No books or notes allowed. No laptop or wireless devices allowed. Write clearly.

Name:

Question:	1	2	3	4	5	6	Total
Points:	20	20	30	10	10	10	100
Score:							

Question 1 20 point
You play a game with a friend using a fair die with 6 faces. If the outcome is even you win $\$ 1$, if the outcome is odd you loose $\$ 1$.
(a) (10 points) Compute the probability that after 4 games you are winning exactly $\$ 2$.

Solution: If you won $\$ 2$ the only possibility is that you won 3 times and lost 1. The number of time you win is a binomial r.v. with probability of victory $p=0.5$. Thus

$$
\text { Prob. of winning } \$ 2=b(3 ; 4,0.5)=\binom{4}{3} 2^{-4}=0.25
$$

(b) (10 points) Use the CLT to compute the approxiamte probability that after 100 games you are winning more than $\$ 10$.

Solution: Let X_{i} the amount you win at the i-th game. The total amount you win is:

$$
S=\sum_{i=1}^{100} X_{i}
$$

Since $E\left(X_{i}\right)=0$ and $V\left(X_{i}\right)=1$ we have that S is approxiamted by a normal r.v. with mean $\mu_{S}=0$ and standard deviation $\sigma_{S}=10$. Thus

$$
P(S>10) \simeq P\left(\frac{S}{10}>1\right)=\Phi(-1)=0.159
$$

Let X_{1} and X_{2} be two independent r.v. uniformly distributed between -1 and 1. Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$
(a) (10 points) Compute $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)$. (Hint: remeber that $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=E\left(Y_{1} Y_{2}\right)-$ $\left.E\left(Y_{1}\right) E\left(Y_{2}\right).\right)$

Solution: Observe that $E\left(X_{1}-X_{2}\right)=E\left(X_{1}\right)-E\left(X_{2}\right)=0$ so that $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=$ $E\left(Y_{1} Y_{2}\right)$. But $Y_{1} Y_{2}=\left(X_{1}-X_{2}\right)\left(X_{1}+X_{2}\right)=X_{1}^{2}-X_{2}^{2}$ so that $E\left(Y_{1} Y_{2}\right)=$ $E\left(X_{1}^{2}\right)-E\left(X_{2}^{2}\right)=0$ that is $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=0$.
Alternatively, since X_{1} and X_{2} are independent and identically distributed, we have that

$$
\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=V\left(X_{1}\right)-V\left(X_{2}\right)=0 .
$$

(b) (10 points) Are Y_{1} and Y_{2} independent? Give a mathematical argument proving your assertion. (Hint: if $X_{1}+X_{2}$ is close to 2 what are the possible values of $X_{1}-X_{2}$?)

Solution: Observe that if $X_{1}+X_{2}>1.8$ then both X_{1} and X_{2} must be greater than 0.9. This implies that $-0.2<X_{1}-X_{2}<0.2$. Thus $P\left(Y_{1}>1.8\right) \neq 0$ and $P\left(Y_{2}>0.2\right) \neq 0$ but $P\left(Y_{1}>1.8 \& Y_{2}>0.2\right)=0$ so that Y_{1} and Y_{2} are not independent.

Question 3
Let T_{1} and T_{2} be two random variable with j.p.d.f.:

$$
f\left(t_{1}, t_{2}\right)= \begin{cases}4 e^{-2 t_{2}} & \text { if } t_{1}>0 \text { and } t_{2}>t_{1} \\ 0 & \text { otherwise }\end{cases}
$$

(a) (10 points) Compute the marginals $f_{T_{1}}\left(t_{1}\right)$ and the conditional p.d.f. $f_{T_{2} \mid T_{1}}\left(t_{2} \mid t_{1}\right)$.

Solution:

$$
f_{T_{1}}\left(t_{1}\right)=\int_{t_{1}}^{\infty} 4 e^{-2 t_{2}} d t_{2}=2 e^{-2 t_{1}} .
$$

Thus

$$
f_{T_{2} \mid T_{1}}\left(t_{2} \mid t_{1}\right)= \begin{cases}2 e^{-2\left(t_{2}-t_{1}\right)} & \text { if } t_{1}>0 \text { and } t_{2}>t_{1} \\ 0 & \text { otherwise }\end{cases}
$$

(b) (10 points) Compute $E\left(T_{1}\right)$.

Solution: T_{1} is an exponential r.v. of parameter 2 so that $E\left(T_{1}\right)=1 / 2$.
(c) (10 points) Compute probability that $T_{2}>2 T_{1}$.

Solution: We have

$$
P\left(T_{2}>2 T_{1}\right)=\int_{0}^{\infty} d t_{1} \int_{2 t_{1}}^{\infty} d t_{2} 4 e^{-2 t_{2}}=\int_{0}^{\infty} d t_{1}\left(-\left.2 e^{-2 t_{2}}\right|_{2 t_{1}} ^{\infty}\right)=\int_{0}^{\infty} d t_{1} 2 e^{-4 t_{1}}=0.5
$$

Let X be a standard normal r.v.. Let

$$
Y=X^{2}
$$

Compute the p.d.f. of Y. (Hint: knowing that the c.d.f. of X is $\Phi(x)$ you can compute the c.d.f of Y by writing $P(Y<y)$ in term of $P(X<x)$ for suitable values of x. Than use the realtion between c.d.f and p.d.f. Remember that the p.d.f. of X is

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

)

Solution: Oberve that

$$
F_{Y}(y)=P(Y<y)=P(|X|<\sqrt{y})=\Phi(\sqrt{y})-\Phi(-\sqrt{y})=2 \Phi(\sqrt{y})-1
$$

so that the p.d.f. of Y is

$$
f_{Y}(y)=\frac{d}{d y} F(y)=\frac{1}{\sqrt{y}} \Phi^{\prime}(\sqrt{y})=\frac{1}{\sqrt{2 \pi y}} e^{-\frac{y}{2}}
$$

Let $X_{1} \simeq N(2,9)$ and $X_{2} \simeq N(2,16)$. Find that number c such that $P\left(\left|X_{1}-X_{2}\right|<c\right)=$ 0.95 .

Solution:

We have that $X_{1}-X_{2} \simeq N(0,25)$. Thus

$$
P\left(\left|X_{1}-X_{2}\right|<c\right)=P\left(|Z|<\frac{c}{5}\right)
$$

where Z is standard normal. From the tables you get that $c / 5=1.96$ or $c=\ldots$.

Question 6 10 point
In a grocery store there are two cashiers. Let N_{1} be the number of people in line at the first cashier and N_{2} the number of people in line at the second cashier. You know that $0 \leq N_{1} \leq 2$ and $0 \leq N_{2} \leq 2$. The j.p.m.f. $p\left(n_{1}, n_{2}\right)$ of N_{1} and N_{2} is given by:

$$
p\left(n_{1}, n_{2}\right)= \begin{cases}\frac{1}{6} & \text { if } n_{1}=n_{2} \\ \frac{1}{8} & \text { if } n_{1}=n_{2}+1 \text { or } n_{1}=n_{2}-1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the $\operatorname{Cov}\left(N_{1}, N_{2}\right)$ and $\operatorname{Corr}\left(N_{1}, N_{2}\right)$.

Solution: The marginals of N_{1} is

$$
p_{N_{1}}(0)=p_{N_{1}}(2)=\frac{7}{24} \quad p_{N_{1}}(1)=\frac{5}{12}
$$

so that $E\left(N_{1}\right)=1$ and $V\left(N_{1}\right)=7 / 12$. Clearly $E\left(X_{2}\right)=E\left(X_{1}\right)$ and $V\left(X_{2}\right)=V\left(X_{1}\right)$. Finally $E\left(X_{1} X_{2}\right)=4 / 3$ so that

$$
\operatorname{Cov}\left(N_{1}, N_{2}\right)=\frac{4}{3}-1^{2}=\frac{1}{3} \quad \operatorname{Corr}\left(N_{1}, N_{2}\right)=\frac{4}{7}
$$

