No books or notes allowed. No laptop or wireless devices allowed. Write clearly.

Name: \qquad

Question:	1	2	3	4	5	Total
Points:	35	30	15	20	0	100
Score:						

Question:	1	2	3	4	5	Total
Bonus Points:	0	0	0	0	20	20
Score:						

Question 1.. 35 + 0 point
Let $f(x)$ be the periodic function of period π given by:

$$
f(x)=\left(4 x^{2}-\pi^{2}\right) \cos x \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
$$

and extended periodically to all \mathbb{R}.
(a) (10 points) Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Solution: Observe that $f(\pi / 2)=f(-\pi / 2)$ so that

$$
f^{\prime}(x)=8 x \cos x-\left(4 x^{2}-\pi^{2}\right) \sin x
$$

Again we have that $f^{\prime}(\pi / 2)=f^{\prime}(-\pi / 2)$ so that

$$
f^{\prime \prime}(x)=8 \cos x-16 x \sin x-\left(4 x^{2}-\pi^{2}\right) \cos x
$$

(b) (10 points) Are f, f^{\prime} and $f^{\prime \prime}$, piecewise continuous? continuous? piecewise smooth? (Justify your answer.)

Solution: We only have to check the end points. From what we said above we have that f and f^{\prime} are continuous. Observe that $f^{\prime \prime}(\pi / 2)=f^{\prime \prime}(-\pi / 2)$ so also $f^{\prime \prime}$ is continuous. Finally we have

$$
f^{\prime \prime \prime}(x)=-24 \sin x-24 x \cos x-\left(4 x^{2}-\pi^{2}\right) \sin x
$$

with $f^{\prime \prime \prime}(\pi / 2)=-24$ and $f^{\prime \prime \prime}(-\pi / 2)=24$.
This implies that f, f^{\prime} and $f^{\prime \prime}$ are sectionally smooth.
(c) (15 points) Compute the Fourier series for f, f^{\prime} and $f^{\prime \prime}$ and discuss their convergence. Remember that

$$
\cos a \cos b=(\cos (a+b)+\cos (a-b)) / 2
$$

and

$$
\int x^{2} \cos (a x) d x=\frac{a^{2} x^{2} \sin (a x)-2 \sin (a x)+2 a x \cos (a x)}{a^{3}}
$$

Solution: We first find the Fourier series of $\cos (x)$. Since it is even we have:

$$
\begin{align*}
& A_{0}^{1}=\frac{2}{\pi} \tag{1}\\
& A_{n}^{1}=\frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (2 n x) \cos (x) d x=\frac{4(-1)^{n+1}}{\pi} \frac{1}{4 n^{2}-1} \tag{2}
\end{align*}
$$

We then have to compute the Fourier series of $x^{2} \cos (x)$. Again we get

$$
\begin{align*}
A_{0}^{2} & =-\frac{4}{\pi}+\frac{\pi}{2} \tag{3}\\
A_{n}^{2} & =\frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2} \cos (2 n x) \cos (x) d x= \tag{4}\\
& =\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2} \cos ((2 n+1) x) d x+\frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^{2} \cos ((2 n-1) x) d x \tag{5}
\end{align*}
$$

Observe now that $\cos ((2 n \pm 1) x)=0$ so that the third term in the above integral does not appear. Moreover $\sin ((2 n+1) \pi / 2)=-\sin ((2 n-1) \pi / 2)$ so that we get

$$
\begin{align*}
A_{n} & =-\left.\frac{2}{\pi}\left(\frac{1}{(2 n+1)^{3}}-\frac{1}{(2 n-1)^{3}}\right) \sin ((2 n+1) x)\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}+ \tag{6}\\
& +\left.\frac{\pi}{4}\left(\frac{1}{2 n+1}-\frac{1}{2 n-1}\right) \sin ((2 n+1) x)\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}= \tag{7}\\
& =\frac{8(-1)^{n}}{\pi} \frac{12 n^{2}-1}{\left(4 n^{2}-1\right)^{3}}+(-1)^{n+1} \pi \frac{1}{4 n^{2}-1} \tag{8}
\end{align*}
$$

So that we get:

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (2 n x)
$$

with

$$
a_{0}=-\frac{16}{\pi} \quad a_{n}=\frac{32(-1)^{n}}{\pi} \frac{\left(12 n^{2}-1\right)}{\left(4 n^{2}-1\right)^{3}}
$$

A Trick: From the above computation we have:

$$
f^{i v}(x)=-48 \cos (x)+32 x \sin (x)+\left(4 x^{2}-\pi^{2}\right) \cos (x)+48 \delta\left(x-\frac{\pi}{2}\right)
$$

so that

$$
2 f^{\prime \prime}(x)+f^{i v}(x)+f(x)=-32 \cos (x)-48 \delta\left(x-\frac{\pi}{2}\right)
$$

Assuming that

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (2 n x)
$$

we have

$$
f^{\prime \prime}(x)=-\sum_{n=0}^{\infty} 4 n^{2} a_{n} \cos (2 n x) \quad f^{i v}(x)=\sum_{n=0}^{\infty} 16 n^{4} a_{n} \cos (2 n x)
$$

while

$$
\delta\left(x-\frac{\pi}{2}\right)=\frac{1}{\pi}+\frac{2}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \cos (2 n x)
$$

so that we get, using the Fourier series of $\cos (x)$,

$$
\left(16 n^{4}-8 n^{2}+1\right) a_{n}=\frac{128(-1)^{n}}{\pi} \frac{1}{4 n^{2}-1}+\frac{96(-1)^{n}}{\pi}
$$

for $n>0$, or

$$
a_{0}=-\frac{16}{\pi} \quad a_{n}=\frac{32(-1)^{n}}{\pi} \frac{\left(12 n^{2}-1\right)}{\left(4 n^{2}-1\right)^{3}}
$$

Let $f(x)$ be the function:

$$
f(x)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin (n x)
$$

Answer the following questions.
(a) (10 points) Is f continuous?

Solution: Yes. Indeed we have that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

and thus, due to Theorem 1, the series converge uniformly to a continuous function.
(b) (10 points) Does the Fourier series for f converge uniformly?

Solution: Yes. Indeed we have that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

and thus, due to Theorem 1, the series converge uniformly to a continuous function.
(c) (10 points) Is $f(x)$ sectionally smooth? (Hint: try to compute $f^{\prime}(0)$.)

Solution: Observe that $f^{\prime}(x)$, if it exists, must be given by

$$
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{1}{n} \cos (n x)
$$

so that

$$
f^{\prime}(0)=\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

This implies that, if $f^{\prime}(x)$ exists, it cannot be sectionally continuous so that $f(x)$ is not sectionally smooth.

Consider the heat equation for a rod of length l and heat conductivity κ :

$$
\left\{\begin{array}{l}
\frac{d}{d t} u(x, t)=\kappa \frac{d^{2}}{d x^{2}} u(x, t) \\
u(0, t)=T_{0} \quad u(l, t)=T_{1} \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

If $u(x, t)$ is a solution of the above equation, set

$$
x=l y \quad t=\frac{l^{2}}{\kappa} s
$$

and

$$
v(y, s)=u\left(l y, \frac{l^{2}}{\kappa} s\right)
$$

Write an equation for $v(y, s)$, including boundary condition and initial condition. (Hint: compute $d v(y, s) / d s$ and $d^{2} v(y, s) / d y^{2}$ in term of $d u(x, t) / d t$ and $d^{2} u(x, t) / d x^{2}$ and use the heat equation.)

Solution: We have

$$
\begin{aligned}
\frac{d}{d s} v(y, s) & =\frac{d}{d s} u\left(l y, \frac{l^{2}}{\kappa} s\right)=\frac{l^{2}}{\kappa} \dot{u}(x, t) \\
\frac{d^{2}}{d y^{2}} v(y, s) & =\frac{d^{2}}{d y^{2}} u\left(l y, \frac{l^{2}}{\kappa} s\right)=l^{2} u^{\prime \prime}(x, t)
\end{aligned}
$$

Moreover

$$
\begin{gathered}
v(0, s)=u\left(0, \frac{l^{2}}{\kappa} s\right)=T_{0} \\
v(1, s)=u\left(l, \frac{l^{2}}{\kappa} s\right)=T_{1} \\
v(y, 0)=u(l y, 0)=u_{0}(l y)
\end{gathered}
$$

so that v satisfies

$$
\left\{\begin{array}{l}
\frac{d}{d s} v(y, s)=\frac{d^{2}}{d y^{2}} v(y, s) \\
v(0, s)=T_{0} \quad v(1, s)=T_{1} \\
v(y, 0)=u_{0}(l y)
\end{array}\right.
$$

Let $f(x)$ be the function:

$$
f(x)= \begin{cases}1 & |x|<1 \\ 0 & |x| \geq 1\end{cases}
$$

(a) (10 points) Compute the Fourier transform of f. You can use real or complex notation, as you prefer.

Solution: Since f is even, we have

$$
f(x)=\int_{0}^{\infty} A(\omega) \cos (\omega x) d \omega
$$

where
$A(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) \cos (\omega x) d x=\frac{1}{2 \pi} \int_{-1}^{1} \cos (\omega x) d x=\left.\frac{1}{2 \pi} \frac{\sin (\omega x)}{\omega}\right|_{-1} ^{1}=\frac{1}{\pi} \frac{\sin (\omega)}{\omega}$
(b) (10 points) Use the result from the previous point and the theorem of convergence of Fourier transform to compute

$$
\int_{-\infty}^{\infty} \frac{\sin (\omega)}{\omega} d \omega
$$

Solution: The integral to compute is

$$
\int_{-\infty}^{\infty} \frac{\sin (\omega)}{\omega} d \omega=2 \int_{0}^{\infty} \frac{\sin (\omega)}{\omega} d \omega=\frac{\pi}{2} \int_{0}^{\infty} A(\omega) \cos (\omega \cdot 0) d \omega=\frac{\pi}{2} f(0)=\frac{\pi}{2}
$$

Consider the function

$$
f(x)=1+2 \sum_{n=1}^{\infty} a^{n} \cos (n x)
$$

with $0<a<1$. Find an explicit expression for $f(x)$. (Hint: write $\cos (n x)=(\exp (i n x)+$ $\exp (-i n x)) / 2$ and use it to write f in complex notation. Then use that $\sum_{n=0}^{\infty} z^{n}=$ $1 /(1-z)$ if $|z|<1$.)

Solution:

We have

$$
\begin{aligned}
f(x) & =1+\sum_{n=1}^{\infty} a^{n} e^{i n x}+\sum_{n=1}^{\infty} a^{n} e^{-i n x}=\sum_{n=0}^{\infty}\left(a e^{i x}\right)^{n}+\sum_{n=0}^{\infty}\left(a e^{-i x}\right)^{n}-1= \\
& =\frac{1}{1-a e^{i x}}+\frac{1}{1-a e^{-i x}}-1=-\frac{1-a^{2}}{1-2 a \cos (x)+a^{2}}
\end{aligned}
$$

