No books or notes allowed. No laptop, graphic calculator or wireless devices allowed. Write clearly.

Name: \qquad

Question:	1	2	3	4	5	6	7	8	Total
Points:	5	7	17	10	17	10	10	24	100
Score:									

1. (5 points) Find the domain of the following function:

$$
f(x)=\frac{1}{\sqrt{2 x+1}}
$$

Solution: We need $x \geq-1 / 2$ for $\sqrt{2 x+1}$ to exist. But $x \neq-1 / 2$ if not we havce a division by 0 . So that we have:

$$
\begin{equation*}
D(f)=\left(-\frac{1}{2}, \infty\right) \tag{1}
\end{equation*}
$$

2. (7 points) Let $f(x)$ be defined by:

$$
f(x)= \begin{cases}x^{2}-1 & \text { for } x<3 \\ 2 a x & \text { for } x \geq 3\end{cases}
$$

Find the values of a for which f is continuous.

Solution: The function is clearly continuous for every $x \neq 3$. At $x=3$ we have

$$
\begin{align*}
\lim _{x \rightarrow 3^{-}} f(x) & =\lim _{x \rightarrow 3^{-}}\left(x^{2}-1\right)=8 \tag{2}\\
\lim _{x \rightarrow 3^{+}} f(x) & =\lim _{x \rightarrow 3^{+}}(2 a x)=6 a \tag{3}
\end{align*}
$$

so that we need $6 a=8$ or

$$
\begin{equation*}
a=\frac{4}{3} \tag{4}
\end{equation*}
$$

3. Compute the indicated limits.
(a) (7 points)

$$
\lim _{x \rightarrow 3} \frac{x^{2}+x-12}{x-3}
$$

Solution: Since $x^{2}+x-12=(x-3)(x+4)$ we have

$$
\begin{equation*}
\lim _{x \rightarrow 3} \frac{x^{2}+x-12}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+4)}{x-3}=\lim _{x \rightarrow 3} x+4=7 \tag{5}
\end{equation*}
$$

(b) (10 points)

$$
\lim _{x \rightarrow 0} \frac{\cos ^{2}(x)-1}{x^{2}}
$$

Solution: Since $\cos ^{2}(x)-1=-\sin ^{2}(x)$ we have

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\cos ^{2}(x)-1}{x^{2}}=-\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x^{2}}=-\left(\lim _{x \rightarrow 0} \frac{\sin (x)}{x}\right)^{2}=-1 \tag{6}
\end{equation*}
$$

4. (10 points) Is there a root of the equation

$$
2 x^{3}+x^{2}+2=0
$$

in the interval $[-2,-1]$?

Solution: Let $f(x)=2 x^{3}+x^{2}+2$. We have

$$
\begin{equation*}
f(-2)=-10 \quad f(-1)=1 \tag{7}
\end{equation*}
$$

Since $-10<0<1$ from the Intermediate Value Theorem we know that there is a c in $[-2,-1]$ such that $f(c)=0 . c$ is a root of the equation.
5. Compute the following derivatives.
(a) (7 points)

$$
f(x)=\tan (x)
$$

Solution:

$$
\begin{equation*}
f^{\prime}(x)=\left(\frac{\sin (x)}{\cos (x)}\right)^{\prime}=\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)}=\frac{1}{\cos ^{2}(x)}=\sec ^{2} x \tag{8}
\end{equation*}
$$

(b) (10 points)

$$
f(x)=\left(x^{2}+3\right) \sqrt{1-x^{3}}
$$

Solution:

$$
\begin{equation*}
f^{\prime}(x)=2 x \sqrt{1-x^{3}}+\left(x^{2}+3\right) \frac{-3 x^{2}}{2 \sqrt{1-x^{3}}} \tag{9}
\end{equation*}
$$

6. (10 points) Compute the derivative of the following function using the definition.

$$
f(x)=\frac{2}{x+1}
$$

Solution:

$$
\begin{align*}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{2}{x+h+1}-\frac{2}{x+1}\right)=\lim _{h \rightarrow 0} \frac{1}{h} \frac{-2 h}{(x+1)(x+h+1)}= \tag{10}\\
& =\lim _{h \rightarrow 0} \frac{-2}{(x+1)(x+h+1)}=\frac{-2}{(x+1)^{2}} \tag{11}
\end{align*}
$$

7. (10 points) Use implicit differentiation to find the tangent line to $\cos (x) \sin (y)=\frac{1}{4}$ at $\left(\frac{\pi}{3}, \frac{\pi}{6}\right)$.

Solution: we have:

$$
\begin{equation*}
-\sin (x) \sin (y)+\cos (x) \cos (y) \frac{d y}{d x}=0 \tag{12}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{d y}{d x}=\tan (x) \tan (y) \tag{13}
\end{equation*}
$$

so that the slope m of the tangent line at $\left(\frac{\pi}{3}, \frac{\pi}{6}\right)$ is 1 . The equation of the tangent is thus:

$$
\begin{equation*}
y=\frac{\pi}{6}+\left(x-\frac{\pi}{3}\right)=x-\frac{\pi}{6} \tag{14}
\end{equation*}
$$

8. A bullet is shot straight up with an initial velocity of $160 \mathrm{ft} / \mathrm{s}$. It reaches the height of

$$
h(t)=160 t-16 t^{2}
$$

feet after t second.
(a) (7 points) What is the velocity of the bullet when its height is 400 ft ? Remember that the velocity is the rate of change of the position.

Solution: $h(t)=400$ implies that $t=5$. The velocity is

$$
\begin{equation*}
v(t)=h^{\prime}(t)=160-32 t \tag{15}
\end{equation*}
$$

At $t=5$ we have:

$$
\begin{equation*}
h^{\prime}(5)=0 \tag{16}
\end{equation*}
$$

(b) (7 points) What is the acceleration of the bullet at any time t ? Remember that the acceleration is the rate of change of the velocity.

Solution: The accelaration $a(t)=v^{\prime}(t)=-32$ for every t.
(c) (10 points) How high does the bullet go?

Solution:

The trajectory is an inverted parabola so that the maximum is at $t=\frac{160}{2 \cdot 16}=5$. The maximum height is 400 ft .

