No books or notes allowed. No laptop or wireless devices allowed. Write clearly.

Name: _____

Question:	1	2	3	4	5	Total
Points:	20	20	20	10	40	110
Score:						

(a) (10 points) In how many different ways can you order these balls?

Solution: If the ball are considered different there would be 14! possible way to oder them. The number requested is thus

 $\frac{14!}{6! 4! 4!}$

(b) (10 points) If you are required to order them in such a way that every red ball is followed by a green one, in how many different ways can you order them?

Solution: You can now consider a sequence red followed by green as a single object so that the number requested is

 $\frac{10!}{6! 4!}$

- - (a) (10 points) Compute the probability that the bulb will work longer than t.(**Hint**: let T the lifetime of the bulb, $A_1 = \{$ selected bulb is of type 1 $\}$ and $A_2 = \{$ selected bulb is of type 2 $\}$. The requested probability is P(T > t). Write it in term of $P(T > t|A_1)$ and $P(T > t|A_2).$)

Solution: Form the law of total probability we have

$$P(T > t) = P(T > t|A_1)P(A_1) + P(T > t|A_2)P(A_2)$$

Since a bulb of type 1 has an exponentially distributed life time with l = 1 we have

$$P(T > t | A_1) = e^{-t}$$

while

$$P(T > t | A_1) = e^{-2t}$$

Finally, since there is an equal number of bulbs of type 1 or 2, we have

$$P(A_1) = P(A_2) = \frac{1}{2}$$

Thus we get

$$P(T > t) = \frac{1}{2} \left(e^{-t} + e^{-2t} \right)$$

(b) (10 points) Compute the p.d.f of T.

Solution: From point a) it follows that the c.d.f of T is

$$F(t) = 1 - \frac{1}{2} \left(e^{-t} + e^{-2t} \right)$$

so that the p.d.f. is

$$f(t) = \frac{d}{dt}F(t) = \frac{1}{2}\left(e^{-t} + 2e^{-2t}\right)$$

- The temperature (in Fahrenheits) in Atlanta in a November day is described by a normal random variable X with expected value 60 and standard deviation 10.
 - (a) (10 points) Find the value c such that the probability that the temperature is between 60 - c and 60 + c is 0.95.

Solution: Let
$$Z = (X - 60)/10$$
. We have

$$P(60 - c < X < 60 + c) = P\left(-\frac{c}{10} < Z < \frac{c}{10}\right) =$$

$$= 1 - 2P\left(Z < -\frac{c}{10}\right) = 1 - 2\Phi\left(-\frac{c}{10}\right)$$
We need to find z such that

$$\Phi(z) = \frac{1 - 0.95}{2} = 0.025$$
From the table we get $z = -1.96$ so that

$$-\frac{c}{10} = -1.96$$
or
 $c = 19.6$

(b) (10 points) Let Y be the temperature in Centigrade. What is the expected value Y = 1and standard deviation of Y? (remember that x Fahrenheit are equivalent to y =5(x-32)/9 Centigrade).

Solution: We have

$$E(Y) = \frac{5(E(X) - 32)}{9} = \frac{5 \cdot 28}{9}$$
while

$$V(Y) = \frac{25}{81}V(X) = \frac{2500}{81} \qquad \sigma_Y = \frac{5}{9}\sigma_X = \frac{50}{9}$$

 $9.1677 \qquad 9.9044 \qquad 10.2944 \qquad 8.6638 \qquad 10.7143 \qquad 11.6236.$

Construct a normal probability plot and comment on the plausibility of the normal distribution as a model for bearing lifetime.

Solution: To construct a probability plot we need to know the 6 value z_i such that $\Phi(z_i) = \frac{2i-1}{2}$ for $i = 1, \ldots, 6$. They are $z_1 = -1.38$ $z_2 = -0.67$ $z_3 = -0.21$ $z_4 = 0.21$ $z_5 = 0.67$ $z_6 = 1.38$ the plot is thus -1.38-0.67-0.210.210.67 1.38 z8.6638 9.1677 9.9044 10.2944 10.7143 11.6236 x

that gives the graph below. The data appear to be normal with expected value 10 and standard deviation 1.

$$P = \begin{cases} 1 & \text{if } X \ge 0.5\\ 0 & \text{if } X < 0.5 \end{cases}$$

and the r.v. Q given by

$$Q = \begin{cases} 0 & \text{if } X \ge 0.5\\ 1 & \text{if } X < 0.5 \end{cases}$$

(a) (10 points) Compute the joint p.m.f. of P and Q. Compute the marginal p.m.f. of P and of Q.

Solution: If P = 1 than Q = 0 and viceversa so that, if p(x, y) is the joint p.d.f. we have:

$$p(0,0) = p(1,1) = 0$$
 $p(0,1) = p(1,0) = 0.5$

So we get

$$p_P(0) = p_P(1) = 0.5$$
 $p_Q(0) = p_Q(1) = 0.5$

(b) (10 points) Compute $\operatorname{corr}(P, Q)$.

Solution: Short way: observe that $P + Q \equiv 1$ so that P = 1 - Q. This means that $\operatorname{corr}(P,Q) = -1$. Long way:

$$E(P) = 0.5 E(Q) = 0.5 E(PQ) = 0$$

$$E(P^2) = 0.5 E(Q^2) = 0.5$$

$$V(P) = 0.25 V(Q) = 0.25 (1)$$

so that

$$\operatorname{corr}(P,Q) = \frac{E(PQ) - E(P)E(Q)}{\sqrt{V(P)V(Q)}} = -1$$

(c) (10 points) Suppose now you repeat the experiment 100 times obtaining 100 independent and identically distributed r.v. X_i uniformly distributed between 0 and 1. For every X_i , define P_i and Q_i as in point (a) above. Let

$$\bar{X} = \frac{1}{100} \sum_{i=1}^{100} X_i$$
$$\bar{P} = \frac{1}{100} \sum_{i=1}^{100} P_i$$
$$\bar{Q} = \frac{1}{100} \sum_{i=1}^{100} Q_i$$

Give the approximate p.d.f of \bar{X} , \bar{P} and \bar{Q} .

Solution: We have that

$$E(X_i) = 0.5$$
 $V(X_i) = E(X_i^2) - E(X_i)^2 = \frac{1}{12}$

So, using the CLT we get

$$X \simeq \mathcal{N}\left(0.5, \frac{1}{1200}\right)$$

while

$$P \simeq \mathcal{N}\left(0.5, \frac{1}{400}\right) \qquad Q \simeq \mathcal{N}\left(0.5, \frac{1}{400}\right)$$

(d) (10 points) Compute $\operatorname{corr}(\bar{P}, \bar{Q})$.

Solution: We still have that
$$\bar{P} = 1 - \bar{Q}$$
 so that
 $\operatorname{corr}(\bar{P}, \bar{Q}) = -1$