[^0]Name: \qquad

1. (a) (5 points) Let f be the function

$$
f(x)=\frac{(x-1)^{2}}{|x-1|}
$$

Can you define f for $x=1$ so that f is continuous at 1 . (Hint: check the right and left limit separatly.)

Solution: For $x>1$ we have

$$
f(x)=(x-1) \frac{x-1}{|x-1|}=x-1
$$

while for $x<1$

$$
f(x)=(x-1) \frac{x-1}{|x-1|}=-(x-1)
$$

so that

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)=0
$$

Thus setting $f(1)=0$ we have that $f(x)$ is continuous at 1 .
(b) (5 points) Let f be the function

$$
f(x)=\frac{x^{2}-1}{|x-1|} .
$$

Can you define f for $x=1$ so that f is continuous at 1 .
Solution: For $x>1$ we have

$$
f(x)=(x+1) \frac{x-1}{|x-1|}=x+1
$$

while for $x<1$

$$
f(x)=(x+1) \frac{x-1}{|x-1|}=-(x+1)
$$

so that

$$
\lim _{x \rightarrow 1^{+}} f(x)=2 \quad \lim _{x \rightarrow 1^{-}} f(x)=-2
$$

Thus $f(x)$ has a jump discontinuity at 1 . There is no way to define f for $x=1$ so that f is continuous at 1 .

[^0]: No books or notes allowed. No laptop, graphic calculator or wireless devices allowed. Write clearly.

