No books or notes allowed. No laptop, graphic calculator or wireless devices allowed. Write clearly. Show your work and justify your answers. Remember to add your name to every page.

Name:

Question:	1	2	3	4	Total
Points:	26	25	24	25	100
Score:					

1. Evaluate the following definite integrals.
(a) (13 points)

$$
\int_{0}^{1} \frac{(x+2)^{2}-4}{x} d x
$$

Solution:

$$
\int_{0}^{1} \frac{(x+2)^{2}-4}{x} d x=\int_{0}^{1} \frac{x^{2}+4 x}{x} d x=\int_{0}^{1}(x+4) d x=\frac{1}{2}+4
$$

(b) (13 points)

$$
\int_{0}^{1}(x+1)^{2} \sqrt{3+(x+1)^{3}} d x
$$

Solution: Calling $u=3+(x+1)^{3}$ we get $d u=3(x+1)^{2} d x$. Thus

$$
\int_{0}^{1}(x+1)^{2} \sqrt{3+(x+1)^{3}} d x=\frac{1}{3} \int_{4}^{11} \sqrt{u} d u=\left.\frac{2}{9} u^{\frac{3}{2}}\right|_{4} ^{11}=\frac{2}{9}(11 \sqrt{11}-8)
$$

2. Evaluate the following indefinite integrals.
(a) (13 points)

$$
\int \sin (x) \cos (x)\left(\cos ^{2}(x)-\sin ^{2}(x)\right) d x
$$

Solution:

$$
\int \sin (x) \cos (x)\left(\cos ^{2}(x)-\sin ^{2}(x)\right) d x=\frac{1}{2} \int \sin (2 x) \cos (2 x) d x=\frac{1}{8} \sin ^{2}(2 x)+C
$$

Alternatively call $u=\sin (x) \cos (x)$ so that $d u=\left(\cos ^{2}(x)-\sin ^{2}(x)\right) d x$ and

$$
\int \sin (x) \cos (x)\left(\cos ^{2}(x)-\sin ^{2}(x)\right) d x=\int u d u=\frac{1}{2}(\sin (x) \cos (x))^{2}+C
$$

Observe that

$$
(\sin (x) \cos (x))^{2}=\frac{1}{4} \sin ^{2}(2 x)=\frac{1}{4}-\frac{1}{4} \cos ^{2}(2 x)=\frac{1}{4}-\frac{1}{4}\left(\cos ^{2}(x)-\sin ^{2}(x)\right)^{2}
$$

Since the term $1 / 4$ can be included in the constant C this gives several different ways to write the result.
(b) (12 points)

$$
\int \sin (x) \cos (x) d x
$$

Solution: Call $u=\sin (x)$ so that $d u=\cos (x) d x$ and

$$
\int \sin (x) \cos (x) d x=\int u d u=\frac{1}{2} \sin ^{2}(x)+C
$$

Equivalently call $u=\cos (x)$ so that $d u=-\sin (x) d x$ and

$$
\int \sin (x) \cos (x) d x=-\int u d u=-\frac{1}{2} \cos ^{2}(x)+C
$$

\qquad
3. Let $F(x)$ be the function defined by:

$$
F(x)=\int_{\frac{\pi}{2}}^{x} \frac{\sin (t)}{t} d t
$$

for $x>0$.
(a) (12 points) Find where F is increasing/decreasing.

Solution: We need to find where $F^{\prime}(x) \leq 0$ or ≥ 0. We have that

$$
\begin{equation*}
F^{\prime}(x)=\frac{\sin (x)}{x} \tag{1}
\end{equation*}
$$

Since $1 / x>0$ if $x>0$ we have that $F^{\prime}(x) \leq 0$ if $x \in[\pi, 2 \pi] \cup[3 \pi, 4 \pi] \cup[5 \pi, 6 \pi] \cup$ \ldots and $F^{\prime}(x) \geq 0$ if $x \in(0, \pi] \cup[2 \pi, 3 \pi] \cup[4 \pi, 5 \pi] \cup \ldots$ since $F(x)$ is defined for $x>0$.
Thus we have

$$
\begin{array}{lll}
F(x) & \text { decreases on } & {[\pi, 2 \pi],[3 \pi, 4 \pi],[5 \pi, 6 \pi], \ldots} \\
F(x) & \text { increases on } & (0, \pi],[2 \pi, 3 \pi],[4 \pi, 5 \pi], \ldots
\end{array}
$$

(b) (12 points) Is it possible that $F(\pi)>1$?

Solution: No, it is not possible. Indeed se have that, for $\pi / 2 \leq t \leq \pi$:

$$
0 \leq \frac{\sin (t)}{t} \leq \frac{1}{t} \leq \frac{2}{\pi}
$$

so that

$$
F(\pi)=\int_{\frac{\pi}{2}}^{\pi} \frac{\sin (t)}{t} d t \leq\left(\pi-\frac{\pi}{2}\right) \max _{t \in\left[\frac{\pi}{2}, \pi\right]} \frac{\sin (t)}{t} \leq \frac{\pi}{2} \frac{2}{\pi}=1
$$

Thus we have $F(\pi) \leq 1$.
\qquad
4. Let A be the region of the plane bounded by the curves

$$
f(x)=(x-2)^{2}-1
$$

and

$$
g(x)=-f(x)=-(x-2)^{2}+1
$$

for $1 \leq x \leq 3$.
(a) (12 points) Compute the area of A.

Solution: The area of A is given by:

$$
\begin{aligned}
\operatorname{Area}(A) & =2 \int_{1}^{3}\left[-(x-2)^{2}+1\right] d x=2 \int_{1}^{3}\left(-x^{2}+4 x-3\right) d x= \\
& =2\left(-\left.\frac{x^{3}}{3}\right|_{1} ^{3}+\left.4 \frac{x^{2}}{2}\right|_{1} ^{3}-\left.3 x\right|_{1} ^{3}\right)=\frac{8}{3}
\end{aligned}
$$

(b) (13 points) Let S be the solid obtained by rotating A around the y axis. Compute the volume of S. You may use any of the methods you studied.

Solution: The easiest way is to use Pappus theorem. The centroid of A is at $\bar{x}=2$ and $\bar{y}=0$ since A is symmetric with respect to the lines $y=0$ and $x=2$. Thus the volume is

$$
\operatorname{Vol}(R)=2 \pi \bar{x} \operatorname{Area}(A)=\frac{32 \pi}{3}
$$

Alternatively you can use the shells method and get

$$
\begin{aligned}
\operatorname{Vol}(R) & =4 \pi \int_{1}^{3} x\left[-(x-2)^{2}+1\right] d x=2 \int_{1}^{3}\left(-x^{3}+4 x^{2}-3 x\right) d x= \\
& =4 \pi\left(-\left.\frac{x^{4}}{4}\right|_{1} ^{3}+\left.4 \frac{x^{3}}{3}\right|_{1} ^{3}-\left.3 \frac{x^{2}}{2}\right|_{1} ^{3}\right)=4 \pi \frac{8}{3}=\frac{32 \pi}{3}
\end{aligned}
$$

\qquad

