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Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 point

Consider the differential equation

ẋ = −x3 + ax (1)

where a is a real number.

(a) (10 points) For all possible values of a, find the fixed points and determine whether
they are sinks or sources. Find the value of a for which there is a bifurcation.

Solution: The fixed points are the solutions of −x3 + ax = 0. If a < 0 there is
only one solution x = 0. If a > 0 there are 3 solutions: x = 0 and x = ±√

a.

Form the derivative we see that x = 0 is a sink in a < 0 and a source if a > 0
while x = ±√

a are sinks for all a > 0. Moreover for a = 0, −x3 is positive for
x negative and negative for x positive so that x = 0 is a sink for a = 0.

Summarizing, a = 0 is a bifurcatrion. For a ≤ 0 there is only one fixed point at
x = 0 and it is a sink. For a > 0 there are 3 fixed points, one source at x = 0
and two sinks at x = ±√

a.
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(b) (10 points) Sketch the solution graphs and the phase line of (1) for a before and
after the bifurcation.

Solution: For a ≤ 0 the solution graphs and the phase line look like:

10-1

1

0

-1

While for a > 0 the solution graphs and the phase line look like:

10-1

√
a

0

-
√

a
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(c) (10 points) Draw a bifurcation diagram for (1).

Solution: The bifurcation diagram looks like:

0

0
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Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 point

Consider the system

Ẋ = AX (2)

where

A =
(

1 + 3a −2
4a2 1 − 3a

)

where a is a real number.

(a) (10 points) Find the general solution of (2) for a 6= 0.

Solution:

The eigenvalues are the solutions of:

λ2 − 2λ + (1 − a2) = 0

so that
λ± = 1 ± a.

The relative eigenvectors are

V+ =
(

1
a

)

V− =
(

1
2a

)

The general solution is

X(t) = c1e
(1+a)t

(

1
a

)

+ c2e
(1−a)t

(

1
2a

)
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(b) (10 points) Find the general solution of (2) for a = 0.

Solution: For a = 0 the matrix A becomes:

A =
(

1 −2
0 1

)

Thus

V1 =
(

1
0

)

is an eigenvector. The vector

V2 =
(

0
−1

2

)

satisfies
AV2 = V2 + V1

so that the general solution is

X(t) = c1e
t

(

1
0

)

+ c2e
t

(

t
−1

2

)
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(c) (10 points (bonus)) Let Xa(t) be the solution of (2) satisfying Xa(0) =
(

0
1

)

. Show

that Xa(t) is continuous in a for every t. (Hint: remember that lima→0(e
at −

e−at)/a = 2t)

Solution: The only place where we can have problem is for a = 0. For a 6= 0
we have that

Xa(t) = −1

a
e(1+a)t

(

1
a

)

+
1

a
e(1−a)t

(

1
2a

)

= et

( e−at−eat

a

−e−at + 2eat

)

so that

lim
a→0

Xa(t) = et

(−2t
1

)

On the other hand, from point (b) we get

X0(t) = −2et

(

t
−1

2

)

so that
lim
a→0

Xa(t) = X0(t)

and Xa(t) is continuous for every t.
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Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 point

Consider the differential equation:

Ẋ = AX (3)

where

A =
(−1 1
−1 −1

)

(a) (10 points) Let X(t) =
(

x1(t)
x2(t)

)

be a solution of (3). Call

ρ(t) =
√

x1(t)2 + x2(t)2

Show that:
ρ̇ = −ρ

Solution: Differentiating we get

ρ̇ =
x1ẋ1 + x2ẋ2
√

x2
1 + x2

2

=
x1(−x1 + x2) + x2(−x1 − x2)

√

x2
1 + x2

2

= − x2
1 + x2

2
√

x2
1 + x2

2

= −ρ

where we used that ẋ1 = −x1 + x2 and ẋ2 = −x1 − x2.
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(b) (10 points) Show that the function H(x1, x2) = (y1, y2) defined by

{

y1 = cos(ln(ρ))x1 + sin(ln(ρ))x2

y2 = − sin(ln(ρ))x1 + cos(ln(ρ))x2

is a conjugacy between (3) and
Ẏ = BY (4)

with

B =
(−1 0

0 −1

)

and Y =
(

y1

y2

)

. Here, like in point (a), ρ =
√

x2
1 + x2

2. (Hint: Compute first

d
dt

ln(ρ) and use it to compute ẏ1 and ẏ2 and show that they satisfy (4).)

Solution: First we have
d

dt
ln(ρ) =

ρ̇

ρ
= −1

so that

ẏ1 = sin(ln(ρ))x1 + cos(ln(ρ))ẋ1 − cos(ln(ρ))x2 + sin(ln(ρ))ẋ2

using that ẋ1 = −x1 + x2 and ẋ2 = −x1 − x2 we get

ẏ1 = − cos(ln(ρ))x1 − sin(ln(ρ))x2 = −y1

Analogously

ẏ2 = cos(ln(ρ))x1 − sin(ln(ρ))ẋ1 + sin(ln(ρ))x2 + cos(ln(ρ))ẋ2

or
ẏ2 = sin(ln(ρ))x1 − cos(ln(ρ))x2 = −y2

This implies that

Ẏ =
(−1 0

0 −1

)

Y.
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(c) (10 points (bonus)) Write the conjugacy between

Ẋ = AX (5)

where

A =
(

α β
−β α

)

and (4). Here α < 0. (Hint: First modify H of part (b) to conjugate (5) to the

system with matrix
(

α 0
0 α

)

.)

Solution: Let Hβ(x1, x2) = (z1, z2) be defined by

{

z1 = cos(β ln(ρ))x1 + sin(β ln(ρ))x2

z2 = − sin(β ln(ρ))x1 + cos(β ln(ρ))x2

then we have

Ż =
(

α 0
0 α

)

Z.

This follows from a computation almost identical to that of point (b). Let now
Gα(z1, z2) = (y1, y2) be defined by

{

y1 = sgn(z1)|z1|−
1

α

y2 = sgn(z2)|z2|−
1

α

then

Ẏ =
(−1 0

0 −1

)

Y.

Finally Iα,β = Gα ◦ Hβ is the conjugacy we were looking for.
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Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 point

Let A be a matrix such that
A2 = I

where I is the identity matrix. Show that

etA = cosh(t)I + sinh(t)A.

(Hint: You need the power series expansion of cosh(t) and sinh(t). To find them you
can use that cosh(t) = cos(it) and sinh(t) = −i sin(it).)

Solution: First we find that:

cosh(t) =
∞
∑

n=0

(−1)n(it)2n

(2n)!
=

∞
∑

n=0

t2n

(2n)!

while

sinh(t) = i
∞
∑

n=0

(−1)n(it)2n+1

(2n + 1)!
=

∞
∑

n=0

t2n+1

(2n + 1)!

Observe now that A2n = I while A2n+1 = A so that

etA =
∞
∑

n=0

tnAn

n!
= I

∞
∑

n=0

t2n

(2n)!
+ A

∞
∑

n=0

t2n+1

(2n + 1)!
= cosh(t)I + sinh(t)A.
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