allowed. Write clearly.

Name:

1. (10 points) Given $f(x)=x(1-x)$ let $A$ be the finite region of the plane contained between $-f(x)$ and $f(x)$. That is $A$ is defined by;

$$
0 \leq x \leq 1 \quad-x(1-x) \leq y \leq x(1-x)
$$

Find the area of $A$ and the volume of the solid $S$ obtained by rotating $A$ around the $y$ axis (use the symmetries of $A$ to simplify the computations).

## Solution:

The area of $A$ is given by

$$
\operatorname{Area}(A)=2 \int_{0}^{1} x(1-x) d x=2\left(\left.\frac{x^{2}}{2}\right|_{0} ^{1}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}\right)=\frac{1}{3}
$$

Observe that $A$ is symmetric with respect to the $x$ axis and the vertical line $x=1 / 2$ so that the centroid of $A$ is $\bar{x}-1 / 2$ and $\bar{y}=0$. Form Pappus theorem it follows that

$$
\operatorname{Vol}(S)=2 \pi \bar{x} \operatorname{Area}(A)=\frac{\pi}{3}
$$

Without using Pappus Theorem, the volume can be computed with the shells method and is given by

$$
\operatorname{Vol}(S)=4 \pi \int_{0}^{1} x^{2}(1-x) d x=4 \pi\left(\left.\frac{x^{3}}{3}\right|_{0} ^{1}-\left.\frac{x^{4}}{4}\right|_{0} ^{1}\right)=\frac{\pi}{3}
$$

