No books or notes allowed. No laptop or wireless devices allowed. Write clearly.

Name: \qquad

Question:	1	2	3	4	Total
Points:	30	20	20	10	80
Score:					

Question:	1	2	3	4	Total
Bonus Points:	0	10	10	0	20
Score:					

Question 1.. 30 point
Consider the differential equation

$$
\begin{equation*}
\dot{x}=-x^{3}+a x \tag{1}
\end{equation*}
$$

where a is a real number.
(a) (10 points) For all possible values of a, find the fixed points and determine whether they are sinks or sources. Find the value of a for which there is a bifurcation.

Solution: The fixed points are the solutions of $-x^{3}+a x=0$. If $a<0$ there is only one solution $x=0$. If $a>0$ there are 3 solutions: $x=0$ and $x= \pm \sqrt{a}$.
Form the derivative we see that $x=0$ is a sink in $a<0$ and a source if $a>0$ while $x= \pm \sqrt{a}$ are sinks for all $a>0$. Moreover for $a=0,-x^{3}$ is positive for x negative and negative for x positive so that $x=0$ is a sink for $a=0$.
Summarizing, $a=0$ is a bifurcatrion. For $a \leq 0$ there is only one fixed point at $x=0$ and it is a sink. For $a>0$ there are 3 fixed points, one source at $x=0$ and two sinks at $x= \pm \sqrt{a}$.
(b) (10 points) Sketch the solution graphs and the phase line of (1) for a before and after the bifurcation.

Solution: For $a \leq 0$ the solution graphs and the phase line look like:

While for $a>0$ the solution graphs and the phase line look like:

(c) (10 points) Draw a bifurcation diagram for (1).

Solution: The bifurcation diagram looks like:

Consider the system

$$
\begin{equation*}
\dot{X}=A X \tag{2}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{cc}
1+3 a & -2 \\
4 a^{2} & 1-3 a
\end{array}\right)
$$

where a is a real number.
(a) (10 points) Find the general solution of (2) for $a \neq 0$.

Solution:

The eigenvalues are the solutions of:

$$
\lambda^{2}-2 \lambda+\left(1-a^{2}\right)=0
$$

so that

$$
\lambda_{ \pm}=1 \pm a
$$

The relative eigenvectors are

$$
V_{+}=\binom{1}{a} \quad V_{-}=\binom{1}{2 a}
$$

The general solution is

$$
X(t)=c_{1} e^{(1+a) t}\binom{1}{a}+c_{2} e^{(1-a) t}\binom{1}{2 a}
$$

(b) (10 points) Find the general solution of (2) for $a=0$.

Solution: For $a=0$ the matrix A becomes:

$$
A=\left(\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right)
$$

Thus

$$
V_{1}=\binom{1}{0}
$$

is an eigenvector. The vector

$$
V_{2}=\binom{0}{-\frac{1}{2}}
$$

satisfies

$$
A V_{2}=V_{2}+V_{1}
$$

so that the general solution is

$$
X(t)=c_{1} e^{t}\binom{1}{0}+c_{2} e^{t}\binom{t}{-\frac{1}{2}}
$$

(c) (10 points (bonus)) Let $X_{a}(t)$ be the solution of (2) satisfying $X_{a}(0)=\binom{0}{1}$. Show that $X_{a}(t)$ is continuous in a for every t. (Hint: remember that $\lim _{a \rightarrow 0}\left(e^{a t}-\right.$ $\left.e^{-a t}\right) / a=2 t$)

Solution: The only place where we can have problem is for $a=0$. For $a \neq 0$ we have that

$$
X_{a}(t)=-\frac{1}{a} e^{(1+a) t}\binom{1}{a}+\frac{1}{a} e^{(1-a) t}\binom{1}{2 a}=e^{t}\binom{\frac{e^{-a t}-e^{a t}}{a}}{-e^{-a t}+2 e^{a t}}
$$

so that

$$
\lim _{a \rightarrow 0} X_{a}(t)=e^{t}\binom{-2 t}{1}
$$

On the other hand, from point (b) we get

$$
X_{0}(t)=-2 e^{t}\binom{t}{-\frac{1}{2}}
$$

so that

$$
\lim _{a \rightarrow 0} X_{a}(t)=X_{0}(t)
$$

and $X_{a}(t)$ is continuous for every t.

Consider the differential equation:

$$
\begin{equation*}
\dot{X}=A X \tag{3}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{cc}
-1 & 1 \\
-1 & -1
\end{array}\right)
$$

(a) (10 points) Let $X(t)=\binom{x_{1}(t)}{x_{2}(t)}$ be a solution of (3). Call

$$
\rho(t)=\sqrt{x_{1}(t)^{2}+x_{2}(t)^{2}}
$$

Show that:

$$
\dot{\rho}=-\rho
$$

Solution: Differentiating we get

$$
\dot{\rho}=\frac{x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}=\frac{x_{1}\left(-x_{1}+x_{2}\right)+x_{2}\left(-x_{1}-x_{2}\right)}{\sqrt{x_{1}^{2}+x_{2}^{2}}}=-\frac{x_{1}^{2}+x_{2}^{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}=-\rho
$$

where we used that $\dot{x}_{1}=-x_{1}+x_{2}$ and $\dot{x}_{2}=-x_{1}-x_{2}$.
(b) (10 points) Show that the function $H\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)$ defined by

$$
\left\{\begin{array}{l}
y_{1}=\cos (\ln (\rho)) x_{1}+\sin (\ln (\rho)) x_{2} \\
y_{2}=-\sin (\ln (\rho)) x_{1}+\cos (\ln (\rho)) x_{2}
\end{array}\right.
$$

is a conjugacy between (3) and

$$
\begin{equation*}
\dot{Y}=B Y \tag{4}
\end{equation*}
$$

with

$$
B=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

and $Y=\binom{y_{1}}{y_{2}}$. Here, like in point (a), $\rho=\sqrt{x_{1}^{2}+x_{2}^{2}}$. (Hint: Compute first $\frac{d}{d t} \ln (\rho)$ and use it to compute \dot{y}_{1} and \dot{y}_{2} and show that they satisfy (4).)

Solution: First we have

$$
\frac{d}{d t} \ln (\rho)=\frac{\dot{\rho}}{\rho}=-1
$$

so that

$$
\dot{y}_{1}=\sin (\ln (\rho)) x_{1}+\cos (\ln (\rho)) \dot{x}_{1}-\cos (\ln (\rho)) x_{2}+\sin (\ln (\rho)) \dot{x}_{2}
$$

using that $\dot{x}_{1}=-x_{1}+x_{2}$ and $\dot{x}_{2}=-x_{1}-x_{2}$ we get

$$
\dot{y}_{1}=-\cos (\ln (\rho)) x_{1}-\sin (\ln (\rho)) x_{2}=-y_{1}
$$

Analogously

$$
\dot{y}_{2}=\cos (\ln (\rho)) x_{1}-\sin (\ln (\rho)) \dot{x}_{1}+\sin (\ln (\rho)) x_{2}+\cos (\ln (\rho)) \dot{x}_{2}
$$

or

$$
\dot{y}_{2}=\sin (\ln (\rho)) x_{1}-\cos (\ln (\rho)) x_{2}=-y_{2}
$$

This implies that

$$
\dot{Y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) Y .
$$

(c) (10 points (bonus)) Write the conjugacy between

$$
\begin{equation*}
\dot{X}=A X \tag{5}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right)
$$

and (4). Here $\alpha<0$. (Hint: First modify H of part (b) to conjugate (5) to the system with matrix $\left(\begin{array}{cc}\alpha & 0 \\ 0 & \alpha\end{array}\right)$.)

Solution: Let $H_{\beta}\left(x_{1}, x_{2}\right)=\left(z_{1}, z_{2}\right)$ be defined by

$$
\left\{\begin{array}{l}
z_{1}=\cos (\beta \ln (\rho)) x_{1}+\sin (\beta \ln (\rho)) x_{2} \\
z_{2}=-\sin (\beta \ln (\rho)) x_{1}+\cos (\beta \ln (\rho)) x_{2}
\end{array}\right.
$$

then we have

$$
\dot{Z}=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \alpha
\end{array}\right) Z .
$$

This follows from a computation almost identical to that of point (b). Let now $G_{\alpha}\left(z_{1}, z_{2}\right)=\left(y_{1}, y_{2}\right)$ be defined by

$$
\left\{\begin{array}{l}
y_{1}=\operatorname{sgn}\left(z_{1}\right)\left|z_{1}\right|^{-\frac{1}{\alpha}} \\
y_{2}=\operatorname{sgn}\left(z_{2}\right)\left|z_{2}\right|^{-\frac{1}{\alpha}}
\end{array}\right.
$$

then

$$
\dot{Y}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) Y
$$

Finally $I_{\alpha, \beta}=G_{\alpha} \circ H_{\beta}$ is the conjugacy we were looking for.

Let A be a matrix such that

$$
A^{2}=I
$$

where I is the identity matrix. Show that

$$
e^{t A}=\cosh (t) I+\sinh (t) A
$$

(Hint: You need the power series expansion of $\cosh (t)$ and $\sinh (t)$. To find them you can use that $\cosh (t)=\cos (i t)$ and $\sinh (t)=-i \sin (i t)$.)

Solution: First we find that:

$$
\cosh (t)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(i t)^{2 n}}{(2 n)!}=\sum_{n=0}^{\infty} \frac{t^{2 n}}{(2 n)!}
$$

while

$$
\sinh (t)=i \sum_{n=0}^{\infty} \frac{(-1)^{n}(i t)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{t^{2 n+1}}{(2 n+1)!}
$$

Observe now that $A^{2 n}=I$ while $A^{2 n+1}=A$ so that

$$
e^{t A}=\sum_{n=0}^{\infty} \frac{t^{n} A^{n}}{n!}=I \sum_{n=0}^{\infty} \frac{t^{2 n}}{(2 n)!}+A \sum_{n=0}^{\infty} \frac{t^{2 n+1}}{(2 n+1)!}=\cosh (t) I+\sinh (t) A
$$

