MATH 2401, PRACTICE TEST 1

Let Q be the square $-\pi \leq x \leq \pi,-\pi \leq y \leq \pi$,

$$
f(x, y)=\cos x+\cos y
$$

and $\mathbf{r}(t)=\pi t \mathbf{i}+\pi t^{2} \mathbf{j}$.

1) Is Q an open or a closed set? Is it connected? Is it bounded?
2) Compute the differential of $f(x, y)$
3) Compute the differential of $f(x, y)$ along the direction of $\mathbf{r}(t)$.
4) Find the absolute maximum and the absolute minimum of $f(x, y)$ on Q.
5) Find the tangent plane to the surface $z=f(x, y)$ in the points $(0,0)$ and $(1,-1)$.
6) Let $\mathbf{a}=\mathbf{i}+\mathbf{j}$ and $\mathbf{b}=\mathbf{i}-\mathbf{j}$. Find a point \mathbf{c} such that $\nabla f(\mathbf{c}) \cdot(\mathbf{b}-\mathbf{a})=f(\mathbf{b})-f(\mathbf{a})$.
7) Find the absolute maximum and the absolute minimum of $f(x, y)$ on the portion of $\mathbf{r}(t)$ contained in Q.
8) Find the absolute maximum and the absolute minimum of $g(x, y)=(\cos x+\cos y)^{2}$ on Q.
