Teaching Assistant
Hour Test 1
Math 1501 C3-C6 Andrew
Instructions: 1. Closed book.
2. Show your work and explain your answers and reasoning.
3. Calculators may be used, but pay particular attention to instruction 2.

To receive credit, you must show your work. Unexplained answers, and answers not supported by the work you show, will not receive credit.
4. Express your answers in simplified form.

1. (25) a. Let $f(x)=\left\{\begin{array}{cc}x^{2} \sin (1 / x) & x \neq 0 \\ 0 & x=0\end{array}\right\}$. Use the definition of derivative to compute $f^{\prime}(0)$.
b. Evaluate
i. $\lim _{x \rightarrow 3} \frac{x^{2}+x-12}{x^{2}-x-6}$
ii. $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{2 x}$
2. (25) Calculate
a. $f^{\prime}(x)$ for $f(x)=\frac{x}{x^{4}+9}$
b. $\frac{d g}{d x}$ for $g(x)=\sin ^{3}\left(x^{2}+1\right)$
c. $\frac{d x}{d t}$ for $x(t)=t^{2} \sqrt{4-t^{2}}$
d. $\frac{d y}{d x}$ at the point $(2,-5)$ if $4 x^{2}+2 x y+5 y^{2}=121$.
3. (25) a. Find the equation of the line L that is tangent to the graph of $f(x)=\frac{x^{2}}{4}$ at the point P for which $x=4$.
b. Sketch the graph of $f(x)=\frac{x^{2}}{4}$ and the line L on the axes below. Label the point Q, where the tangent line L intersects the y -axis and the point $F(0,1)$.
c. Show that the distance from the point $F(0,1)$ to P equals the distance from F to Q.
d. Does the conclusion of part c remain true if P is replaced by the point where $x=a$, $a>0$ and Q is the y-intercept of the tangent line at the relocated P ?
4. (25) A trough has cross-section as shown below, and is 10 feet long. It is being filled with water at the rate of 5 cubic feet per minute. At what rate is the depth of water changing when
a. The depth of water in the trough is 1 foot?
b. The depth of water in the trough is 3 feet?

Answers.

1. a. $f^{\prime}(0)=0$.
b. $7 / 5$
c. $3 / 2$
2. a. $f^{\prime}(x)=\frac{-3 x^{3}+9}{\left(x^{4}+9\right)^{2}}$
b. $\frac{d g}{d x}=6 x \sin ^{2}\left(x^{2}+1\right) \cos \left(x^{2}+1\right)$
c. $\frac{d x}{d t}=2 t\left(4-t^{2}\right)^{1 / 2}-t^{3}\left(4-t^{2}\right)^{-1 / 2}$
d. $3 / 23$
3. a. $y=2 x-4$
c. Both distances are 5 .
d. Yes. Both distances are $1+\frac{a^{2}}{4}$. See if you can use this to explain the reflection property of a parabolic mirror. If a light source is at the focus, all reflected rays are parallel to the axis.
4. a. $1 / 8$
b. $1 / 12$
