If $x_{i}, i=1 \ldots N$, are data from a sample then:

$$
\begin{aligned}
\bar{x} & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\sigma_{x}^{2} & =\frac{1}{N-1}\left(\sum_{i=1}^{N} x_{i}^{2}-N \bar{x}^{2}\right) \\
\tilde{x} & = \begin{cases}x_{\frac{N+1}{2}} & N \text { odd } \\
\frac{x_{\frac{N}{2}+x_{\frac{N}{2}+1}}^{2}}{2} & N \text { even }\end{cases}
\end{aligned}
$$

Probabilities:

$$
\begin{aligned}
& P(\mathcal{S})=1 \quad 0 \leq P(A) \leq 1 \quad A \cap B=\emptyset \Rightarrow P(A \cup B)=P(A)+P(B) \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}
\end{aligned}
$$

$$
A \text { and } B \text { are independent } \Leftrightarrow P(A \cap B)=P(A) P(B)
$$

$$
P(B)=P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)
$$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}
$$

Random Variable: discrete

$$
\begin{gathered}
p(x)=P(X=x) \quad F(x)=P(X \leq x)=\sum_{y \leq x} p(y) \\
E(X)=\mu_{X}=\sum_{x} x p(x) \quad E(h(x))=\sum_{x} h(x) p(x) \\
p(x, y)=P(X=x \& Y=y) \quad p_{X}(x)=\sum_{y} p(x, y) \\
p_{X \mid Y}(x \mid y)=\frac{p(x, y)}{p_{Y}(y)} \quad E(h(X, Y))=\sum_{x} h(x, y) p(x, y)
\end{gathered}
$$

Random Variable: continuous

$$
\begin{gathered}
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x \quad F(x)=P(X \leq x)=\int_{y \leq x} f(y) d y \\
E(X)=\mu_{X}=\int_{-\infty}^{\infty} x f(x) d x
\end{gathered}
$$

The 100p percentile x_{p} is given by $F\left(x_{p}\right)=p$

$$
\begin{aligned}
P((X, Y) \in A) & =\int_{A} f(x, y) d x d y
\end{aligned} f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y \quad f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

Variances

$$
\begin{gathered}
V(X)=\sigma_{X}^{2}=E\left(X^{2}\right)-E(X)^{2} \quad \operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y) \\
\operatorname{Corr}(X, Y)=\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
\end{gathered}
$$

Independence: X, Y are independent if and only if $p(x, y)=p_{X}(x) p_{Y}(y)(f(x, y)=$ $\left.f_{X}(x) f_{Y}(y)\right)$. If X, Y are independent $\operatorname{Cov}(X, Y)=0$.

Linear combination

$$
\begin{gathered}
E(a X+b)=a E(X)+b \quad V(a X+b)=a^{2} V(X) \\
E(a X+b Y)=a E(X)+b E(Y) \quad V(a X+b Y)=a^{2} V(X)+b^{2} V(Y)+2 \operatorname{Cov}(X, Y)
\end{gathered}
$$

If $X_{i}, i=1 \ldots N$, are independent and identically distributed and $\bar{X}=1 / N \sum_{i=1}^{N} X_{i}$ then $\mu_{\bar{X}}=\mu_{X}$ and $V(\bar{X})=V(X) / N$.
Propagation of error: if U is a function of X and σ_{X} is small

$$
\sigma_{U}=\left|\frac{d U}{d X}\right| \sigma_{X}
$$

if U is a function of $X, X_{2}, \ldots X_{n}$ and $\sigma_{X_{i}}$ are small

$$
\sigma_{U}=\sqrt{\left(\frac{d U}{d X_{1}}\right)^{2} \sigma_{X_{1}}+\left(\frac{d U}{d X_{2}}\right)^{2} \sigma_{X_{2}}+\cdots+\left(\frac{d U}{d X_{n}}\right)^{2} \sigma_{X_{n}}}
$$

