No books or notes allowed. No laptop or wireless devices allowed. Write clearly.

Name:

Question:	1	2	3	4	Total
Points:	30	20	20	40	110
Score:					

Question 1
30 point
The following numbers $x_{i}, i=1, \ldots, 17$, represent a sample of size $n=17$ from a given population.

6.46	6.33	6.93	7.12	7.26
11.12	7.03	6.96	5.48	5.35
6.49	7.87	6.02	6.75	5.67
4.01	5.82			

(a) (10 points) Compute the sample median and fourth spread.

Solution:

After ordering the data you obtain

4.01	5.35	5.48	5.67	5.82
6.02	6.33	6.46	6.49	6.75
6.93	6.96	7.03	7.12	7.26
7.87	11.12			

so that:

$$
\begin{aligned}
& \tilde{x}=6.49 \\
& l f=5.82 \quad u f=7.03 \\
& f s=7.03-5.82=1.21
\end{aligned}
$$

(b) (10 points) Knowing that $\sum_{i=1}^{17} x_{i}=112.67$ and $\sum_{i=1}^{17} x_{i}^{2}=781.35$ compute the sample mean and variance.

Solution:

$$
\begin{aligned}
& \bar{x}=\frac{112.67}{17}=6.63 \\
& s^{2}=\frac{1}{16}\left(781.35-\frac{112.67^{2}}{17}\right)=2.16
\end{aligned}
$$

(c) (10 points) After checking for outlier, draw a box plot of the data.

Solution: Observe that $4.01>5.82-1.5 \cdot 1.21$ so that there are no outlier on the lower part of the sample. On the upper part we have $11.12>7.03+3 \cdot 1.21$ while $7.87<7.03+1.5 \cdot 1.21$ so that 11.12 is the only outlier and it is an extreme outlier.

Question 2
Let \mathcal{S} be a sample space and $A, B, C \subset \mathcal{S}$ be three mutually independent events.
(a) (10 points) Show that A^{\prime} and B are independent.(Hint: use that $B=(A \cap B) \cup$ $\left.\left(A^{\prime} \cap B\right)\right)$

Solution:

You need to show that

$$
P\left(A^{\prime} \cap B\right)=P\left(A^{\prime}\right) P(B)
$$

Since $(A \cap B) \cup\left(A^{\prime} \cap B\right)=B$ and $(A \cap B) \cap\left(A^{\prime} \cap B\right)=\emptyset$ we have

$$
P(A \cap B)+P\left(A^{\prime} \cap B\right)=P(B)
$$

or

$$
P\left(A^{\prime} \cap B\right)=P(B)-P(A \cap B)
$$

But $P(A \cap B)=P(A) P(B)$ so that we get

$$
P\left(A^{\prime} \cap B\right)=P(B)-P(A) P(B)=P(B)(1-P(A))=P\left(A^{\prime}\right) P(B) .
$$

(b) (10 points) Show that A and $B \cup C$ are independent.(Hint: use that $A \cap(B \cup C)=$ $(A \cap B) \cup(A \cap C))$

Solution: You need to show that

$$
P(A \cap(B \cup C))=P(A) P(B \cup C)
$$

We have

$$
P(A \cap(B \cup C))=P(A \cap B)+P(A \cap C)-P((A \cap B) \cap(A \cap C))
$$

But $(A \cap B) \cap(A \cap C)=A \cap B \cap C$ so and $P(A \cap B \cap C)=P(A) P(B) P(C)$ so that

$$
\begin{aligned}
P(A \cap(B \cup C)) & =P(A) P(B)+P(A) P(C)-P(A) P(B) P(C)= \\
& =P(A)(P(B)+P(C)-P(B) P(C))
\end{aligned}
$$

On the other hand, we have

$$
P(B \cup C)=P(B)+P(C)-P(B \cap C)=P(B)+P(C)-P(B) P(C)
$$

so that

$$
P(A \cap(B \cup C))=P(A) P(B \cup C)
$$

Question 3
Let X be a normal random variable with mean 4 and standard deviation 5 .
(a) (10 points) Find the average and standard deviation of $Y=4-0.2 X$.

Solution:

$$
E(Y)=4-0.2 E(X)=3.2 \quad V(Y)=0.2^{2} V(X)=1 \quad \sigma_{Y}=1
$$

(b) (10 points) Find the probability that $3<X<7$.

Solution:

$$
P(3<X<7)=P\left(\frac{3-4}{5}<\frac{X-4}{5}<\frac{7-4}{5}\right)=P\left(-\frac{1}{5}<Z<\frac{3}{5}\right)
$$

where Z is standard normal. Thus

$$
P(3<X<7)=\Phi(0.6)-\Phi(-0.2)=0.305
$$

Question 4
40 point
In a bucket there are 1000 red balls and 2000 blue balls. You extract 1 ball and then flip a fair coin. If the result is Head you reinsert the ball in the bucket. If the result is Tail you keep it. You repeat the above procedure 20 times. Call N the number of balls you have kept at the end of the 20 extractions and R the number of red balls among them.
(a) (10 points) Write the p.m.f of N.

Solution:

N is a Binomial r.v. with parameter 20 and 0.5 . Thus

$$
P(N=n)=\binom{20}{n} 0.5^{n} 0 \cdot 5^{20-n}=\binom{20}{n} 0.5^{20}
$$

(b) (10 points) What is the probability that $R=3$ given that $N=10$, that is find $P(R=3 \mid N=10)$?

Solution: If $N=10$ then R is an hypergeometric r.v with parameter 10, 1000, 2000 so that

$$
P(R=3 \mid N=10)=\frac{\binom{1000}{3}\binom{2000}{7}}{\binom{3000}{10}}
$$

(c) (10 points) Find an expression for the probability that $R=3$.(Hint: use the above results and the law of total probability.)

Solution: We have

$$
P(R=3)=\sum_{n=3}^{20} P(R=3 \mid N=n) P(N=n)=0.5^{20} \frac{\binom{20}{n}\binom{1000}{3}\binom{2000}{n-3}}{\binom{3000}{n}}
$$

(d) (10 points) Observing that $20 \ll 1000$ and $20 \ll 2000$, find an approximated p.m.f for R.

Solution: We can assume that each ball, upon extraction, is red with probability $\frac{1000}{3000}=\frac{1}{3}$ and blue with probability $\frac{2000}{3000}=\frac{2}{3}$. Moreover we can assume that different extractions are independent.
After flipping the coin we have 3 possible outcomes: the ball is reinserted (with probability $\frac{1}{2}$), the ball is kept and is blue (with probability $\frac{2}{3} \cdot \frac{1}{2}=\frac{1}{3}$) or the ball is kept and is red (with probability $\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{6}$).
Thus we can say that R is approximately a binomial r.v. with parameters 20 and $\frac{1}{6}$, that is

$$
P(R=r) \simeq\binom{20}{r}\left(\frac{1}{6}\right)^{r}\left(\frac{5}{6}\right)^{20-r}
$$

