Name:

Question:	1	2	3	Total
Points:	30	20	40	90
Score:				

$$f_{T_1}(t_1) = \int_{-\infty}^{\infty} dt_2 \int_{-\infty}^{\infty} dt_3 f(t_1, t_2, t_3)$$

and analogously for the marginals on T_2 and T_3 . Let now the j.p.d.f. of T_1 , T_2 and T_3 be:

$$f(t_1, t_2, t_3) = \begin{cases} \lambda^3 e^{-\lambda t_3} & \text{if } t_3 > t_2 > t_1 > 0\\ 0 & \text{otherwise} \end{cases}$$

(a) (10 points) Compute the marginals $f_{T_1}(t_1)$, $f_{T_2}(t_2)$, $f_{T_3}(t_3)$.

(b) (10 points) Compute $E(T_1)$, $E(T_2)$ and $E(T_3)$.

(c) (10 points) Compute the probability that $T_3 > T_1 + T_2$.

- - (a) (10 points) Compute the $P(Y \le y)$, that is the probability that $X_1 + X_2 \le y$, for a given y. (**Hint**: draw the x_1, x_2 plane with the region where the j.p.d.f. of X_1 and X_2 is not 0 and the region where $x_1 + x_2 \le y$.)

(b) (10 points) Use the previous result to compute the p.d.f. of Y.

The same thing holds for N_2 . Finally N_1 and N_2 are independent. When you arrive at the lines you chose the line with less people. If the two lines have the same number of people you randomly chose one of the two with equal probabilities. Let M_1 and M_2 the number of people on each line after you put yourself on one of them.

(a) (10 points) Compute $P(M_1 = 1 \text{ and } M_2 = 1)$. (**Hint**: which values of N_1 and N_2 give you the situation $M_1 = 1$ and $M_2 = 1$. Think at what can have happened when you arrived at the lines.)

(b) (10 points) Compute $P(M_1 = 2 \text{ and } M_2 = 1)$. (**Hint** wich values of N_1 and N_2 give you the situation $M_1 = 2$ and $M_2 = 1$. Think at what can have happened when you arrived at the lines.)

(c) (10 points) Compute the j.p.m.f of M_1 and M_2 . Represent it as a table.

(d) (10 points) Compute $Cov(M_1, M_2)$ and $Corr(M_1, M_2)$.