No books or notes allowed. No laptop or wireless devices allowed. Write clearly.

Name:

Question:	1	2	3	4	5	Total
Points:	35	15	15	20	15	100
Score:						

Question 1 ... 35 point
In a urn there are 1000 red balls and 1000 blue balls. You extract a ball at random and then flip a fair coin. If the result is Head you reinsert the ball you extracted. If the result is Tail you keep the ball. You repeat this procedure 20 times. Call N the r.v. that describes the total number of balls you have kept at the end of the 20 extractions and R the number of red balls among them.
(a) (10 points) Give the p.m.f. $f_{N}(n)$ of N and the conditional p.m.f. of R given $N=n$, that is $f_{R \mid N}(r \mid n)$

Solution: Clearly N is a binomial r.v. with $p=0.5$ and 20 repetitions thus

$$
f_{N}(n)=\binom{20}{n} 2^{-20}
$$

On the other hand, if n is given, R is hypergeometric so that

$$
f_{R \mid N}(r \mid n)=\frac{\binom{1000}{r}\binom{1000}{n-r}}{\binom{2000}{n}}
$$

(b) (10 points) Write the j.p.m.f. of N and R and find an expression for the marginal $f_{R}(r)$ of R.

Solution: The j.p.m.f is easily found by mutiplying the results of point a):

$$
f(n, r)=f_{N}(n) f_{R \mid N}(r \mid n)=2^{-20} \frac{\binom{1000}{r}\binom{1000}{n-r}\binom{20}{n}}{\binom{2000}{n}}
$$

while

$$
f_{R}(r)=2^{-20}\binom{1000}{r} \sum_{n>r} \frac{\binom{20}{n}\binom{1000}{n-r}}{\binom{2000}{n}}
$$

(c) (15 points) Using that $20 \ll 2000$ write an approximate marginal p.m.f for R and use it to compute $P(R=5)$.(Hint: R can be seen as a binomial distribution ...)

Solution: Since $20 \ll 2000$ we can assume that every extraction from the urn gives a blue ball with probability 0.5 and a red ball with probability 0.5 . Thus the result of an extraction followed by the coin flip is a red ball with probability 0.25 and a blue ball or no ball with probability 0.75 . We get that R is binomial with $p=0.25$ and 20 repetiotions, that is:

$$
P(R=r) \simeq\binom{20}{r} 0.25^{r} 0.75^{20-r}
$$

and

$$
P(R=5) \simeq\binom{20}{5} 0.25^{5} 0.75^{15}=0.202
$$

Let X_{1} and X_{2} be two independent r.v. with uniform distribution in $(0,1)$. Let $Y=$ $\max \left(X_{1}, X_{2}\right)$. Find the p.d.f. of Y. (Hint: find $P(Y<y)$ for any given y.)

Solution: We have

$$
\begin{aligned}
F_{Y}(y) & =P(Y<y)=P\left(\max \left(X_{1}, X_{2}\right)<y\right)=P\left(X_{1}<y \& X_{2}<y\right)= \\
& =P\left(X_{1}<y\right) P\left(X_{2}<y\right)
\end{aligned}
$$

Clearly

$$
P\left(X_{1}<y\right)=P\left(X_{2}<y\right)= \begin{cases}0 & y<0 \\ y & 0<y<1 \\ 1 & y>1\end{cases}
$$

so that

$$
F_{Y}(y)= \begin{cases}0 & y<0 \\ y^{2} & 0<y<1 \\ 1 & y>1\end{cases}
$$

Finally

$$
f_{Y}(y)= \begin{cases}0 & y<0 \\ 2 y & 0<y<1 \\ 0 & y>1\end{cases}
$$

Question 3
15 point
The following are six measurement of the waiting time between two successive nuclear decays in a Uranium sample:

$$
\begin{array}{llllll}
2.379130 & 0.058303 & 0.587565 & 1.357028 & 1.263141 & 3.119415
\end{array}
$$

You assume that these observations are independent and have a exponential distribution with parameter $\lambda=1.8$. Build a $\mathrm{q}-\mathrm{q}$ plot for these data. Remember you have first to compute the $100 * i / 7, i=1, \ldots, 6$, percentiles of the exponential distribution.

Solution: The c.d.f. of and exponential with parameter 1.8 is

$$
F(x)=1-e^{-1.8 * x}
$$

We need the q_{i} such that

$$
F\left(q_{i}\right)=i / 7 \quad \Rightarrow \quad q_{i}=\frac{1}{1.8} \ln \left(\frac{7}{7-i}\right)
$$

for $i=1,2,3,4,5,6$. We get for the

i	1	2	3	4	5	6
q_{i}	0.085639	0.186929	0.310898	0.470721	0.695979	1.081061

Calling y_{i} the order statistics we get

i	1	2	3	4	5	6
q_{i}	0.085639	0.186929	0.310898	0.470721	0.695979	1.081061
y_{i}	0.058303	0.587565	1.263141	1.357028	2.379130	3.119415

In Particular the assumption that $\lambda=1.8$ is not verified. It looks more plausible that $\lambda \simeq 2$.

Let X_{1} and X_{2} be two independent r.v. with uniform distribution in $(-1,1)$. Let

$$
\begin{aligned}
& Y_{1}=X_{1}+X_{2} \\
& Y_{2}=X_{1}-X_{2}
\end{aligned}
$$

(a) (10 points) Compute $E\left(Y_{1}\right), E\left(Y_{2}\right), V\left(Y_{1}\right), V\left(Y_{2}\right)$ and $\operatorname{corr}\left(Y_{1}, Y_{2}\right)$.

Solution: We clearly have that

$$
E\left(X_{1}\right)=E\left(X_{2}\right)=0 \quad V\left(X_{1}\right)=V\left(X_{2}\right)=\frac{1}{3}
$$

It follows that

$$
\begin{gathered}
E\left(Y_{1}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=0, \\
V\left(Y_{1}\right)=V\left(X_{1}\right)+V\left(X_{2}\right)=\frac{2}{3},
\end{gathered} \quad V\left(Y_{2}\right)=V\left(X_{1}\right)+V\left(X_{2}\right)=0, ~=\frac{2}{3} .
$$

Finally

$$
E\left(Y_{1} Y_{2}\right)=E\left(\left(X_{1}+X_{2}\right)\left(X_{1}-X_{2}\right)\right)=E\left(X_{1}^{2}\right)-E\left(X_{2}^{2}\right)=0
$$

so that

$$
\operatorname{corr}\left(Y_{1}, Y_{2}\right)=0
$$

(b) (10 points) Are Y_{1} and Y_{2} independent? Why?

Solution: No. Indeed if Y_{1} is close to 2 it means that both X_{1} and X_{2} are close to 1 so that you know that Y_{2} has to be close to 0 .

(a) (15 points) Let X be a normal r.v. with $E(X)=2$ and $V(X)=4$. Call $Y=2 X-6$. Compute

$$
P(-6 \leq Y \leq 2)
$$

Solution:

$$
P(-6 \leq Y \leq 2)=P(0 \leq X \leq 4)=P(-1 \leq Z \leq 1)=\Phi(1)-\Phi(-1)
$$

