MATH 2401, PRACTICE TEST 3

- 1) Let Q be the triangle delimited by the lines x = y, x = -y and x = 1. The triangle Q is occupied by a laminar object L with density $f(x, y) = ye^{-x}$. Compute the total mass M of the object L and its center of mass (x_M, y_M) .
- 2) Compute the integral of the function

$$f(x,y) = \operatorname{atan}\left(\frac{y}{x}\right)(x^2 + y^2)$$

on the domain Q_1 given by the points (x, y) such that $-y \le x \le y$ and $x^2 + y^2 \le 1$.

- 3) Let f(x, y, z) be a continuous function and Q_2 the domain the domain bounded by the surfaces z = 0, z = y and $x^2 = 1 y$.
 - a) Express

$$\int \int \int_{V} f(x, y, z) dx dy dz$$

as an iterated integral. How many different way you have to do it? b) Let

$$f(x, y, z) = z^3 \frac{1}{\sqrt{1+x^2}}$$

Can you reduce the above iterated integral to an integral on one variable?

- 4) Let Q_3 be an object delimited by the surfaces z = y, z = -y, z = 1, x = 1 and x = -1 and with a density $f(x, y, z) = x^2 y e^{-z}$. Compute the total mass M of Q_3 and its center of mass (x_M, y_M, z_M) .
- 5) Let Q_4 the region bounded by the surfaces $z = x^2 + y^2$ and z = 1. Compute the integral of

$$f_1(x, y, z) = (x^2 + y^2)e^{-z}$$

$$f_2(x, y, z) = x(x^2 + y^2)e^{-z}$$

$$f_3(x, y, z) = z(x^2 + y^2)e^{-z}$$

on Q_4 .(Hint: use cylindrical coordinates)