof of Lemma 2.1

One can think about K as the top left entry of the matrix

∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π]k
ν(dθ1) · · · ν(dθk)

[
k∏

l=1

rαl
(θl)

]−1 (
IM 0
0 0

) [
k∏

l=1

rαl
(θl)

]
.

The computation hinges on a repeated application of the elementary identity

∫ π

−π

ν(dθ)
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
m1 0
0 m2

) (
cos(θ) sin(θ)

− sin(θ) cos(θ)

)

=
(

(1 − ν̃)m1 + ν̃m2 0
0 (1 − ν̃)m2 + ν̃m1

)
,

where ν̃ =
∫

ν(dθ) sin2(θ). For this to be true, we just need (9). We easily
check that for the rotations rα(θ)
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∑

α

λα

∫ π

−π

ν(dθ) rα(θ)−1
(

m1IM 0
0 m2IN

)
rα(θ)

=
1

Λ

(
MλS

2
+

NλR

2

) (
m1IM 0

0 m2IN

)

+
μ

ΛN

(
N(M − 1) + N((1 − ν̃)m1 + ν̃m2)IM 0

0 (N − 1)M + M(ν̃m1 + (1 − ν̃)m2)IN

)

=

(
m1IM 0

0 m2IN

)
+

μν

ΛN

(
N(m2 − m1)IM 0

0 M(m1 − m2)IN

)
. (32)

where μν = ν̃μ. Denote by L(ν1, ν2) the (N + M) × (N + M) matrix

L(m1,m2) =
(

m1IM 0
0 m2IN

)
,

and set

P = I2 − μν

ΛN

(
N −N

−M M

)
.

Then, (32) is recast as
∑

α

λα

∫ π

−π

ν(dθ) rα(θ)−1L(m1,m2)rα(θ) = L(m′
1,m

′
2), (33)

where
(

m′
1

m′
2

)
= P

(
m1

m2

)
.

By a repeated application of (33), we obtain

∑

α1,...,αk

λα1 · · · λαk

∫

[−π,π]k
ν(dθ1) · · · ν(dθk)

⎡

⎣
k∏

j=1

rαj
(θj)

⎤

⎦
T

L(m)

⎡

⎣
k∏

j=1

rαj
(θj)

⎤

⎦

= L(Pkm).

Thus,

K =
(

Pk

(
1
0

))

1

IM .

It is easy to see that P has eigenvalues �1 = 1 and �2 = 1 − μν(M + N)/(ΛN)
with eigenvectors m1 = (1, 1) and m2 = (N,−M)T /(M + N). Consequently,

(
1
0

)
=

M

N + M
m1 + m2,

which yields
(

Pk

(
1
0

))

1

=
M

N + M
+

N

M + N

(
1 − μν

M + N

ΛN

)k

.

This proves Lemma 2.1. �
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