No books or notes allowed. No laptop or wireless devices allowed. Write clearly.

Name:

Question:	1	2	3	4	5	Total
Points:	20	20	20	10	40	110
Score:						

Question 1.. 20 point
In a bucket there are 6 black balls, 4 green and 4 red. Balls of the same color are identical.
(a) (10 points) In how many different ways can you order these balls?

Solution: If the ball are considered different there would be 14! possible way to oder them. The number requested is thus

$$
\frac{14!}{6!4!4!}
$$

(b) (10 points) If you are required to order them in such a way that every red ball is followed by a green one, in how many different ways can you order them?

Solution: You can now consider a sequence red followed by green as a single object so that the number requested is

$$
\frac{10!}{6!4!}
$$

In a stock of 1000 bulbs there are 500 bulb of type 1 and 500 of type 2. You know that the lifetime of a bulb of type 1 is described by an exponential r.v. with parameter $l=1$ while the lifetime of a bulb of type 2 is described by an exponential r.v. with parameter $l=2$. You take one bulb at random from the stock. Remember that an exponential r.v. with parameter l is described by a p.d.f $f(t)=l \exp (-l t)$.
(a) (10 points) Compute the probability that the bulb will work longer than t.(Hint: let T the lifetime of the bulb, $A_{1}=\{$ selected bulb is of type 1$\}$ and $A_{2}=\{$ selected bulb is of type 2\}. The requested probability is $P(T>t)$. Write it in term of $P\left(T>t \mid A_{1}\right)$ and $P\left(T>t \mid A_{2}\right)$.)

Solution: Form the law of total probability we have

$$
P(T>t)=P\left(T>t \mid A_{1}\right) P\left(A_{1}\right)+P\left(T>t \mid A_{2}\right) P\left(A_{2}\right)
$$

Since a bulb of type 1 has an exponentially distributed life time with $l=1$ we have

$$
P\left(T>t \mid A_{1}\right)=e^{-t}
$$

while

$$
P\left(T>t \mid A_{1}\right)=e^{-2 t}
$$

Finally, since there is an equal number of bulbs of type 1 or 2 , we have

$$
P\left(A_{1}\right)=P\left(A_{2}\right)=\frac{1}{2}
$$

Thus we get

$$
P(T>t)=\frac{1}{2}\left(e^{-t}+e^{-2 t}\right)
$$

(b) (10 points) Compute the p.d.f of T.

Solution: From point a) it follows that the c.d.f of T is

$$
F(t)=1-\frac{1}{2}\left(e^{-t}+e^{-2 t}\right)
$$

so that the p.d.f. is

$$
f(t)=\frac{d}{d t} F(t)=\frac{1}{2}\left(e^{-t}+2 e^{-2 t}\right)
$$

Question 3
20 point
The temperature (in Fahrenheits) in Atlanta in a November day is described by a normal random variable X with expected value 60 and standard deviation 10 .
(a) (10 points) Find the value c such that the probability that the temperature is between $60-c$ and $60+c$ is 0.95 .

Solution: Let $Z=(X-60) / 10$. We have

$$
\begin{aligned}
P(60-c<X<60+c) & =P\left(-\frac{c}{10}<Z<\frac{c}{10}\right)= \\
& =1-2 P\left(Z<-\frac{c}{10}\right)=1-2 \Phi\left(-\frac{c}{10}\right)
\end{aligned}
$$

We need to find z such that

$$
\Phi(z)=\frac{1-0.95}{2}=0.025
$$

From the table we get $z=-1.96$ so that

$$
-\frac{c}{10}=-1.96
$$

or

$$
c=19.6
$$

(b) (10 points) Let Y be the temperature in Centigrade. What is the expected value and standard deviation of Y ? (remember that x Fahrenheit are equivalent to $y=$ $5(x-32) / 9$ Centigrade).

Solution: We have

$$
E(Y)=\frac{5(E(X)-32)}{9}=\frac{5 \cdot 28}{9}
$$

while

$$
V(Y)=\frac{25}{81} V(X)=\frac{2500}{81} \quad \sigma_{Y}=\frac{5}{9} \sigma_{X}=\frac{50}{9}
$$

Question 4 10 point
Consider the following six observations on bearing lifetime (in hours):
9.1677
9.9044
10.2944
8.6638
10.7143
11.6236.

Construct a normal probability plot and comment on the plausibility of the normal distribution as a model for bearing lifetime.

Solution: To construct a probability plot we need to know the 6 value z_{i} such that

$$
\Phi\left(z_{i}\right)=\frac{2 i-1}{2}
$$

for $i=1, \ldots, 6$. They are

$$
z_{1}=-1.38 \quad z_{2}=-0.67 \quad z_{3}=-0.21 \quad z_{4}=0.21 \quad z_{5}=0.67 \quad z_{6}=1.38
$$

the plot is thus

z	-1.38	-0.67	-0.21	0.21	0.67	1.38
x	8.6638	9.1677	9.9044	10.2944	10.7143	11.6236

that gives the graph below. The data appear to be normal witn expected value 10 and standard deviation 1.

Question 5 \qquad 40 point
The results of an experiment is described by a r.v. X uniformly distributed between 0 and 1. Consider the r.v. P given by

$$
P=\left\{\begin{array}{lll}
1 & \text { if } & X \geq 0.5 \\
0 & \text { if } & X<0.5
\end{array}\right.
$$

and the r.v. Q given by

$$
Q=\left\{\begin{array}{lll}
0 & \text { if } \quad X \geq 0.5 \\
1 & \text { if } \quad X<0.5
\end{array}\right.
$$

(a) (10 points) Compute the joint p.m.f. of P and Q. Compute the marginal p.m.f. of P and of Q.

Solution: If $P=1$ than $Q=0$ and viceversa so that, if $p(x, y)$ is the joint p.d.f. we have:

$$
p(0,0)=p(1,1)=0 \quad p(0,1)=p(1,0)=0.5
$$

So we get

$$
p_{P}(0)=p_{P}(1)=0.5 \quad p_{Q}(0)=p_{Q}(1)=0.5
$$

(b) (10 points) Compute $\operatorname{corr}(P, Q)$.

Solution: Short way: observe that $P+Q \equiv 1$ so that $P=1-Q$. This means that

$$
\operatorname{corr}(P, Q)=-1
$$

Long way:

$$
\begin{array}{lll}
E(P)=0.5 & E(Q)=0.5 & E(P Q)=0 \\
E\left(P^{2}\right)=0.5 & E\left(Q^{2}\right)=0.5 & \\
V(P)=0.25 & V(Q)=0.25 & \tag{1}
\end{array}
$$

so that

$$
\operatorname{corr}(P, Q)=\frac{E(P Q)-E(P) E(Q)}{\sqrt{V(P) V(Q)}}=-1
$$

(c) (10 points) Suppose now you repeat the experiment 100 times obtaining 100 independent and identically distributed r.v. X_{i} uniformly distributed between 0 and 1. For every X_{i}, define P_{i} and Q_{i} as in point (a) above. Let

$$
\begin{aligned}
\bar{X} & =\frac{1}{100} \sum_{i=1}^{100} X_{i} \\
\bar{P} & =\frac{1}{100} \sum_{i=1}^{100} P_{i} \\
\bar{Q} & =\frac{1}{100} \sum_{i=1}^{100} Q_{i}
\end{aligned}
$$

Give the approximate p.d.f of \bar{X}, \bar{P} and \bar{Q}.
Solution: We have that

$$
E\left(X_{i}\right)=0.5 \quad V\left(X_{i}\right)=E\left(X_{i}^{2}\right)-E\left(X_{i}\right)^{2}=\frac{1}{12}
$$

So, using the CLT we get

$$
X \simeq \mathcal{N}\left(0.5, \frac{1}{1200}\right)
$$

while

$$
P \simeq \mathcal{N}\left(0.5, \frac{1}{400}\right) \quad Q \simeq \mathcal{N}\left(0.5, \frac{1}{400}\right)
$$

(d) (10 points) Compute $\operatorname{corr}(\bar{P}, \bar{Q})$.

Solution: We still have that $\bar{P}=1-\bar{Q}$ so that

$$
\operatorname{corr}(\bar{P}, \bar{Q})=-1
$$

