Name: _____

Question:	1	2	3	Total
Points:	30	20	40	90
Score:				

$$f_{T_1}(t_1) = \int_{-\infty}^{\infty} dt_2 \int_{-\infty}^{\infty} dt_3 f(t_1, t_2, t_3)$$

and analogously for the marginals on T_2 and T_3 . Let now the j.p.d.f. of T_1 , T_2 and T_3 be:

$$f(t_1, t_2, t_3) = \begin{cases} \lambda^3 e^{-\lambda t_3} & \text{if } t_3 > t_2 > t_1 > 0\\ 0 & \text{otherwise} \end{cases}$$

(a) (10 points) Compute the marginals $f_{T_1}(t_1), f_{T_2}(t_2), f_{T_3}(t_3)$.

Solution:

$$f_{T_1}(t_1) = \int_0^\infty dt_2 \int_{t_2}^\infty dt_3 \lambda^3 e^{-\lambda t_3} = \int_0^\infty dt_2 \lambda^2 e^{-\lambda t_2} = \lambda e^{-\lambda t_1}$$

$$f_{T_2}(t_2) = \int_0^{t_2} dt_1 \int_{t_2}^\infty dt_3 \lambda^3 e^{-\lambda t_3} = \int_0^{t_2} dt_1 \lambda^2 e^{-\lambda t_2} = \lambda^2 t_2 e^{-\lambda t_2}$$

$$f_{T_3}(t_3) = \int_0^{t_3} dt_3 \lambda^3 e^{-\lambda t_3} = \int_0^{t_3} dt_3 \lambda^3 e^$$

$$f_{T_3}(t_3) = \int_0^{t_3} dt_1 \int_{t_2}^{t_3} dt_3 \lambda^3 e^{-\lambda t_3} = \lambda^3 e^{-\lambda t_3} \int_0^{t_3} dt_1 \int_{t_2}^{t_3} dt_3 = \frac{\lambda^3 t_3^2}{2} e^{-\lambda t_3}$$

(b) (10 points) Compute $E(T_1)$, $E(T_2)$ and $E(T_3)$.

Solution:	$E(T_1) = \int_0^\infty t_1 \lambda e^{-\lambda t_1} dt_1 = \frac{1}{\lambda}$
	$E(T_2) = \int_0^\infty t_2 \lambda^2 t_2 e^{-\lambda t_2} dt_2 = \frac{2}{\lambda}$
	$E(T_{2}) = \int_{0}^{\infty} t_{3} \frac{\lambda^{3} t_{3}^{2}}{2} e^{-\lambda t_{3}} dt_{3} = \frac{3}{\lambda}$

(c) (10 points) Compute the probability that $T_3 > T_1 + T_2$.

(a) (10 points) Compute the $P(Y \le y)$, that is the probability that $X_1 + X_2 \le y$, for a given y. (**Hint**: draw the x_1, x_2 plane with the region where the j.p.d.f. of X_1 and X_2 is not 0 and the region where $x_1 + x_2 \le y$.)

Solution: The j.p.d.f. of X_1 and $_2$ is:

$$f(x_1, x_2) = \begin{cases} \frac{1}{4} & \text{if } -1 \le x_1 \le 1 \text{ and } -1 \le x_2 \le 1 \\ 0 & \text{otherwise} \end{cases}$$

If -2 < y < 0 we have

$$P(Y < y) = \int_{-1}^{1+y} dx_1 \int_{-1}^{y-x_1} \frac{1}{4} dx_2 = \frac{1}{4} \int_{-1}^{1+y} (1+y-x_1) dx_1 = \\ = -\frac{1}{8} (1+y-x_1)^2 \Big|_{-1}^{1+y} = \frac{1}{8} (2+y)^2$$

Similarly if 0 < y < -2 we have

$$P(Y < y) = 1 - P(Y > y) = 1 - \int_{-1+y}^{1} dx_1 \int_{y-x_1}^{1} \frac{1}{4} dx_2 =$$

= $1 - \frac{1}{4} \int_{-1+y}^{1} (1 - y + x_1) dx_1 =$
= $1 - \frac{1}{8} (1 - y + x_1)^2 \Big|_{-1+y}^{1} = 1 - \frac{1}{8} (2 - y)^2$

(b) (10 points) Use the previous result to compute the p.d.f. of Y.

Solution: Since the p.d.f. f(y) of Y is the derivative of the c.d.f F(y) = P(Y < y) we have

$$f(y) = \begin{cases} \frac{1}{4}(2+y) & \text{if } -2 < y < 0\\ \\ \frac{1}{4}(2-y) & \text{if } 0 < y < -2 \end{cases}$$

- - (a) (10 points) Compute $P(M_1 = 1 \text{ and } M_2 = 1)$. (**Hint**: which values of N_1 and N_2 give you the situation $M_1 = 1$ and $M_2 = 1$. Think at what can have happened when you arrived at the lines.)

Solution:

If $M_1 = 1$ and $M_2 = 1$ then either you had $N_1 = 1$ and $N_2 = 0$ or $N_1 = 0$ and $N_2 = 1$. Both these possibilities have probability 1/9 so that $P(M_1 = 1$ and $M_2 = 1) = 2/9$.

(b) (10 points) Compute $P(M_1 = 2 \text{ and } M_2 = 1)$. (Hint wich values of N_1 and N_2 give you the situation $M_1 = 2$ and $M_2 = 1$. Think at what can have happened when you arrived at the lines.)

Solution:

If $M_1 = 2$ and $M_2 = 1$ then either you had $N_1 = 2$ and $N_2 = 0$ or $N_1 = 1$ and $N_2 = 1$. Both these possibilities have probability 1/9 but in the second case you will have $M_1 = 2$ and $M_2 = 1$ only with probability 1/2. Thus $P(M_1 = 1 \text{ and } M_2 = 1) = 3/18.$ (c) (10 points) Compute the j.p.m.f of M_1 and M_2 . Represent it as a table.

Solution: Applying the previous reasoning to all possible results we get										
		0	1	2	3					
	0	0	$\frac{1}{18}$	0	0					
	1	$\frac{1}{18}$	$\frac{2}{9}$	$\frac{3}{18}$	0					
	2	0	$\frac{3}{18}$	$\frac{2}{9}$	$\frac{1}{18}$					
	3	0	0	$\frac{1}{18}$	0					

(d) (10 points) Compute $Cov(M_1, M_2)$ and $Corr(M_1, M_2)$.

Solution: From the table we have:

$$E(M_1) = E(M_2) = \frac{3}{2} \qquad E(M_1^2) = E(M_2^2) = \frac{49}{18} \qquad E(M_1M_2) = \frac{44}{18}$$
so that

$$V(M_1) = V(M_2) = \frac{49}{18} - \frac{9}{4} = \frac{17}{36}$$
and

$$Cov(M_1, M_2) = \frac{44}{18} - \frac{9}{4} = \frac{7}{36} \qquad Corr(M_1, M_2) = \frac{7}{17}$$