No books or notes allowed. No laptop, graphic calculator or wireless devices allowed. Write clearly. Show your work and justify your answers

Name:

| Question: | 1 | 2 | 3 | 4 | 5 | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 20 | 11 | 12 | 42 | 15 | 100 |
| Score: |  |  |  |  |  |  |

1. Evaluate each of the following statements as true or false. Justify your answer by either giving a brief explanation or providing a counterexample as appropriate.
(a) (10 points) There exists a differentiable function $f$ such that $f(0)=-1, f(2)=4$ and $f^{\prime}(x)<2$ for all $x$.

Solution: False. If $f(0)=-1$ and $f(2)=4$ by the Mean Value Theorem there exists a $c$ in $[0,2]$ such that

$$
\begin{equation*}
f^{\prime}(c)=\frac{f(2)-f(0)}{2}=\frac{5}{2}>2 . \tag{1}
\end{equation*}
$$

This contradict the assumption that $f^{\prime}(x)<2$ for all $x$.
(b) (10 points) If $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=0$, then $f$ has neither a local maximum nor a local minimum at $x=0$.

## Solution:

False. Let $f(x)=x^{4}$. Then $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=0$ but $x=0$ is a local minimum.
2. (11 points) Use differentials to approximate the following number:

$$
\begin{equation*}
\sqrt{3.98} \tag{2}
\end{equation*}
$$

Show your work. No credit will be given for writing only the result.

Solution: Let $f(x)=\sqrt{4-x}$. We have $f(0)=2$ and $f^{\prime}(0)=-1 / 4$. Thus

$$
\begin{equation*}
\sqrt{4.98}=f(0.2) \simeq f(0)+0.02 \cdot f^{\prime}(0)=2-\frac{0.02}{4}=1.995 . \tag{3}
\end{equation*}
$$

3. (12 points) Compute the following limit

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}+1}{4 n^{2}+5}
$$

## Solution:

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}+1}{4 n^{2}+5}=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{4 n^{2}} \lim _{n \rightarrow \infty} \frac{1+\frac{1}{2 n^{2}}}{1+\frac{5}{4 n^{2}}}=\frac{1}{2}
$$

4. Let $f$ be the function:

$$
\begin{equation*}
f(x)=\frac{3 x^{2}+2}{x^{2}-9} \tag{4}
\end{equation*}
$$

(a) (12 points) Find the domain, intercepts and asymptotes of $f$.

Solution: Domain: $D(f)=(-\infty,-3) \cup(-3,3) \cup(3, \infty)$
Intercepts: $f(0)=-\frac{2}{9}, f(x)$ is never equal to 0 .
We have:

$$
\begin{align*}
\lim _{x \rightarrow-3^{-}} f(x)=+\infty & \lim _{x \rightarrow 3^{+}} f(x)=-\infty \\
\lim _{x \rightarrow 3^{-}} f(x)=-\infty & \lim _{x \rightarrow 3^{+}} f(x)=\infty  \tag{5}\\
\lim _{x \rightarrow-\infty} f(x)=3 & \lim _{x \rightarrow+\infty} f(x)=3
\end{align*}
$$

So that $x=-3$ and $x=3$ are vertical asymptotes while $y=3$ is an horizontal asymptote.
(b) (12 points) Find critical values, local maxima and minima of $f$ and where $f$ is increasing and decreasing.

## Solution:

$$
\begin{equation*}
f^{\prime}(x)=\frac{6 x\left(x^{2}-9\right)-2 x\left(3 x^{2}+2\right)}{\left(x^{2}-9\right)^{2}}=-\frac{58 x}{\left(x^{2}-9\right)^{2}} \tag{6}
\end{equation*}
$$

Since $\left(x^{2}-9\right)^{2}>0$ for every $x$ in $D(f)$, we have $f^{\prime}(x)>0$ for $x<0$ and $f^{\prime}(x)<0$ for $x>0$.
Thus $x=0, x=-3$ and $x=3$ are the critical values, $x=0$ is a local maximum and there is no local minimum.
Finally $f$ is increasing on $(-\infty,-3)$ and on $(-3,0]$ while $f$ is decreasing on $[0,3)$ and on $(3, \infty)$.
(c) (8 points) Find where $f$ is concave up and concave down and its inflection points.

## Solution:

$$
\begin{equation*}
f^{\prime \prime}(x)=\frac{-58\left(x^{2}-9\right)^{2}+232 x^{2}\left(x^{2}-9\right)}{\left(x^{2}-9\right)^{4}}=\frac{174\left(x^{2}+3\right)}{\left(x^{2}-9\right)^{3}} \tag{7}
\end{equation*}
$$

Since $174\left(x^{2}+3\right)>0$ for every $x$, we have $f^{\prime \prime}(x)<0$ iff $x^{2}-9<0$ or $-3<x<3$ and $f^{\prime \prime}(x)>0$ for $x<-3$ or $x>3$. Thus there is no inflexion point and $f$ is concave up on $(-\infty,-3)$ and $(3, \infty)$ while $f$ is concave down on $(-3,3)$.
(d) (10 points) Sketch the graph of $f$.

## Solution:

5. (15 points) A man launches his boat from point A on a bank of a straight river, 6 miles wide, and wants to reach point $B, 20$ miles downstream on the opposite bank, as quickly as possible. He could row his boat directly across the river to point $C$ and then run to $B$, or he could row directly to $B$, or he could row to some point $D$ between $C$ and $B$ and then run to $B$. If he can row 4 miles for hour and run 5 miles for hour, where should he land to reach B as soon as possible? (Assume the speed of the water is negligible compared with the speed at which the man rows.)


Solution: Let $x$ be the distance between $C$ and $D$ in miles. Then the distance the man has to row in the water is $d_{w}=\sqrt{9+x^{2}}$ while the distance he has to run on land is $d_{l}=10-x$. Considering the two velocities, we have that the total time in hours he needs to go form $A$ to $B$ passing through $D$ is

$$
\begin{equation*}
T(x)=\frac{d_{l}}{5}+\frac{d_{w}}{4}=\frac{10-x}{5}+\frac{\sqrt{9+x^{2}}}{4} \tag{8}
\end{equation*}
$$

We thus have

$$
\begin{equation*}
T^{\prime}(x)=-\frac{1}{5}+\frac{x}{4 \sqrt{9+x^{2}}} \tag{9}
\end{equation*}
$$

where $0 \leq x \leq 10$. It is easy to see that $T(x)=0$ only for $x=4$. Thus $x=4$ is the only critical point in the interesting domain, with $T(4)=\frac{49}{20}$.
At the boundary we have $T(0)=\frac{11}{4}>\frac{49}{20}$ and $T(10)=\frac{\sqrt{109}}{4}>\frac{49}{20}$. So we can conclude, since $x=4$ is the only critical point, that the optimal position for $D$ is at a distance of 4 miles from $C$.

