Name:

Question:	1	2	3	Total
Points:	30	20	40	90
Score:				

Given 3 continuous random variable T_{1}, T_{2} and T_{3} with j.p.d.f given by $f\left(t_{1}, t_{2}, t_{3}\right)$ we can define the marginal of T_{1}

$$
f_{T_{1}}\left(t_{1}\right)=\int_{-\infty}^{\infty} d t_{2} \int_{-\infty}^{\infty} d t_{3} f\left(t_{1}, t_{2}, t_{3}\right)
$$

and analogously for the marginals on T_{2} and T_{3}. Let now the j.p.d.f. of T_{1}, T_{2} and T_{3} be:

$$
f\left(t_{1}, t_{2}, t_{3}\right)= \begin{cases}\lambda^{3} e^{-\lambda t_{3}} & \text { if } t_{3}>t_{2}>t_{1}>0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) (10 points) Compute the marginals $f_{T_{1}}\left(t_{1}\right), f_{T_{2}}\left(t_{2}\right), f_{T_{3}}\left(t_{3}\right)$.

Solution:

$$
\begin{gathered}
f_{T_{1}}\left(t_{1}\right)=\int_{0}^{\infty} d t_{2} \int_{t_{2}}^{\infty} d t_{3} \lambda^{3} e^{-\lambda t_{3}}=\int_{0}^{\infty} d t_{2} \lambda^{2} e^{-\lambda t_{2}}=\lambda e^{-\lambda t_{1}} \\
f_{T_{2}}\left(t_{2}\right)=\int_{0}^{t_{2}} d t_{1} \int_{t_{2}}^{\infty} d t_{3} \lambda^{3} e^{-\lambda t_{3}}=\int_{0}^{t_{2}} d t_{1} \lambda^{2} e^{-\lambda t_{2}}=\lambda^{2} t_{2} e^{-\lambda t_{2}} \\
f_{T_{3}}\left(t_{3}\right)=\int_{0}^{t_{3}} d t_{1} \int_{t_{2}}^{t_{3}} d t_{3} \lambda^{3} e^{-\lambda t_{3}}=\lambda^{3} e^{-\lambda t_{3}} \int_{0}^{t_{3}} d t_{1} \int_{t_{2}}^{t_{3}} d t_{3}=\frac{\lambda^{3} t_{3}^{2}}{2} e^{-\lambda t_{3}}
\end{gathered}
$$

(b) (10 points) Compute $E\left(T_{1}\right), E\left(T_{2}\right)$ and $E\left(T_{3}\right)$.

Solution:

$$
\begin{gathered}
E\left(T_{1}\right)=\int_{0}^{\infty} t_{1} \lambda e^{-\lambda t_{1}} d t_{1}=\frac{1}{\lambda} \\
E\left(T_{2}\right)=\int_{0}^{\infty} t_{2} \lambda^{2} t_{2} e^{-\lambda t_{2}} d t_{2}=\frac{2}{\lambda} \\
E\left(T_{2}\right)=\int_{0}^{\infty} t_{3} \frac{\lambda^{3} t_{3}^{2}}{2} e^{-\lambda t_{3}} d t_{3}=\frac{3}{\lambda}
\end{gathered}
$$

(c) (10 points) Compute the probability that $T_{3}>T_{1}+T_{2}$.

Solution:

$$
\begin{aligned}
P & =\int_{0}^{\infty} d t_{1} \int_{t_{1}}^{\infty} d t_{2} \int_{t_{1}+t_{2}}^{\infty} d t_{3} \lambda^{3} e^{-\lambda t_{3}}=\int_{0}^{\infty} d t_{1} \int_{t_{1}}^{\infty} d t_{2} \lambda^{2} e^{-\lambda\left(t_{1}+t_{2}\right)}= \\
& =\int_{0}^{\infty} d t_{1} \lambda e^{-2 \lambda t_{1}}=\frac{1}{2}
\end{aligned}
$$

Let X_{1} and X_{2} be two independent continuous r.v. uniformly distributed in $[-1,1]$. Let $Y=X_{1}+X_{2}$.
(a) (10 points) Compute the $P(Y \leq y)$, that is the probability that $X_{1}+X_{2} \leq y$, for a given y. (Hint: draw the x_{1}, x_{2} plane with the region where the j.p.d.f. of X_{1} and X_{2} is not 0 and the region where $x_{1}+x_{2} \leq y$.)

Solution: The j.p.d.f. of X_{1} and ${ }_{2}$ is:

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{4} & \text { if }-1 \leq x_{1} \leq 1 \text { and }-1 \leq x_{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

If $-2<y<0$ we have

$$
\begin{aligned}
P(Y<y) & =\int_{-1}^{1+y} d x_{1} \int_{-1}^{y-x_{1}} \frac{1}{4} d x_{2}=\frac{1}{4} \int_{-1}^{1+y}\left(1+y-x_{1}\right) d x_{1}= \\
& =-\left.\frac{1}{8}\left(1+y-x_{1}\right)^{2}\right|_{-1} ^{1+y}=\frac{1}{8}(2+y)^{2}
\end{aligned}
$$

Similarly if $0<y<-2$ we have

$$
\begin{aligned}
P(Y<y) & =1-P(Y>y)=1-\int_{-1+y}^{1} d x_{1} \int_{y-x_{1}}^{1} \frac{1}{4} d x_{2}= \\
& =1-\frac{1}{4} \int_{-1+y}^{1}\left(1-y+x_{1}\right) d x_{1}= \\
& =1-\left.\frac{1}{8}\left(1-y+x_{1}\right)^{2}\right|_{-1+y} ^{1}=1-\frac{1}{8}(2-y)^{2}
\end{aligned}
$$

(b) (10 points) Use the previous result to compute the p.d.f. of Y.

Solution: Since the p.d.f. $f(y)$ of Y is the derivative of the c.d.f $F(y)=P(Y<$ $y)$ we have

$$
f(y)= \begin{cases}\frac{1}{4}(2+y) & \text { if }-2<y<0 \\ \frac{1}{4}(2-y) & \text { if } 0<y<-2\end{cases}
$$

Question 3

 40 pointYou are shopping in a grocery store with two cashiers. Let N_{1} be the number of people in line at the first cashier and N_{2} the number of people in line at the second cashier when you arrive at the lines. You know that N_{1} can 0,1 or 2 with equal probabilities. The same thing holds for N_{2}. Finally N_{1} and N_{2} are independent. When you arrive at the lines you chose the line with less people. If the two lines have the same number of people you randomly chose one of the two with equal probabilities. Let M_{1} and M_{2} the number of people on each line after you put yourself on one of them.
(a) (10 points) Compute $P\left(M_{1}=1\right.$ and $M_{2}=1$). (Hint: which values of N_{1} and N_{2} give you the situation $M_{1}=1$ and $M_{2}=1$. Think at what can have happened when you arrived at the lines.)

Solution:

If $M_{1}=1$ and $M_{2}=1$ then either you had $N_{1}=1$ and $N_{2}=0$ or $N_{1}=0$ and $N_{2}=1$. Both these possibilities have probability $1 / 9$ so that $P\left(M_{1}=\right.$ 1 and $\left.M_{2}=1\right)=2 / 9$.
(b) (10 points) Compute $P\left(M_{1}=2\right.$ and $\left.M_{2}=1\right)$. (Hint wich values of N_{1} and N_{2} give you the situation $M_{1}=2$ and $M_{2}=1$. Think at what can have happened when you arrived at the lines.)

Solution:

If $M_{1}=2$ and $M_{2}=1$ then either you had $N_{1}=2$ and $N_{2}=0$ or $N_{1}=1$ and $N_{2}=1$. Both these possibilities have probability $1 / 9$ but in the second case you will have $M_{1}=2$ and $M_{2}=1$ only with probability $1 / 2$. Thus $P\left(M_{1}=1\right.$ and $\left.M_{2}=1\right)=3 / 18$.
(c) (10 points) Compute the j.p.m.f of M_{1} and M_{2}. Represent it as a table.

Solution: Applying the previous reasoning to all possible results we get

	0	1	2	3
0	0	$\frac{1}{18}$	0	0
1	$\frac{1}{18}$	$\frac{2}{9}$	$\frac{3}{18}$	0
2	0	$\frac{3}{18}$	$\frac{2}{9}$	$\frac{1}{18}$
3	0	0	$\frac{1}{18}$	0

(d) (10 points) Compute $\operatorname{Cov}\left(M_{1}, M_{2}\right)$ and $\operatorname{Corr}\left(M_{1}, M_{2}\right)$.

Solution: From the table we have:

$$
E\left(M_{1}\right)=E\left(M_{2}\right)=\frac{3}{2} \quad E\left(M_{1}^{2}\right)=E\left(M_{2}^{2}\right)=\frac{49}{18} \quad E\left(M_{1} M_{2}\right)=\frac{44}{18}
$$

so that

$$
V\left(M_{1}\right)=V\left(M_{2}\right)=\frac{49}{18}-\frac{9}{4}=\frac{17}{36}
$$

and

$$
\operatorname{Cov}\left(M_{1}, M_{2}\right)=\frac{44}{18}-\frac{9}{4}=\frac{7}{36} \quad \operatorname{Corr}\left(M_{1}, M_{2}\right)=\frac{7}{17}
$$

