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Abstract. In this paper we discuss a paradigmatic example of interacting
particles subject to non-conservative external forces and to the action of
thermostats consisting of external (finite) reservoirs of particles. We then consider
a model of granular materials of interest for experimental tests that have recently
attracted a lot of attention. This model can be reduced to the previously
discussed example under a number of assumptions, in particular that inelasticity
due to internal collisions can be neglected for the purpose of measuring the large
deviation functional for entropy production rate. We show that if the restitution
coefficient in the granular material model is close to one, then the required
assuptions are verified on a specific timescale and we predict a fluctuation relation
for the entropy production rate measured on the same timescale.
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1. Non-equilibrium

In studying stationary states in non-equilibrium statistical mechanics [1, 2], it is common
to consider d-dimensional systems of particles in a (finite) container Σ0 forced by non-
conservative forces whose work is controlled by thermostats consisting of particles moving
outside Σ0 and interacting with the particles of Σ0 through interactions across the walls
of Σ0 [3]. If X0 = (x0

1, . . ., x0
N0

) are the particles’ positions in an inertial system of
coordinates, the equations of motion are determined by their mass m, by the potential
energy of interaction V (X0), by external non-conservative forces Fi(X

0,Φ), and by
thermostat forces −ϑi as

mẍ0
i = −∂x0

i
V (X0) + Fi(X

0;Φ) − ϑi, (1)

where i = 1, . . . , N0, and Φ = (ϕ1, . . . , ϕq) are strength parameters on which the external
forces depend (e.g. the components of an external electric field). Forces and potentials will
be supposed to be smooth, i.e. analytic, in their variables, aside from possible impulsive
elastic forces describing shocks; the forces Fi will be supposed to vanish for Φ = 0. The
impulsive forces are allowed here to model possible shocks with the walls of the container
Σ0 or between hard core particles.

Examples of deterministic reservoirs [4] are forces obtained by imposing a non-
holonomic constraint via some ad hoc principle, like the Gauss’ principle [5] (appendix
9.A4), [6]. A different example will be discussed below extensively.

In general, the forces ϑi can be considered as a set of deterministic ‘thermostat forces’
if a further property holds: namely that the system evolves according to equation (1)

towards a stationary state. This means that, for all (Ẋ0,X0), except possibly for a set

of zero phase-space volume, any smooth function f(Ẋ0,X0) evolves in time so that,
denoting St(Ẋ

0,X0) the configuration into which (Ẋ0,X0) evolves in time t according

doi:10.1088/1742-5468/2006/05/P05009 2

http://dx.doi.org/10.1088/1742-5468/2006/05/P05009


J.S
tat.M

ech.
(2006)

P
05009

Fluctuations relation and external thermostats: an application to granular materials

to equation (1), then the limit

lim
T→∞

1

T

∫ T

0

f(St(Ẋ
0,X0)) dt =

∫
f(z)µ(dz) (2)

exists and is independent of (Ẋ0,X0). The phase-space probability distribution µ(dz)

(here z = (Ẏ,Y) denotes the coordinates of position and velocity of a generic point in
phase space) is then called the SRB distribution for the system. It has to be stressed that
the condition that thermostat forces be ‘effective’ enough to impede an indefinite build
up of the energy of the system is a strong condition, which we will assume in the models
discussed in this note. This imposes on the interaction potentials and on the thermostat
conditions, which are not well understood, although they seem empirically verified with
the simplest choices of molecular potentials [5].

The maps St will have the group property St · St′ = St+t′ , and the SRB distribution
µ will be invariant under time evolution. The SRB distribution is said to describe a
stationary state of the system; it depends on the parameters on which the forces acting
on the system depend, e.g. |Σ| (volume), Φ (strength of the forcings) and on the model of
thermostat forces. The collection of SRB distributions obtained by letting the parameters
vary defines a non-equilibrium ensemble.

2. A model of external thermostats

Let us now discuss in more detail an important class of thermostats in the context of
model equation (1). Imagine that the N0 particles in the container Σ0 interacting via the
potential V (X0) =

∑
i<j ϕ(x0

i − x0
j ) +

∑
j V0(x

0
j ) (where V0 models external conservative

forces such as obstacles, walls, gravity, . . .) and subject to the external forces Fi are
also interacting with M other systems Σa, of Na particles of mass ma, in containers Σa

contiguous to Σ0. It will be assumed that Σa ∩ Σa′ = ∅ for a �= a′, a, a′ = 0, . . . , M .
The coordinates of the particles in the ath system Σa will be denoted xa

j , j = 1, . . . , Na,

and they will interact with each other via a potential Va(X
a) =

∑Na

i,j ϕa(x
a
i − xa

j ).
Furthermore, there will be an interaction between the particles of each thermostat and
those of the system via potentials Wa(X

0,Xa) =
∑N0

i=1

∑Na

j=1 wa(x
0
i − xa

j ), a = 1, . . . , M .
Again, potentials will be assumed to be either hard core or non-singular and V0 to be

at least such that it forbids the existence of obvious constants of motion.
The temperature of each Σa will be defined by the total kinetic energy of its particles,

i.e. by setting Ka =
∑Na

j=1
1
2
ma(ẋ

a
j )

2 def
= 1

2
(dNa−1)kBTa, where kB is Boltzmann’s constant

and d is the spatial dimension; the particles of the ath thermostat will be kept at constant
temperature by further forces ϑa

j . The latter are defined by imposing constancy of Ka via
Gauss’ least effort principle. This means that equations of motion like

m ẍ0
j = −∂x0

j
(V (X0) +

M∑
a=1

Wa(X
0,Xa)) + Fi(X

0,Φ)

ma ẍa
j = −∂xa

j
(Va(X

a) + Wa(X
0,Xa)) − ϑa

j (3)

and an application of Gauss’ principle yields ϑa
j = ma(La − V̇a)/(dNa − 1)kBTa ẋa

j
def
=

αa ẋa
j , where La is the work per unit time done by the particles in Σ0 on the particles of
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Σa and Va is their potential energy [6]. Note that in the first part of equation (3), the
forces −∂x0

i
Wa play the role of the thermostat forces ϑi in equation (1).

The work La appearing in the definition of ϑa
j can be naturally interpreted as

heat Q̇a ceded, per unit time, by the particles in Σ0 to the thermostat Σa (because the
‘temperature’ of Σa is constant). If X = (X0,X1, . . . ,XM), the entropy creation rate can
be naturally defined as

σ0(Ẋ,X)
def
=

M∑
a=1

Q̇a

kBTa
(4)

hence σ0 can be called (in model equation (3)) the average entropy creation rate. Its time

average will be assumed to be σ0,+
def
= 〈σ0〉SRB �= 0. Note that now 〈·〉SRB is the average

with respect to the stationary measure for the whole system Σ0 +thermostats.

We shall see that, in ample generality, σ0+ ≥ 0: the definition of entropy creation is
‘reduced’, here, to an ‘equilibrium notion’, because what is being defined is the entropy
increase of the thermostats, which have to be considered to be in equilibrium. No attempt
is made to define the entropy of the stationary state. Nor is any attempt made to define
the temperature of the non-equilibrium system in Σ0 (Ta is the temperature of Σa, not of
Σ0).

In fact, the above model is a realization of a Carnot machine: the machine being the
system in Σ0 on which external forces work, leaving the system in the same state (a special
‘cycle’) but achieving a transfer of heat between the various thermostats (in agreement
with the second law, see equation (4), only if σ0,+ ≥ 0).

Another observable that is convenient to introduce is the phase-space contraction
rate σ(Ẋ,X), defined as minus the divergence of the equations of motion: in the model
described by equation (3), this is the sum of the derivatives of the rhs with respect to

X0,Xa, mẊ0, maẊ
a, and it turns out to be

σ(Ẋ,X) =
∑

a

Q̇a − V̇a

kBTa
≡

∑
a

Q̇a

kBTa
− u̇. (5)

Therefore, there is a simple and direct relation between the phase-space contraction and

the entropy creation rate [6]: they just differ for the total derivative u̇
def
=

∑
a V̇a/kBTa,

whose time average 〈u̇〉SRB vanishes. This implies, in particular, that the time average

σ+
def
= 〈σ〉SRB is the same as σ0,+ and, in particular, that it is non-negative, consistent

with the interpretation of phase-space volume contraction rate. The σ+ > 0 implies that
phase space contracts on average, and therefore the SRB distribution will give probability
1 to a zero volume set. Therefore, if σ+ > 0, the system is said to be dissipative.

The usefulness of introducing the definition of σ is that a fluctuation theorem has
been established for its large deviations functional in the context of Anosov systems
theory. The chaotic hypothesis allows us to establish a connection between the fluctuation
theorem (valid for the phase-space contraction rate in dissipative Anosov systems) and a
fluctuation relation for σ and σ0 in model equation (3), as explained in the next sections.

doi:10.1088/1742-5468/2006/05/P05009 4
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3. Chaotic hypothesis

In equilibrium statistical mechanics the ergodic hypothesis plays an important conceptual
role, as it implies that the motions have SRB statistics and that the latter coincides with
the Liouville distribution on the energy surface. A role analogous to the ergodic hypothesis
has been proposed for the chaotic hypothesis [7], which states that
A chaotic system can be regarded as an Anosov system for the purpose of computing the
time averages of (smooth) observables.

This means that the attracting set of a chaotic system, physically defined as a system
with at least one positive Lyapunov exponent, can be regarded as a smooth compact
surface Ω on which motion is highly unstable (uniformly hyperbolic) and transitive (there
is a dense trajectory). For a mathematically precise definition of an Anosov system, we
refer to [8].

We stress that the chaotic hypothesis concerns physical systems: mathematically, it
is easy to find dynamical systems for which it does not hold, as it is easy (even easier) to
find systems in which the ergodic hypothesis fails (e.g. harmonic lattices or black body
radiation).

Since physical systems are almost always not Anosov systems, it is very likely that
probing motions in extreme regimes will make visible the features that distinguish Anosov
systems from non-Anosov systems: much as happens with the ergodic hypothesis.

The ergodic hypothesis provides us with an expression for the averages (as integrals
over the normalized Liouville distribution on the energy surface): likewise, the chaotic
hypothesis provides us with the existence and a formal expression for the averages (i.e. for
the SRB distribution) [8].

The interest in the hypothesis is to provide a framework in which properties such as
the existence and formal expression of an SRB distribution is a priori guaranteed. One
can also say that the role of Anosov systems in chaotic dynamics is similar to the role of
harmonic oscillators in the theory of regular motions. They are the paradigm of chaotic
systems, as harmonic oscillators are the paradigm of order. Of course, the hypothesis is
only a beginning, and one has to learn how to extract information from it, as was the case
with the use of the Liouville distribution once the ergodic hypothesis guaranteed that it
was the appropriate distribution for the study of the statistics of motions in equilibrium
situations [9].

4. Fluctuation theorem

As mentioned above, an important observable in the theory of Anosov systems is the
phase-space contraction rate σ(x), defined as minus the divergence of the equations of
motion, computed in x ∈ Ω, where Ω is the phase space of the system. A rather general
result holds if the system is Anosov, dissipative (σ+ = 〈σ〉SRB > 0), and furthermore
reversible in the sense that there is an isometry I of phase space such that ISt = S−tI for
all t ∈ R. Define the dimensionless phase-space contraction

p(x) =
1

τ

∫ τ

0

σ(Stx)

σ+
dt (6)

doi:10.1088/1742-5468/2006/05/P05009 5
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then the SRB average of p is 1 (by definition) and there exists p∗ ≥ 1 such that the
probability Pτ of the event p ∈ [a, b] with [a, b] ⊂ (−p∗, p∗) has the form

Pτ (p ∈ [a, b]) = const eτ maxp∈[a,b] ζ(p)+O(1) (7)

with ζ(p) analytic in (−p∗, p∗) [10, 11]. The function ζ(p) can be conveniently normalized
to have value 0 at p = 1 (i.e. at the average value of p).

In Anosov systems which are reversible and dissipative, a general symmetry property,
called the fluctuation theorem and reflecting the reversibility symmetry, yields the
parameterless relation [7, 12],

ζ(−p) = ζ(p) − pσ+ p ∈ (−p∗, p∗), (8)

where (−p∗, p∗), p∗ ≥ 1, is the largest domain of definition of ζ ; it can be shown that
ζ is analytic on the whole (−p∗, p∗). This relation is interesting, because it has no free
parameters. The relation was discovered in a simulation of shear flow, and it was suggested
that it should be related to time reversal symmetry and to Ruelle’s ideas on turbulence [13].
A more informal (but imprecise) way of writing equations (7) and (8) is

Pτ (p)

Pτ (−p)
= eτpσ++O(1), for all p ∈ (−p∗, p∗) (9)

where Pτ (p) is the probability density of p. An interesting consequence of equation (9) is
that 〈e−τ p σ+〉SRB = 1 in the sense that (1/τ) log 〈e−τ p σ+〉SRB −−−→τ→∞ 0.

Occasionally, systems with singularities have to be considered: in such cases, the
relation equation (8) may change, in the sense that the ζ(p) may not be analytic; one
then expects that the relation holds in the largest analyticity interval symmetric around
the origin. In various cases considered in the literature, such an interval appears to contain
the interval (−1, 1), and sometimes this can be proved rigorously, for instance in simple,
although admittedly special, examples of systems close to equilibrium [9].

The equations (8) and (9) are the first representatives of consequences of the
reversibility and chaoticity hypotheses. For instance, given F1, . . . , Fn arbitrary
observables which are (say) odd under time reversal I (i.e. F (Ix) = −F (x)) and given n
functions t ∈ [−τ/2, τ/2] → ϕj(t), j = 1, . . . , n, one can ask what is the probability that
Fj(Stx) ‘closely follows’ the pattern ϕj(t) and, at the same time, (1/τ)

∫ τ

0
(σ(Sθx)/σ+) dθ

has value p. Then, calling Pτ (F1 ∼ ϕ1, . . . , Fn ∼ ϕn, p) the probability of this event, which
we write in the imprecise form corresponding to equation (9) for simplicity, and defining

Iϕj(t)
def
= −ϕj(−t), it is

Pτ (F1 ∼ ϕ1, . . . , Fn ∼ ϕn, p)

Pτ (F1 ∼ Iϕ1, . . . , Fn ∼ Iϕn,−p)
= eτσ+p, (10)

for p ∈ (−p∗, p∗), which is remarkable because it is parameterless and, at the same time,
surprisingly independent of the choice of the observables Fj . The relation equation (10)
has far-reaching consequences [5].

Equation (10) can be read as follows: the probability that the observables Fj follow
given evolution patterns ϕj, conditioned to entropy creation rate pσ+, is the same
probability that they follow the time-reversed patterns if conditioned to entropy creation
rate −pσ+. In other words, to change the sign of time, it is just sufficient to reverse
the sign of the average phase-space contraction p (and we shall see that, in our model,
this would amount to changing the sign of the entropy creation rate): no ‘extra effort’ is
needed.

doi:10.1088/1742-5468/2006/05/P05009 6
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5. Fluctuation relation

Given a chaotic system for which the chaotic hypothesis can be regarded as valid, it is
expected that the fluctuation relation (FR) holds: i.e. that one can define ζ(p) and that
the symmetry equation (8) holds. This is an important check that can be performed on
the statistical properties of a stationary non-equilibrium state.

However, it is also important to know whether the quantity p and its fluctuations
describe some interesting feature of the dynamical system. The model equation (3), with
σ defined as in equation (5), provides an indication of the path to follow in the quest for
an interpretation of the fluctuation relation [6, 14].

The remarkable property is that if we accept the chaotic hypothesis for the model
equation (3) (i.e. for the whole system Σ0 +thermostats) and we choose the parameters Φ
and Ta in such a way that σ+ > 0, it is expected that the FR holds for p, and this has an

immediate physical interpretation because, if we write p0(x)
def
= (1/τ)

∫ τ

0
(σ0(Stx)/σ0+) dt,

then, making use of the property that p− p0 is the variation of u in time τ divided by the
elapsed time τ ,

p(x) = p0(x) +
u(Stx) − u(x)

t
σ0+ ≡ 〈σ0〉SRB ≡ 〈σ〉SRB ≡ σ+.

(11)

We find that, in the limit t → ∞, p and p0 have the same large deviation rate ζ(p).
Of course, the thermostats are ‘large’ (we are even neglecting O(N−1

a )) and therefore
the energies Va as well as u can be very large, physically of order O(

∑
a Na). This means

that time t that has to pass (in order to see the fluctuation relation equation (8) free
of the O(t−1

∑
a Na) corrections) can be enormous (possibly on an astronomical scale in

‘realistic’ cases).
This is a situation similar to the one met when considering systems with unbounded

stochastic forces [15], or with singular or nearly singular forces and thermostats of
isokinetic type [9]. In the present case, we see that the really interesting quantity is
the quantity p0, which is the entropy creation rate, and it is a boundary term unaffected
by the size of the thermostats. Therefore if one considers and measures only p0 rather than
p, one not only performs a physically meaningful operation (i.e. measuring the average
entropy creation rate) but also one can access the large deviation rate ζ(p) and check the
fluctuation relation symmetry on a time that is totally unrelated to the thermostat’s size.
Furthermore, the more general relations like equation (10) can be naturally extended.

6. A model for granular materials

The current interest in granular materials properties and the consequent availability
of experiments, e.g. [16], suggests trying to apply the above ideas to derive possible
experimental tests.

The main problem is that, in granular materials, collisions are intrinsically inelastic.
In each collision, particles heat up, and the heat is subsequently released through thermal
exhange with the walls of the container, sound emission (if the experiment is performed
in air), radiation, and so on. If one still wants to deal with a reversible system, such as
the one that we discussed in the previous sections, one should include all these sources of

doi:10.1088/1742-5468/2006/05/P05009 7
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dissipation in the theoretical description. Clearly, this is a very hard task, and we will
not pursue it here.

A simplified description of the system consists of neglecting the internal degrees of
freedom of the particles. In this case, the inelastic collisions between point particles will
represent the only source of dissipation in the system. Still, the chaotic hypothesis is
expected to hold, but in this case the entropy production is strictly positive and there is
no hope of observing a fluctuation relation, see e.g. [17], if one looks at the whole system.

Nevertheless, in the presence of inelasticity, temperature gradients are present in the
system [16, 18, 19], so that heat is transported through different regions of the container.
Then one can try to represent the processes of heat exchange between different regions of
the system using the model that we described above; and, assuming that, under suitable
conditions, the inelasticity of the collisions can be neglected, one can hope to observe a
fluctuation relation for a (suitably defined) entropy production rate. This would be an
interesting example of ‘ensemble equivalence’ in non-equilibrium [5]: we will discuss this
possibility in detail in the following.

As a model for a granular material, let Σ be a container consisting of two flat parallel
vertical walls covered at the top and with a piston at the bottom that is kept oscillating
by a motor, so that its height is

z(t) = A cos ωt. (12)

The model can be simplified by introducing a sawtooth moving piston, as in [19]; however,
the results should not depend too much on the details of the time dependence of z(t). The
container Σ is partially filled with millimetre-sized balls (a typical size for the faces of Σ is
10 cm and the particle number is about 256): the vertical walls are so close that the balls
almost touch both faces, so the problem is effectively two dimensional. The equations of
motion of the balls with coordinates (xi, zi), i = 1, . . . , N , zi ≥ z(t), are

mẍi = fx,i

mz̈i = fz,i − mg + mδ(zi − z(t)) 2 (ż(t) − żi)
(13)

where m = mass, g = gravity acceleration, and the collisions between the balls and the
oscillating base of the container are assumed to be elastic [19] (eventually, inelasticity
of the walls can be included into the model with negligible changes [17]); fi is the force
describing the particle collisions and the particle–walls collisions.

The force fi has a part describing the particle collisions: this is not necessarily elastic,
and in fact we will assume that the particle collisions are inelastic, with restitution
coefficient α < 1. A simple model for inelastic collisions with inelasticity α (convenient for
numerical implementation) is a model in which collisions take place with the usual elastic
collision rule, but immediately after the velocities of the particles that have collided is
scaled by a factor so that the kinetic energy of the pair is reduced by a factor of 1−α2 [17]–
[19].

We look at the stationary distribution of the balls: the simplest experimental situation
that seems accessible to experiments and simulations is to draw ideal horizontal lines at
heights h1 > h2 delimiting a strip Σ0 in the container and to look at the particles in Σ0

as a thermostatted system, the thermostats being the regions Σ1 and Σ2 at heights larger
than h1 and smaller than h2, respectively.

doi:10.1088/1742-5468/2006/05/P05009 8
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After a stationary state has been reached, the average kinetic energy of the particles
will depend on the height z, and in particular will decrease on increasing z. Given the
motion of the particles and a time interval t, it will be possible to measure the quantity Q2

of (kinetic) energy that particles entering or exiting the region Σ0 from below (the ‘hotter
side’) carry out of Σ0 as well as the analogous quantity Q1 carried out by the particles
that enter or exit from above (the ‘colder side’).

If Ti, i = 1, 2, are the average kinetic energies of the particles in small horizontal
corridors above and below Σ0, we see that there is a connection between the model of
granular material, equation (13), and the model equation (3) discussed above. Still, model
equation (13) cannot be reduced exactly to model equation (3) because of the internal
dissipation induced by the inelasticity α and of the fact that the number of particles in
Σ0 depends on time, as particles come and go in the region.

The reason for considering a model for granular material that is not in the class
of models of equation (3) is that equation (13) has a closer connection with the actual
experiments [16] and with the related numerical simulations. Moreover, under suitable
assumptions, which can be expected to hold on a specific timescale, the stationary state
of equation (13) is effectively described in terms of the stationary state of equation (3),
as discussed below.

Note that real experiments cannot have an arbitrary duration [16]: the particles’
movements are recorded by a digital camera and the number of photograms per second is
of the order of a thousand, so that the memory for the data is easily exhausted as each
photogram has a size of about 1 Mb in current experiments. The same holds for numerical
simulations where the accessible timescale is limited by the available computational
resources.

Hence each experiment lasts up to a few seconds, starting after the system has been
moving for a while, so that a stationary state is reached. The result of the experiment is
the reconstruction of the trajectory in phase space of each individual particle inside the
observation frame [16].

In order for the number of particles N0 in Σ0 to be approximately constant for the
duration of the experiment, the vertical size (h1 − h2) of Σ0 should be chosen to be large
compared to (Dt)1/2, where t is the duration of the experiment and D is the diffusion
coefficient. Note that we are assuming that the motion of the particles is diffusive on the
scale of Σ0. In the low-density case, the motion could not be diffusive on the scale of Σ0:
then we would not be able to divide the degrees of freedom between the subsystem and
the rest of the system and, moreover, the correlation length would be comparable with
(or larger than) the size of the subsystem Σ0. This would completely change the nature
of the problem, and violations to FR could possibly be observed [20, 21].

Given the remarks above, and if

(1) we accept the chaotic hypothesis,

(2) we assume that the result of the observations would be the same if the particles above
Σ0 and below Σ0 were kept at constant total kinetic energy by reversible thermostats
(e.g. Gaussian thermostats) [5, 22, 23],

(3) we neglect the dissipation due to inelastic collisions between particles in Σ0,

(4) we neglect the fluctuations of the number of particles in Σ0,
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(5) we suppose that there is dissipation in the sense that

σ+
def
= lim

t→+∞

1

t

(
Q1

T1

+
Q2

T2

)
> 0, (14)

then we expect the analysis of section 5 to apply to model equation (13).

Note that chaoticity is expected at least if dissipation is small, and evidence for it is
provided by the experiment in [16], which indicates that the system evolves to a chaotic
stationary state in which dissipation occurs. Dissipation due to internal inelastic collisions
will be negligible (for the purpose of checking an FR for σ0) only on a specific timescale,
as discussed below.

Accepting the assumptions above, we then predict that a fluctuation relation is
satisfied, see equations (8) and (9), for fluctuations of

p =
1

t σ+

(
Q1

T1
+

Q2

T2

)
(15)

in the interval (−p∗, p∗), with p∗ equal (at least) to 1.
The latter is therefore a property that seems to be accessible to simulations as well

as to experimental test. Note, however, that it is very likely that the hypotheses (2)–
(4) above will not be strictly verified in real experiments—see the discussion in the next
section—so we expect that the analysis and interpretation of the experimental results will
be non-trivial. Nevertheless, the test would be rather stringent.

7. Relevant timescales

The above analysis assumes the existence of (at least) two timescales. One is the
‘equilibrium timescale’, θe, which is the timescale over which the system evolving at
constant energy, equal to the average energy observed, would reach equilibrium in the
absence of friction and forcing. An experimental measure of θe would be the decorrelation
time of self-correlations in the stationary state, and we can assume that θe is of the order
of the mean collision time. Note that θe also coincides with the timescale over which finite
time corrections to FR become irrelevant [24]: this means that, in order to be able to
measure the large deviations functional for the normalized entropy production rate p in
equation (15), one has to choose t  θe; see also [25] for a detailed discussion of the first-
order finite time corrections to the large deviation functional. A second timescale is the
‘inelasticity timescale’ θd, which is the scale over which the system reaches a stationary
state if the particles are prepared in a random configuration and the piston is switched
on at time t = 0. Possibly a third timescale is present: the ‘diffusion timescale’ θD, which
is the scale over which a particle diffuses over the size of Σ0. The analysis above applies
only if the time t in equation (15) verifies θe � t � θd, θD (note, however, that the
measurement should be started after a time  θd, since the piston has been switched on
in order to have a stationary state); in practice, this means that the time for reaching the
stationary state has to be quite long compared to θe. In this case, friction is negligible
for the duration of the measurement if the latter is between θe and min(θD, θd). In the
setting that we consider, the role of friction is ‘just’ that of producing the non-equilibrium
stationary state itself and the corresponding gradient of temperature: this is reminiscent
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of the role played by friction in classical mechanics problems, where periodic orbits (the
‘stationary state’) can be selected dynamically by adding a small friction term to the
Hamilton equations. Note that, as discussed below, the temperature gradient produced
by friction will be rather small: however, smallness of the gradient does not affect the ‘FR
timescale’ over which FR is observable [24].

If internal friction is not negligible (that is, if t � θd), the problem would change
nature: an explicit model (and theory) should be developed to describe the transport
mechanisms (such as radiation, heat exchange between the particles and the container,
sound emission, . . .) associated with the dissipation of kinetic energy, and new thermostats
should correspondingly be introduced. The definition of entropy production should be
changed, by taking into account the presence of such new thermostats. In this case,
even changing the definition of entropy production, it is not clear whether FR should be
satisfied: in fact, internal dissipation would break the time-reversibility assumption and,
even accepting the chaotic hypothesis, nothing guarantees a priori the validity of FR.

The validity of θe � t � θd, θD is not obvious in experiments. A rough estimate
of θd can be given as follows: the phase-space contraction in a single collision is given
by 1 − α. Thus the average phase-space contraction per particle and per unit time is
σ+,d = (1 − α)/θe, where 1/θe is the frequency of the collisions for a given particle. It
seems natural to assume that θd is the timescale at which σ+,dθd becomes of order 1: on
this timescale, inelasticity will become manifest. Thus, we obtain the following estimate:

θd ∼ 1

1 − α
θe. (16)

In real materials α ≤ 0.95, so that θd can be at most of the order of 20θe. Nevertheless,
it is possible that this is already enough to observe a fluctuation relation on intermediate
times.

The situation is completely different in numerical simulations where we can play with
our freedom in choosing the restitution coefficient α (it can be chosen to be very close to
one [17]–[19], in order to have θd  θe) and the size of the container Σ0 (it can be chosen
to be large, in order to have θD  θe).

To check the consistency of our hypotheses, it has to be shown that it is possible to
make a choice of parameters such that θe and θD are separated by a large time window.
Such choices are possible, as discussed below.

If δ = h1 − h2 is the width of Σ0, ε = 1−α, γ is the temperature gradient in Σ0, and
D is the diffusion coefficient, then the following estimates hold:

(a) θe = O(1), as it can be taken of the order of the inverse collision frequency, which
is O(1) if the density is constant and the forcing on the system is tuned to keep the
energy constant as ε → 0.

(b) θd = θeO(ε−1), as implied by equation (16).

(c) θD = O(δ2/D) = O(δ2), because D is a constant (if the temperature and the density
are kept constant).

(d) γ = O(
√

ε), as long as δ � ε−1/2. In fact, if the density is high enough to allow us to
consider the granular material as a fluid, as in equation (5) of [19], the temperature
profile should be given by the heat equation ∇2T + cεT = 0 with a suitable constant
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c and suitable boundary conditions on the piston (T = T0) and on the top of the
container (∇T = 0). This equation is solved by a linear combination of const e±

√
cεz,

which has gradients of order O(
√

ε), as long as δ � 1/
√

ε and the boundaries of Σ0

are further than O(1/
√

ε) from the top.

Now, if we choose δ = ε−β, with β < 1
2
, and we take ε small enough, then we have

θe � min{θd, θD} and δ � O(ε−1/2), as required by item (d).

Remark. The entropy creation rate due to heat transport into Σ0, in the presence of a
temperature gradient γ, is given by σ+ = O(γ2δ) = O(εδ), because the temperature
difference is O(γδ) and the energy flow through the surface is of order O(γ) (with
γ = O(

√
ε); see item (d)). The order of magnitude of σ+ is not larger than the average

amount σd of energy dissipated per unit time in Σ0 divided by the average kinetic energy
T (the latter quantity is of order O(θ−1

e εδ) because, at constant density, the number of
particles in Σ0 is O(δ)); however, the entropy creation due to the dissipative collisions in
Σ0 has fluctuations of order O(εδ1/2), because the number of particles in Σ0 fluctuates by
O(δ1/2). This is consistent with neglecting the entropy creation inside the region Σ0 due
to the inelasticity, in spite of it being of the same order of the entropy creation due to the
heat entering Σ0 from its upper and lower regions.

This argument supports the proposal that, in numerical simulations, it will be possible
to test our ideas by a suitable choice of the parameters. We expect that other choices
will be possible: for instance, in the high-density limit it is clear that θD  θe, because
the diffusion coefficient will become very small. To what extent this can be applied to
experiment remains an open question.

8. Remarks and conclusions

(1) The model can be given further structure by adding a non-conservative forcing acting
on the particles in the region Σ0: the same relations would follow (in particular the
fluctuation relation) if the forced equations of motion are still reversible; see [26]
for a (stochastic) example. The above will not hold in general if the forcing is not
reversible, e.g. if the inelasticity of the collisions inside Σ0 cannot be neglected; see
below.

(2) An explicit computation of the large deviation function of the dissipated power, in the
regime t  θd (i.e. when the dissipation is mainly due to inelastic collisions), appeared
recently in [27]. However, in the model, only the dissipation due to the collisions was
taken into account, so that it is not clear how the heat produced in the collisions is
removed from the system; see the discussion above. It turned out that, in this regime,
no negative values of p are observed, so that the FR cannot hold. This is interesting
and expected on the basis of the considerations above. It is not clear if, including the
additional thermostats required to remove heat from the particles and prevent them
to warm up indefinitely, the fluctuation relation is recovered. However, this problem
is different from the one discussed here, and we leave it for future investigation.

(3) There has also been some debate on the interpretation of the experimental results
of [16]. In [17], a simplified model, very similar to the one discussed above, was
proposed and shown to reproduce the experimental data of [16]. The prediction of
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the model is that the FR is not satisfied. Note, however, that the geometry considered
in [16, 17] is different from the geometry considered here: the whole box is vibrated,
so that the temperature profile is symmetric, and a region Σ0 in the centre of the
box is considered. Heat exchange is due to ‘hot’ particles entering Σ0 (Q+) and ‘cold’
particles exiting Σ0 (Q−). One has Q = Q+ + Q− �= 0, because of the dissipation in
Σ0, and

σ+ =
Q̇+

T+
+

Q̇−

T−
= 0 (17)

where T+ is the temperature outside Σ0 and T− is the temperature inside Σ0; see [17].
Thus the dissipation due to heat exchange between the region Σ0 and the regions
outside Σ0 vanishes, and the only dissipation is due to the inelasticity of the collisions.
In this regime, again, the FR is not expected to hold if the thermostat dissipating
the heat produced in the collisions is not included in the model; see above: it is
an interesting remark of [17] that partially motivated the present work. We believe
that different experiments can be designed in which the dissipation is mainly due
to heat exchanges and the inelasticity is negligible, as in the experiment that we
proposed above. The main difference between the experiment that we proposed and
the experiment in [16] is that the geometry of the box is such that Q1/T1+Q2/T2 > 0:
in this situation, the dissipation due to inelastic collisions should be negligible, as long
as t � θd.

(4) Even in situations in which the dissipation is entirely due to irreversible inelastic
collisions between particles, such as those considered in [17, 27], the chaotic hypothesis
is expected to hold, and the stationary state is to be described by a SRB distribution.
In these cases, the failure of the fluctuation relation is not in contradiction with the
chaotic hypothesis, due to the irreversibility of the equations of motion.

Conclusions

We showed that, in a paradigmatic class of mechanical models of thermostatted systems,
the phase-space contraction is an interesting quantity. In large systems in contact with
thermostats, it may consist of a sum of two quantities: the first with the interpretation of
entropy creation rate, and the second is extremely large but equal to a total derivative.

Its fluctuation properties, while asymptotically for large times determining (actually
being identical to) the fluctuation properties of the entropy creation rate (hence implying
the fluctuation relation), may require a very long time to be freed of finite time corrections.
But, at the same time, the study of the fluctuation properties of the physical quantity
defined by the entropy creation rate can be used to determine the large deviations of the
phase-space contraction. The latter, having the same large deviation rate, must obey the
fluctuation relation, which therefore becomes observable even if the system is in contact
with large (or even infinite) thermostats.

The analysis leads us to propose concrete experimental tests as well as tests based on
simulations in the context of granular materials. The models that are naturally introduced
for the description of granular material experiments are not in the same class of models,
for which a relation between the phase-space contraction and entropy production rate
was previously discussed. The previous analysis can be applied to granular materials only
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under suitable assumptions, verified on a specific timescale. A fluctuation relation for the
entropy production rate, measured on the same timescale, is predicted.
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