No books or notes allowed. No laptop or wireless devices allowed. Write clearly.

Name:

Question:	1	2	3	4	Total
Points:	32	36	22	10	100
Score:					

Question 1 ... 32 point
The following numbers $x_{i}, i=1, \ldots, 18$, represent a sample of size $n=18$ from a given population.

0.9355	0.9169	0.4103	0.8936	0.0579	0.3529
0.8132	0.0099	0.1389	0.2028	0.1987	0.6038
0.2722	0.1988	0.0153	0.7468	0.4451	0.9318

(a) (12 points) Compute the sample median and fourth spread.

Solution:

After ordering the data you obtain

0.9355	0.9318	0.9169	0.8936	0.8132	0.7468
0.6038	0.4451	0.4103	0.3529	0.2722	0.2028
0.1988	0.1987	0.1389	0.0579	0.0153	0.0099

so that:

$$
\begin{aligned}
& \tilde{x}=(0.4103+0.3529) / 2=0.3816 \\
& l f=0.1987 \quad u f=0.8132 \quad f s=0.8132-0.1987=0.6145
\end{aligned}
$$

(b) (10 points) Knowing that $\sum_{i=1}^{18} x_{i}=8.1442$ and , $\sum_{i=1}^{18} x_{i}^{2}=5.6743$ compute the sample mean and variance.

Solution:

$$
\begin{aligned}
& \bar{x}=\frac{8.1442}{18}=0.4525 \\
& s_{X}=\frac{1}{17}\left(5.6743-\frac{8.1442 \cdot 8.1442}{18}\right)=0.1170
\end{aligned}
$$

(c) (10 points) Draw a box plot of the data. You do not need to check for outlier.

Solution:

Question 2 36 point
In Atlanta there are 2.000.000 families. Among them 40.000 do not report correctly their incomes. The IRS select a sample of 200 families and controlls their tax returns. Let X be the number of incorect reports among these 200.
(a) (12 points) Write a formula for the probability that $X=4$.

Solution:

$$
P(\{X=4\})=\frac{\binom{40.000}{4}\binom{1.960 .000}{196}}{\binom{2.000 .000}{200}}
$$

(b) (12 points) Use a binomial approximation to compute the average and variance of X. Justify the approximation.

Solution: Since 200 is much smaller than 2.000 .000 and 40.000 we can approximate X with a binomial r.v. with parameters $n=200$ and $p=0.02$. Thus we have:
$E(X) \simeq n p=200 \cdot 0.02=4 \quad V(X) \simeq n p(1-p)=200 \cdot 0.02 \cdot 0.98=3.92$
(c) (12 points) Compute the probability that $X=4$ using a Poisson approximation. Justify the approximation.(Hint; remeber that if X is a Poisson r.v. with parameter λ then $P(X=x)=\lambda^{x} e^{-\lambda} / x!$.)

Solution: Since n is large we can approximate the above binomial with a poissonian with parameter $\lambda=200 \cdot 0.02=4$. We get

$$
P(\{X=4\})=\frac{4^{4} e^{-4}}{4!}=0.1953
$$

Question 3

22 point
In a bowl there are three balls numbered 0,1 and 2 . You randomly extract a ball. Then you put it back and randomly extract a ball again. Let X_{1} be the result of the first extraction and X_{2} the result of the second. Compute:
(a) (12 points) The pmf of $Y=X_{1}-X_{2}$ and $Z=X_{1}+X_{2}$.

Solution: There are 9 possible pair of balls (counting order). Each has the same probability to occur. Thus each pair has probability $1 / 9$ to occur. The r.v. Y can take the 5 values: $-2,-1,0,1,2$ while Z can take the values: 0,1 , $2,3,4$. The following table explain the possibilities:

Y	pairs	Z	pairs
-2	$(0,2)$	0	$(0,0)$
-1	$(0,1),(1,2)$	1	$(0,1),(1,0)$
0	$(0,0),(1,1),(2,2)$	2	$(2,0),(1,1),(0,2)$
1	$(1,0),(2,1)$	3	$(2,1),(1,2)$
2	$(2,0)$	4	$(2,2)$

thus

$$
\begin{aligned}
& p_{Y}(-2)=p_{Y}(2)=\frac{1}{9} \quad p_{Y}(-1)=p_{Y}(1)=\frac{2}{9} \quad p_{Y}(0)=\frac{1}{3} \\
& p_{Z}(0)=p_{Z}(4)=\frac{1}{9} \quad p_{Z}(1)=p_{Z}(3)=\frac{2}{9} \quad p_{Z}(2)=\frac{1}{3}
\end{aligned}
$$

(b) (10 points) The expected value and variance of Y and Z.

Solution: We have

$$
\begin{aligned}
& E(Y)=(-2) \cdot \frac{1}{9}+(-1) \cdot \frac{2}{9}+0 \cdot \frac{1}{3}+1 \cdot \frac{2}{9}+2 \cdot \frac{1}{9}=0 \\
& E(Z)=0 \cdot \frac{1}{9}+1 \cdot \frac{2}{9}+2 \cdot \frac{1}{3}+3 \cdot \frac{2}{9}+4 \cdot \frac{1}{9}=2
\end{aligned}
$$

while

$$
\begin{aligned}
& E\left(Y^{2}\right)=4 \cdot \frac{1}{9}+1 \cdot \frac{2}{9}+0 \cdot \frac{1}{3}+1 \cdot \frac{2}{9}+4 \cdot \frac{1}{9}=\frac{4}{3} \\
& E\left(Z^{2}\right)=0 \cdot \frac{1}{9}+1 \cdot \frac{2}{9}+4 \cdot \frac{1}{3}+9 \cdot \frac{2}{9}+16 \cdot \frac{1}{9}=\frac{48}{9}
\end{aligned}
$$

so that

$$
\begin{array}{r}
V(Y)=E\left(Y^{2}\right)-E(Y)^{2}=\frac{4}{3} \\
V(Z)=E\left(Z^{2}\right)-E(Z)^{2}=\frac{40}{9}-4=\frac{4}{3}
\end{array}
$$

In a bucket there are 3 balls. Some of them are red and the other are blue but you do not know how many are red. Call X the number of red balls. You only know that the p.m.f $p(x)=P(X=x)$ of X is:

$$
\begin{equation*}
p(0)=0.2 \quad p(1)=0.2 \quad p(2)=0.3 \quad p(3)=0.3 \tag{1}
\end{equation*}
$$

A ball is selected at random form the bucket and then reinserted. You see that the ball is red. Using this information, compute the probability that in the bucket there are 0 , 1,2 or 3 red balls. (Hint: you know that in the bucket there is at least one red ball. You have thus to compute conditional probabilities given this information. Use Bayes theorem:

$$
\begin{equation*}
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j} P\left(B \mid A_{j}\right) P\left(A_{j}\right)} \tag{2}
\end{equation*}
$$

where B is an event and A_{I} is a family of mutually exclusive and exhaustive events)

Solution: Call A_{i} the event "there are i red balls in the bucket" and B the event "the selected ball was red". Eq. (1) gives the probability of the events A_{i}. On the other hand $P\left(B \mid A_{i}\right)$ is the probability of selecting a red ball when there are i red balls so that

$$
P\left(B \mid A_{i}\right)=\frac{i}{3}
$$

We can now opply Bayes theorem eq.(2). Observe that the denominator is equal for all i. So we first compute it:

$$
\sum_{j} P\left(B \mid A_{j}\right) P\left(A_{j}\right)=0.2 \frac{1}{3}+0.3 \frac{2}{3}+0.3=0.567
$$

We thus get

$$
\begin{align*}
& P\left(A_{0} \mid B\right)=0 \quad P\left(A_{1} \mid B\right)=\frac{0.0667}{0.567}=0.118 \\
& P\left(A_{2} \mid B\right)=\frac{0.2}{0.567}=0.353 \quad P\left(A_{3} \mid B\right)=\frac{0.3}{0.567}=0.529 \tag{3}
\end{align*}
$$

