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Abstract 

The understanding of the Yukawa2 quantum field theory is still incomplete if the fermionic 
mass is much smaller than the coupling. We analyze the Schwinger functions for small coupling 
uniformly in the mass and we find that the asymptotic behavior of the two-point Schwinger 
function is anomalous and described by two critical indices, related to the renormalization of the 
mass and of the wave function. The indices are explicitly computed by convergent series in the 
coupling. @ 1997 Published by Elsevier Science B.V. 
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1. Introduct ion  

A rigorous understanding of  the Yukawa2 model, describing the interaction of  a 

fermion field with a boson field in two dimensions, has been obtained until now 

only if  the fermionic mass m is much larger than the coupling x/~, for small ,~: the 

Schwinger functions can be written in this case as a convergent series in the coupling, 

see Refs. [ 1-3] .  Integrating out the Bose field the Yukawa2 becomes a purely fermionic 

theory with a non- local ,  current-current  interaction so one can expect that for large 

distance scales its behavior is close to the Thirring model ' s  one. What  is known of  

the Thirring model  is in some sense complementary to what is known in the Yukawa2 

model:  the theory is completely understood only if  the fermion has no mass, as in that 

case the model  is solvable and its Schwinger functions can be explicit ly exhibited, see 

Ref. [4] .  In the massless case the theory shows an a n o m a l o u s  b e h a v i o r  which can be 

read from the asymptotic  large distances decay of  the fermionic two-point  Schwinger 
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function, given by a power law whose exponent is not 1, like in the free case, but 1 + r/ 
with 7/ dependent on the coupling. In the massive case there is some information on 
the spectrum [5-7] ,  but the Schwinger functions are not known. It is believed that the 
theory, at least for small m, shows an anomalous dimension in the ~b and the ¢7~p fields. 
One can expect then that also the Yukawa2 model shows a similar anomalous behavior 
which can be read from the asymptotic decay properties of the Schwinger function. 

Aim of this paper is to provide a rigorous construction of the Yukawa2 model uni- 
formly in the fermion mass, in particular if m << ~ << M, where M is the boson 
mass, and to compute the asymptotic behavior of the two-point Schwinger function, 
so completing the theory of the weakly coupled Yukawa2 model. In order to explain 
our results let us introduce an Euclidean Bose field (bx and two Euclidean Fermi fields 

~b A , ~x ,  x = ( xo, x )  and A is an ultraviolet cut-off, see below. The theory is regularized 
by assuming that A is finite and Ixl ~< L, Ix01 ~< L with the fields having periodic 
boundary conditions. L is called the infrared cut-off 

The field ~bx has a propagator 

f eik(x_y ) 
G( x - y ) = dk k2 + M 2.  (1) 

Here and in the following k - (ko, k )  = -~(n0, n),  n0,n integers and f d k  = ~ ~-~o,n" 

The two-component spinors ~pff, ¢7x A have a propagator 

ga( x _ Y) = f dke_k2/A 2 eik(x_y)/h ~ + mI  
k2 + m2 (2) 

with ]~ = ikoYo + ky l  

(0 l) 
Y0 = 1 ' 9 '1  = _ 0 

and I is the identity matrix. It is easy to check that the large distance asymptotic behavior 
of limL,A--,oo gA(x -- y)  = g ( x  -- y)  is discriminated by m; if M -I ~< Ix - Yl ~< m-I  
than g (x  - y)  decay with a power law with exponent 1 while if Ix - Yl /> m-I  then 
Ig( x - Y)I <<. Cm e -~mlx-yl where C, K are suitable constants. 

The regularized fermionic Schwinger functions are given by the following functional 
integral: 

S A,L ( x I . . . . .  Xn, Yl . . . . .  Yn ) 

f P(dCJ a) f P(dcb) --va'r'A -A A A = e tpx I ...~lx,,~ly I ...~ly,, (3) 
f P(d¢J A) f P(dqb) e -va 

where 

vA(~llA,q~) = eX f dx,xOxOx +- A AOl2A f dx:qbx :2 -x/aHa f dx4~x 

and :: is the normal order, V~CrA is the bosonic mass renormalization and x/~HA 
induces a fermionic mass renormalization. The bosonic integration f P ( dqb ) is a linear 
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functional and it is defined over the monomials  of  Bose field by the commutative Wick 

rule with propagator  Eq. (1 ) ;  in the same way the fermionic  integration f P(~9 a) is 

defined over the monomials  of  Fermi fields by the anticommutative Wick rule with 

propagator  Eq. (2 ) .  Our main results are summarized by the following theorem: 

Theorem 1. : There exist an e > 0 and functions a a ,  HA such that, for m ~ ,  <~ e the 

l imit  l i m L , A ~  s L ' A ( x , y )  = S ( x  - y )  exist and for Ix - Yl > ~ it is bounded by 

_m(0)  
IS( x - Y)I ~< c" Z - - ~  exp(-Km(0)  Ix - Yl), (4) 

l I x Yl < ~ we find, instead where C and K are constants. For ~ < - 

C IX-- y [ - l - n 3  I S ( x - y ) l < ~  ~ , (5) 

where 

m 1+~2 ( m ' ~ - , ,  
m(O) - M,72 ' Z(O)  = \ ~ j  (6)  

and r/t = fll A 2 + 0 ( A 3 ) ,  ~2 = -- f12 A ÷ O ( A 2 ),  ]~1, f12 > 0 and 7/3 = 'r/1 ( 1 + t/2) - 1. 

The existence of  all the Schwinger functions is an easy corollary of  the theorem 

derivation. The above results show that the Yukawa2 model, despite its extreme sim- 

plicity, have a very rich structure. If  ~ << 1, according to Ref. [2] ,  the asymptotic 

behavior of  S ( x - y )  is essentially the same of  the free Schwinger function, Eq. (2 ) ,  i.e. 

the presence of  the interaction does not change the physical  properties of  the system. 1 

The opposi te  situation v~ >> 1 presents a different behavior. Like in the A = 0 case one nl 
can dist inguish two regions in the large distance behavior of  S ( x -  y ) ,  discriminated by 

a mass scale which is changed by the interaction from O ( m )  to 0(m1+~2). In the first 

region again S ( x -  y )  decays exponentially, but the decay rate is now O ( m  1+'72) instead 

of  O ( m ) ;  moreover in the bound the constant mult iplying the exponential,  which in the 

free case is O ( 1 ) ,  is now O ( m  ~ )  and so vanishing as m ~ 0. In the second region the 

behavior is again, l ike in the free case, given by a power law, but the exponent is not 1 

but 1 ÷ ~73. One can read then from the large distance behavior of  S ( x  - y )  the anoma- 

lous dimension of  the fields ~p and ~ , .  This is perhaps more clear if we note that, as a 

simple consequence of  our analysis, we can write S ( x  - y )  = S a ( x  - y )  + ASB(x - y )  

with 

dk eik(x-Y) ~ ÷ m ( k ) l  
S A ( X - - y )  = Z ( k )  k 2 + m ( k )  z (7)  

I In this case in fact one can easily verify from the theorem derivation that m(0) = m(1 + O(V'A)), 
Z(0) = 1 + O(v/A) and that the bounds Eq. (4) can be written replacing m(0),Z(0) with m, 1 and simply 
changing the constants C, x; moreover in Eq. (5) Ix - YI-~3 has to be replaced by 1 + v~A(x  - y). with 
A(x - y) bounded so that in this case S(x - y) has the same infrared behavior that g(x - y). 
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with m ( k ) , Z ( k )  two regular functions such that [m(k) - m[ = O ( ' a "  [Z(k) 11 ~ r ) ,  - = 
O ( ~ r )  for Ik[ > M and m ( 0 ) , Z ( 0 )  are given by Eq. (6). Both SA, SB verifies the 

bounds Eq. (4),  (5).  In the massless case m = 0 one sees that the asymptotic behavior 
of S(x - y) for the Yukawa2 model is identical to the massless Thirring model one, 

what was expected. In the massive case a similar comparison is not possible as, as we 
said, the Schwinger function of the massive Thirring model is not known; anyway our 
results are in agreement with the known anomalous behavior of the mass spectrum of 

the Thirring model [5-7] .  
We refer to [ 3 ] for the ultraviolet part of the theory and we concentrate on the infrared 

one. The technique we use is the Wilsonian renormalization group in a way very close 
to the ones used in [8-10] for the Luttinger model; this is not strange as such a model 

can be considered equivalent to the massless Thirring model with an ultraviolet cut-off, 

see Ref. [ 11 ]. The main difference is that in the Yukawa2 model there is, besides the 
wave function renormalization, also a mass term with an anomalous dimension which is 

lacking in the Ltittinger model. It is possible to control the renormalization group flow 
in the space of effective actions with mathematical rigor since the perturbative series for 
the new effective interaction in terms of the previous scale ones converges (exploiting 
cancellations due to the Fermi statistic) provided that the previous scale interaction is 
(in some sense) small. This was used to give a rigorous construction to the d = 2 
Gross-Neveu model with large fermion mass, see Ref. [ 12], which is an asymptotically 
free theory. On the contrary in the Liittinger model the effective interaction tends to 

a small non-trivial fixed point and the possibility of controlling the flow relies on the 

vanishing of the Beta function, proved in [8-10].  In the Yukawa2 model the flow is 
controlled thanks to a partial vanishing of the Beta function, and the vanishing part 
coincides with the Ltittinger model Beta function. 

Finally our results are of  course valid for the massive Thirring model with an ul- 
traviolet cut-off The solution of the ultraviolet problem of the massive Thirring model, 
which seems in the reach of actual methods, and our results would immediately imply 
the rigorous construction of this model and the determination of its Schwinger function 
asymptotic decay. 

2. The ultraviolet problem 

A power counting argument, see Ref. [3], shows that the counterterms in Eq. (3) 
have to be chosen as: a2A = - - f dxTr (gA(x )gA( - - x ) )  and HA = g(UV)(0); note that 
aA, HA are divergent as A --+ c~. We first consider the denominator of Eq. (3) and 
write it ("integrating the boson fields") as 

f P(dCJ A ) P(dd#) e -VA(¢A'cb) = f P ( d ~  A ) e -9a<o A)  , (8) 

where 
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V(O) = - ~  d x d y G a A ( x -  y ) ( ~ x O x -  Ha)(~yOy - HA) + AKA 

with KA a suitable constant and 

eik(x_y ) 
G , , ~ ( x -  y) = dkk2 + M2 + •a 2 .  (9)  

It is convenient to decompose the propagator g A ( x  -- y )  separating the ultraviolet and 

infrared singularity 

g A ( x  _ y)  = g(UV)(x _ y)  + g ( i r )  ( x  - y) , (10)  

where 

g(UV) (x  - y) = / dk ( e -I?/a2 - -  e -l? ) e ik(x-y) ~ q- ml = / dk e ik(x- y) g(UV) (k)  
k 2 + m  

• / , + m , /  
g(~r) (x - y) = dk e -k2 e ik(x-y) k2 + m2 = dkeik(x-y)g (it) ( k ) .  

Eq. (10)  allows us to represent 02  as the sum of  two independent fields Ox (uv~ and o~ir) 

with propagator  g(UV) (x  - y)  and g(ir) (x  - y) .  Let us denote by f { D  0 e-  f dk~h(k)-'~ } 

the fermionic integration, acting on monomials  of  field ~,, ~ by the anticommutative 

Wick rule with propagator  f dk e ik(x-y) h(k) .  Using these definitions we can write 

fP(dOA)e-fa(¢'a)=/{Do(ir)e-fdk~"~'(g"'(k))- '¢'"~}e-V°"~(¢'"~'),  (11)  

where, by definition, 

e -v°''(¢'' '~') = f { D ~ b  (uv) e - f  dk(/°~'(g'°~'(k))-'°'°v' } e -e"(~°"~'+o'"~') , (12)  

where the meaning of  Eqs. (11 ), (12)  is that the r.h.s, is given by a perturbative series 

identical to the one obtained by the l.h.s, writing the exponential not in braces as a 

series and applying the anticommutative Wick rule to the terms obtained. 

In [3 ] it is proved that, with the above choice of  the counterterms, 2 

l im V°'~(O) -- V°(g,)  
A - . + ~  

a fdxdyG~o(X - Y)('~Ox(,,,O,, 2 " 

+ ~ fdx~. . .dx . ,W"(x!  . . . . .  x.,)~',...6s;:, (13) 
m ~ O , S l , . . . , S m  

where G,~o(X - y )  is given by Eq. (9 ) ,  a 2 = O(,~),  0 s = 0~ or ~Px depending if  s = 1 or 

- 1  and Wm(xl . . . . .  Xm) are integrable over any m -  1 variables. After the integration 

2This statement was proved in [3l with HA = ga(0) obtaining instead of Eq. (13) an analogous formula 
in which the first term is Wick ordered. Eq. (13) follows trivially from this results with our choice of HA, 
which we find more natural a s  H A admits a bound uniform in m, i.e. HA ~ CA with C independent on m. 
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of  the ultraviolet field component, the problem is reduced to an essentially equivalent 
one but a purely infrared propagator and a new potential with terms of  arbitrary degree 
in the fields. 

3. The infrared integration 

In order to perform the infrared integration, i.e. the study of  Eq. (11) ,  we find it 
convenient to consider the mass term as a perturbation of  a massless field; the reason is 
that we look for results valid for small m uniformly. So we write 

/ { D 0  (~<°) e -  f akc°(~)¢'<~°) (-]~+m)¢'<~°) } e -v°(g/') 

= f{79~b (-<°) e -  f dkc°(k)4''<'°' (_]~)~/.<o, } e_,,,fdkco(k)~(<.o,¢;<.o, _vO(0,~o,) 

(]4) 

We decompose the Grassmanian integration {79~b(<'°) e- f dkC°(k)~(<'°'( --#)~{ ~<0) } into 

a product of  independent Grassmanian integrations. This can be done by setting g(ir) (X- 
y) = ~o=_oo g(h) ( x - y )  and by writing ~/~(~<°),-x = z_.,h=-ooX-'0 v'xa'(h), with ~bx(h) being a family 
of  Grassmanian fields with a vanishing "cross propagator" (i.e. an independent family 
of  variables) and with a "self propagator": 

f ~ f ikx~' '2 -2h" [~ g(h)(x-- y) = dkeikX(e-/~r-z"-2 -e-k27-2") - j e  ytK'y )~S ' (15) 

where 3' > 1. 
Note that g( h ) ( x - y)  has good scaling properties, i.e. g( h ) ( x - y)  = ")/h gO ( ~h ( x - y ) )  

and [g(h)(x)[ <~ AThe -~rh[x[, if  A is a constant matrix and K is a constant; moreover 
[g(h)(k)[ <~ AT-he -~r-'[kl. We define ~px (~<h) = ~-~=-oo ~Px (k) and we label the spin 
components of  ~px (h) ,~px (~<h) by the index o-= 4-1. 

A naive definition of  the effective potential is 

0 
e-V"(~'<~")) = / I-I { 790(k) e- f dkf-l(~-2'k2)¢")(-~)~'k~}e-~(¢'<~°)) 

k=h + 1 

with 
/ .  

(/o(~p(.<0)) _ mJdkCo(k)~(<~o)~k(<.o) + vO(~b(~o)). 

By a standard argument one can verify, see for instance Ref. [13],  that vh(~p) is 
given by a sum of  terms of  the form 

dki . . .  dkn fn'h(kl . . . . .  kn) 1-I ~kki,~ri t~ °'iki 
i=1 \ i=1 ] 
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and fn.h are expressed by the sum of the values of suitable Feynman diagrams. A 
kth-order diagram contributing to fn,h can be obtained as usual from k graph elements, 

which represent the addends in Eq. (13), formed by vertices with m emerging oriented 
half-lines with indices ki, hi 7> h, symbolizing the fields ¢Xkh~. One pairs the half-lines 
with consistent orientation and same indices and leaves n half-lines not paired. The 

value of the diagram is obtained by multiplying the propagators gh, (ki) associated with 
each paired line and the kernels in Eq. (13) associated to the vertices, and integrating 
this product over all the momenta ki associated with paired half-lines. 

As usual the maximal connected subgraphs formed by lines with scale /> h,. are 
called clusters with scale h~, and denoted by c; if h~, is the maximal among the scales 

of the lines entering in or coming out the cluster, one can verify, by a power counting 
argument, see for instance Ref. [ 13], that the generic k-order diagram is bounded by 
C k Ek k-T FL, y -°''(h''-h'), where h i < h,,, C is a constant, e = max(A, m), the product runs 

over all the clusters v with scale h<, and D,, > 0 for each except the clusters with four 
external lines, for which Dv = 0, and the clusters with two external lines, for which 
D,~ = - 1 .  Then the graphs with clusters with four or two external lines do not admit a 

bound uniform in h and one has to set a different perturbation expansion. This is done, 
in the renormalization group framework, see Ref. [ 13], by introducing a localization 
operator in the following way. £V h = 0 if m > 4 while 

4 n ( / - - ~ 1 ) 4  1~ f 1-I dki Z f4 ,h (k l , k2 ,  k3 ' k4)t  ~ (siki) H./s i . (~<h)  wk,,~, (16) 
i=1 i=1 

4 4 

f r I  - l i e  = f 4 ' h ( 0 , 0 , 0 , 0 )  dki t~(kl  -F k2 - k3 k4) k,,cr, , 
i=1 i=l 

where Sl = s2 = - s3  = - s4  = +1. Moreover, if f2"h(kl, k2) -~ f2"h(k): 3 

f dk ¢2'htk "~'t'+'(<<'h)'t'-'(<~h) j J ~ ~V'k,<,, V'k,<,2 (17) 

= i dk [f2'h(0) q-kOkf2'h(o) + kOOkof2'h(o)]dt+'(~h)~lt-'(~h) 1 '#'k.cri "#'k,cr2 " 

The relevant part of vh(4b ) is then 

£V  h ( ds <~h ) = zhF~ h + yh shF~h -- AhF~ h , (18) 

f <'"' , 
~h i "41"E(<~h) .#,(<~h) F~r = ur~ ~k ~k ' 

, 1  

4 

F~° = f 1-I dki t,l,,kl['~(~h)'l'(<'h'~7,,k2 } kY'k3{ih(~h'w£¢'"(~h) )¢~ 8iki . (19) 
i =1  

3 By c7 we mean the discrete derivatives. 
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Note that the a priori possible non-covariant terms produced by the localizations do 
vanish, in fact, by parity or symmetry arguments. 

We then integrate the infrared scales in the following way, if  7~ = 1 - £ :  

{790( ~<01 e -  f dk c0(k)~'-<°'(-/t)~,'-~°) } e -  zzv°- nv° 

= f{79~,h ( ( l )  e -  f dkc~(k)~'~',(-¢)¢'<~l~ } e -v - '  (20/  

=/{79¢(~<11 e -  f dk C,(k)~ '<~', (-¢), '~<" } e - C V - ' - n v  -l 

i.e. we perform each integration by writing the effective potential V h as £ V  h + 7"¢V h. In 

this way V h is a renormalized series of  the running coupling constants vk = (st, zk,gk), 
k > h and Vh obeys to a recursive relation, called Beta function, Vh = flh(Vh+l . . . . .  VO). 

The effective potential is still given by a sum of  Feynman graphs but each cluster v 
with two or four external lines with value fZ,h,, or f4,ho is replaced by TCf 2'by and 7-¢f 4,h° 

k r 

and the effect is that the kth-order diagram is now bounded by ~.~ e k I-L, y-(O,.+d,,)(h,,-h,,), 
where everything is again defined as above but e = (maxk>h [Vk[) and dv is 1 for the 

clusters with four external lines and 2 for the cluster with two external lines. In other 
words with respect to the 7"¢ = Id case there is in the estimates a factor y-(hv-h~) more 
for the clusters with four external lines and a factor more y-2(h,,-h') for the clusters 

with two external lines. It is standard to check that the renormalization produces these 
factors by writing explicitly the effect of  the renormalization, for instance on a graph 

with four external lines: 

7~f 4,h'' (kl,  k2, ks, k4) = f4,h,, (kl,  k2, k3, k4) - f4,h,, (0, 0, 0, 0) 
1 

f dta f4'h"( tkl, tk2, tk3, tka ) 
= j -~ 

o 

The derivative acting on f4,h,, has the effect that: 
( i)  Some propagator gi(k) in the cluster v with i ~> hv is derived and so it is bounded 

by A'y -2i e -'¢v-'lkl , if  A is a constant matrix, so there is an extra factor 'y- i  ~< .y_h,, 

in the estimates with respect to the 7~ = Id case; 
(ii) A factor ki, i = 1 . . . . .  4 is produced, which has the effect that in the estimates 

there is an extra (respect to the ~ = Id case) factor 'yh'. 
Each graph in the renormalized expansion for the effective potential is then bounded 

uniformly in h. Even more, estimating the fermionic expectations in the renormalized 
expansion for the effective potential by the Grahm-Hadamard inequality, one can prove 
the analyticity of  the effective potential on scale h as a function of  the running coupling 
constants vk, k > h in a small domain. This follows from Ref. [12] in which a 
renormalized expansion for the effective potential essentially identical to our one is 
discussed for the Gross-Neveu model. 
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However, we do not expect that maxk>h [vkl is small. In fact there is, contrary to 

the massless case, a relevant coupling in the renormalization group sense, namely Sh. 

Moreover also the marginal couplings give problems as by a second-order computation 

Zh-1 = Zh -4- f l l  A2 , k h - I  = t~ h 

with fll > O, so that the vanishing of the second-order beta function for "~h has the 
effect that Zh grows without bound as h -~ -zxD. 

4. Anomalous scaling 

To overcome the problem of the uncontrollable growth of the running coupling con- 

stants a natural approach is to renormalize the kinetic and the mass term, following 
the approach introduced in Ref. [ 14] and more recently used in a rigorous context in 
[8-10,13,15,16]. 

Setting Zo = i, V°( Zo~b (~<°)) = f,o (~b (<~0)), o'0 = 0, the anomalous scaling integration 
is defined recursively in the following way. Once the fields g,0 . . . . .  ¢,h+l have been 
integrated we have to evaluate 

/ {D~p ( <~h) e -  f dkC"(k)Z"O'<'"' ( -~+c~"(~))~/'<"~ } e -v'~'/-~h¢/<'''~ , (21) 

h : e--~,-2h(k2+~) where C£ -1 (k) = ~ _ _ ~  f(T2kk 2) and as in the preceding section we 
write the effective potential, by the localization operator, Eqs. (16), (17), as the sum 

. ~<~h --  _ ~<~h ,~hF~ h and its irrelevant part. Note of  its relevant  part ~ v h ( ~ ]  (<~h)) -- ahr  ~ ~- Lhrz -- 

that, contrary to what was done in the preceding section, we write the running coupling 
constant multiplying F~ h simply as Sh and not a s  ~/hs h. 

Before attempting the integration of the fields 0 (hl we extract the terms quadratic in 

the fields out of £ V  h and we take them into account by changing the propagator. We 
write expression (21) as 

{:DO (<~h) e -  f a~c'(k)z'-'(k~¢<''' (--~-bO'h-l(k))0(~<h' } 

x e ;t'Fa'<' ( v~J'~'~ "<'~ ) -~vJ'( '/-27' ¢'~ ~'~ ),  ( 22 ) 

where 

Z h _ l  ( k )  = Zh Jr- C h  I ( k ) Z h Z h  , 

Z h - I  (k)O'h-1 (k)  = Z h O ' h ( k )  -f- Z h f h  I ( k )  S h 

(23) 

and Zh-1 = Zh- t (0 ) .  
The equality between the expressions (21) and (22) is a compact form to state the 

equality between two series, absolutely convergent at any finite L. Now one can perform 
the integration with respect to ~p(h) writing Eq. (22) as 
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f {DO(<~h-l) e-  f akc,,_, (k)Zh_l ~/~ (~h- ')  (--~+OVh _1 (k))~/t (~<h-l/ } 

x f { v ¢ ,  (h) e -  

× elhg~h ( ZV/-~'~,_I~/<~t,) ) -~1/'( ~ q , t  <~t,,), (24)  

where we have "rescaled" the fields in the effective potential, lh = (Zh/Zh-l)2ah and 
the second integration has a propagator given by 

g(h)(x - y) = /dkeik(x-Y) _ _  

with 

[ c/-~ (k) 
A ( k )  = [ - -  zh---<k---" 

1 ~+O'h_ll 
, - :  ¥ A ( k ) 

Zh_l 

(25) 

It is finally the time to perform the integration with respect to the field 0(h) obtaining 

f {Do  (~<h-l) e -  f dkch-l(k)zh-'~'<''-'' (--~+'n'-'(k))#~<h-" } e -v'-'  (ZV/-£~I--IO(~<h-I) ) , 

(26) 

where vh( ~ O  (<~h-1)) is given by the sum of Feynman graphs in which the factors 

O'h(k), Zh appear only in the propagators Eq. (25) and their possible growth does not 
affect the convergence of the series. Note that expression (26) has the same form of 
expression (21) so that the procedure can be iterated. 

It is convenient to write the propagator in the following way (for an analogous 

statement, and relative proof, see Ref. [ 16] ): 

g(h)(x-  y) =g}h)(x-  y) + C~h)(x- y) ,  

f eikx ff(~/-2hk2)~ 
g(h)(x  -- y)  = dk Zh(k) l k 2 , 

where, if K, A are suitable constants, 

h i 
:,(h) . A Y e-r'xlx-yl 161 '°" -° (x -  Y)[ ~ Z 

and 

r.fh) (x Y) I <~ e-¢'xlx-Y[ 
"~2:r,~' - aZh 

with i = 1 if  or = o a, i = 2 if o" = - o  a and o'h = O'h(0). 

(27) 
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5. The flow of  the renormalization group 

551 

The convergence of  the series for the anomalous effective potential with 00k = 0 for 

all k was proved in [ 10] (some technical simplifications are done in [ 15] ). This means 

that, if 

00k i Z k -2 
max Igkl ~< ~h, max ~< Ch, max - -  ~< e #~ '  (28) 
k>/h i---0.1,2 7 k>~h Z k _  1 

k~h 

then the contribution of  order k to the effective potential V h-l is bounded by C~C~gh k, 
if C is a suitable constant; this follows by noting that the propagator, by Eq. (27),  

obeys to the same bound as in the 00k = 0 case. The above bound does not depend on 

L and we can remove the infrared cut-off, i.e. we can take the limit L --, - c ~  on the 

effective potential. Of  course it is possible to find a constant eh so that, if A ~< eh then 
gh <<. C - 1 C h  I and the series for V h-1 are convergent, see Ref. [10].  

However, one is interested in obtaining an eh independent on h but it is not obvious at 

all that this is possible and we have to study the beta function equation for the running 

coupling constants in order to understand their behavior. 

The results of  the preceding section imply, as in Refs. [ 10,15], that the Beta function 

equations are given by 

l h  2 h  lh-i = lh + G a' ( l h ; . .  • ; Io) + G a" ( lh ,  O'h;. • • ; lo,  0"0) , 

l h  
o°1,-1 = O-h + Gi/  ( l h ,  O ' h ; . .  • ; 10 ,000)  , 

Zh-j 1 2 h  - 1  + Gz(lh; . .  .;10) + Gz' ( lh ,O 'h ;  . .  - ; I 0 , 0 0 0 )  , (29) 
Zh 

where, if Eq. (28) holds, Ia 'hl <. C1  ,th, C200hth <. G h <. C 00hlh, az <<. C2Z  
and G2'h I <<. Ci ~.~.hlh, with C2 > C1 suitable positive constants. z y 

In the equations for lh w e  have divided, using Eq. (27),  the beta function into two 

parts and the term G] 'h is given by a sum of  integrals of  products of  the part g~,~(x-  y)  
of  the propagator while in the t e r m s  G 2,h at least a C~(x - y) term is involved. In the 

equation for O-h we have used that at least a diagonal propagator has to be involved in 

the term contributing to the beta function. In the last equation again we have divided 

the beta function into two terms as it was done for lb. 

The Beta function is a short memory dynamical system in the sense that is a set 

of  equations of  the form Vh-I = 1~h(Vh,  Uh+l . . . . .  U0) , which behaves "essentially" as 

a system without memory Vh-1 = ~ h ( U h ,  Uh . . . . .  Uh) ,  (this is a consequence of  the 

convergence of  the Beta function as function of  its arguments, see Ref. [ 10]) .  Even 
more, the convergence of  Eq. (29) allows us to say that the lowest non-zero terms 

determine the evolution of  the running coupling constants. All the terms contributing 
to the Beta function Eq. (29) are series starting from the second order except G l'h. 

This, however, generates a problem as one cannot exclude a priori that there is some 
non-vanishing term at some large order, and the evolution of  the running coupling 

constants will depend critically on this unknown term. In other words, as the theory 
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is not asymptotically free (contrary to the Gross-Neveu model studied in [ 12] ), the 

convergence o f  the Beta function and the second-order Beta function are not enough to 

understand the system. 
Fortunately it is possible to prove that 

lim Gla 'h( /z , . . . , /z )  = O, (30) 
h---.-o¢ 

i.e. it is vanishing at all orders. In fact G l'h coincides, up to terms vanishing as h --* 

- o o  as O(yh) ,  with the correspondent quantity of  the Liittinger model, 4 and, by using 

the properties of  the exact solution [17,18] one can prove that it is vanishing, see 

Refs. [8-10,15] .  5 

By Eq. (30) ,  the considerations after Eq. (28) and the "short memory properties" 

of  the beta function (see Ref. [ 10] ) it follows (see Ref. [ 16] ) that if for 0 /> k ~> h, 

Eq. (28) holds, then 

-C lA  2 < Igh-I -- go] < c2A 2 -h f l3c3h  <<. log {[O'h-l[~ , ik iO.o I ] ~ - A f l 3 c 4 h  

-fllC3,~Eh <~ 1og(IZh_ll) ~< --fllcg,~Zh (31) 

if ¢i, l~i are suitable constant, i.e. the flow is essentially described by the second-order 

truncation of  the beta function. 
At the beginning of  this section we said that the effective potential V h-1 is expressed 

by a convergent series if ,~ ~< eh, where eh is such that eh <~ C -1Ch l ;  gh and Ch 

are defined in Eq. (28).  Unfortunately, from Eq. (31) we see l i m h ~ - ~  Ch = c~ and 

limh-~-oo eh = 0 SO that, given any h*, we can prove the summability of  the series for 

the effective potential V h for h > h* in a domain dependent on h*. We will see that it is 

possible to choose the scale h* in such a way that the remaining scales can be integrated 

in a single step. A "natural" way to fix such scale is by requiring that Ch* <~ C, if C is 

a proper constant that we will fix below. One finds 

l°g~ t~-I tr° h* In C - l ° ' °  + 1 ~< ~< 
1 + Afl2c3 1 + Afl2c4 

It remains to prove the summability of  V h for h ~< h*. The study of  the case h ~> h* 

was done in some sense by approximating the anomalous propagator Eq. (25) with 
the propagator of  a massless theory by Eq. (27).  This approximation is of  course not 

reasonable for large I hl corresponding to momenta negligible with respect to the mass 

term. But for the scales h ~< h* the bound 

a This is not too surprising as the Ltittinger model, when the interaction range and the Fermi momentum 
shrink to 0, is equivalent to the massless Thirring model, if a suitable wave function normalization is done, 
see Ref. [ l 1 ] ; moreover the massless Thirring model and the massless Yukawa2 have the same infrared beta 
function up to term O(y h) 

5 Of course it should be possible to prove Eq. (30) without using the exact solution but, possibly, exploiting 
some well-known symmetries of the Lagrangian, but they are not so immediate to exploit in this approach as 
they hold only when the regularizations are removed [ 19]. 
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( <~ t!,* ) h~h * ' * goJ,o (x  - y)[ ~ A e - ~ '  ~lx-yl 

holds. Note in fact that k 2 + t r ] . ( k )  ) 2 crh., as follows from Eq. (23) .  In other words 
,(<~h*), _(h) r x h*; the propagator so~,,o, t x - y)  obeys to the same bound of g,~.,o, t - y)  for h ~> our 

choice of  h* is done just to obtain this. This means that the integration of the scales 

between - c ~  and h* is equivalent to the integration of a single scale in a massless 

theory, so that from [ 10,15] also the series expressing 

U'* (,/-2~h*)O I<'l'* )) Pz,,. (dg  '(~<h*)) e -  (32) 

is convergent. The nth-order of  the series in the running coupling constants for the 

effective potential for h > h* are bounded by ( G ) ' C ' C [  T while the term for h ~< h* 
C n 

are bounded by (ca-,) ~_xz&, if Eq. (28) is verified for any h = 0 . . . . .  h*, so that there is 

a non-ambiguous way to fix C so that g is the largest possible. 
We have discussed the convergence of the denominator of  Eq. (3) when the cut- 

offs A, L are removed; the numerator has a similar expansion, as one can easily check 
repeating the arguments in Section 4 for this case, see Ref. [ 10]. 

The results are 
0 0 

f P ( d O )  e-V('x~Py =S(UV)(x_y)  + Z g ( h ) ( x _ y )  + Z ~ ( h ) ( x _ y )  (33) 
f P(d~h) e -v  h=h* II=h* 

with 

]S(UV)( x Y)I ~ Ae-"lx-vl -(h) AT h e-Kr"lx-~,l 
- -  " , g . , , . o , (  x - Y ) I  <~ 

and we call g(<~h*)(X -- y) simply g(h*) (X  -- y). 
From the above equation it is easy to state the results in the theorem. In fact the 

second term in Eq. (33)  gives Eqs. (6)  and (7) ,  defining 

log(Zh. ) log(o'h. ) 
7/i = log(m)  ' 1 +7/2 = log(m)  

The bounds, Eqs. (4) ,  (5) ,  can be obtained by Eq. (33) ,  as for y -t~'-~ < Ix-yl  <~ y-h,,  
hx > h*: 

h* [ ~ 1  Th 
Z Ig(h)(x - Y)I <~ A] 
h_-o V,=h. Z 

while for Ix - y[ 7> O'h-.~: 

r____ e-~V I~-yl 1 Z i g ( h ) (  x - Y)I ~ AI  z h  * \ h--O 

h* i* 
T'" - - , o "  [x-y[ 

<~ ~2Zh" 

+ 0 Z yh e--ryhlx--Y[ ~ A27h'(l-'qD 
h=h, gh 

h*+l / 
+ Z ,~,(h-h*)(l-rt3) (Th-h* _ l ) - N  

h=] 

(34) 
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where  N > 2 and A l ,  A2 are pos i t ive  constants.  
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