MATH 2401, PRACTICE TEST 1

Let Q be the square $-\pi \leq x \leq \pi,-\pi \leq y \leq \pi$,

$$
f(x, y)=\cos x+\cos y
$$

and $\mathbf{r}(t)=\pi t \mathbf{i}+\pi t^{2} \mathbf{j}$.

1) Is Q an open or a closed set? Is it connected? Is it bounded?
Q is closed, bounded and connected.
2) Compute the differential of $f(x, y)$

$$
\nabla f(x, y)=-\sin x \mathbf{i}-\sin y \mathbf{j}
$$

3) Compute the differential of $f(x, y)$ along the direction of $\mathbf{r}(t)$.
$\mathbf{r}^{\prime}(t)=\pi \mathbf{i}+2 \pi t \mathbf{j}$ so that

$$
T(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{\mathbf{i}+2 t \mathbf{j}}{\sqrt{1+4 t^{2}}}
$$

and

$$
\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=-\frac{\sin \pi t+2 t \sin \pi t^{2}}{\sqrt{1+4 t^{2}}}
$$

4) Find the absolute maximum and the absolute minimum of $f(x, y)$ on Q.
$\nabla f(x, y)=0$ on Q on the 5 points $(0,0)$ and $(\pm \pi, \pm \pi)$.
We have to check on the boundary. $f(x, \pi)$ has a maximim for $x=0$ and a minimum for $x= \pm \pi$. The same is true for $f(x,-\pi)$ while $f(\pm \pi, y)$ has a maximum for $y=0$ and a minimum for $y= \pm \pi$. It follows that $(\pm \pi, \pm \pi)$ are absolute minima where $f(\pm \pi, \pm \pi)=-2$. Moreover $f(0, \pm \pi)=f(\pm \pi, 0)=1$ while $f(0,0)=2$ so that $(0,0)$ is an absolute maxi, um with $f(0,0)=2$.

6) Find the tangent plane to the surface $z=f(x, y)$ in the points $(0,0)$ and $(1,-1)$.
The tangent plane is given by:

$$
z-f\left(x_{0}, y_{0}\right)=\frac{\partial}{\partial x} f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial}{\partial y} f\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

so that the tangent plane at $(0,0)$ is

$$
z=2
$$

and at $(1,-1)$ is

$$
z=\sin 1(y-x+2)+2 \cos 1
$$

7) Let $\mathbf{a}=\mathbf{i}+\mathbf{j}$ and $\mathbf{b}=\mathbf{i}-\mathbf{j}$. Find a point \mathbf{c} such that $\nabla f(\mathbf{c}) \cdot(\mathbf{b}-\mathbf{a})=f(\mathbf{b})-f(\mathbf{a})$. Note that $f(\mathbf{b})-f(\mathbf{a})=0$ and $\mathbf{b}-\mathbf{a}=-2 \mathbf{j}$ so that we looking for a point of the form $\mathbf{i}-(1-2 t) \mathbf{j}$ such that $\frac{\partial}{\partial y} f(x, y)=-\sin y=0$. We must have $y=0$ so that $\mathbf{c}=\mathbf{i}$.
8) Find the absolute maximum and the absolute minimum of $f(x, y)$ on the portion of $\mathbf{r}(t)$ contained in Q.
Observe that $\mathbf{r}(0)=(0,0)$ and $\mathbf{r}(\pm 1)=(\pm \pi, \pi)$ so that the absolute maximum is for $t=0$ in $(0,0)$ with $f(0,0)=2$ and the absolute minimum is for $t= \pm 1$ in $(\pm \pi, \pi)$ with $f(\pm \pi, \pi)=-2$.
9) Find the absolute maximum and the absolute minimum of $g(x, y)=(\cos x+\cos y)^{2}$ on Q.
$g(x, y)$ is the square of $f(x, y)$ so it is always positive and it is 0 for $\cos x=-\cos y$, i.e. $x=y+\pi$. The maximum of $g(x, y)$ is the square of the absolute maximum or of the absolute minimum of $f(x, y)$, whichever is larger. So that the absolute minimum is 0 for $x-y=\pi$ and the absolute maximum is 4 for $(0,0)$ and $(\pm \pi, \pm \pi)$.
