No books or notes allowed. No laptop or wireless devices allowed. Write clearly.

Name:

Question:	1	2	3	Total
Points:	50	10	40	100
Score:				

Question 1

 50 pointLet $f(x)$ be the periodic function of period π given by:

$$
f(x)=x \cos x \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
$$

and extended periodically to all \mathbb{R}.
(a) (10 points) Does f have any symmetry?

Solution: Yes. f is odd since $f(-x)=-x \cos (-x)=-x \cos (x)=-f(x)$.
(b) (10 points) Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Solution:

$$
\begin{gathered}
f^{\prime}(x)=\cos (x)-x \sin (x) \\
f^{\prime \prime}(x)=-2 \sin (x)-x \cos (x)
\end{gathered}
$$

(c) (10 points) Are f, f^{\prime} and $f^{\prime \prime}$, piecewise continuous? continuous? piecewise smooth? (Justify your answer.)

Solution: f is continuous since $f(\pi / 2)=0=f(-\pi / 2) . f^{\prime}$ is continuous since $\left.f^{\prime}(-\pi / 2)\right)=-\pi / 2=f(-\pi / 2) . f^{\prime \prime}$ has a jump discontinuity at $\pi / 2$.
So we have that

- f continuous and piecewise smooth
- f^{\prime} continuous and piecewise smooth
- $f^{\prime \prime}$ not continuous, picewise continuous and piecewise smooth
(d) (10 points) Compute the Fourier series for f, f^{\prime} and $f^{\prime \prime}$ and discuss their convergence. (Remember that

$$
\sin a \cos b=(\sin (a+b)+\sin (a-b)) / 2
$$

and

$$
\left.\int x \sin (a x) d x=-\frac{x \cos (a x)}{a}+\frac{\sin (a x)}{a^{2}}+C .\right)
$$

Solution: To compute the F.S. for f we just need the sine terms since the function is odd. We have:
$b_{n}=\frac{4}{\pi} \int_{0}^{\pi / 2} x \cos x \sin (2 n x) d x=\frac{2}{\pi} \int_{0}^{\pi / 2} x \sin (2 n+1) x d x+\frac{2}{\pi} \int_{0}^{\pi / 2} x \sin (2 n-1) x d x$
Observe that $\cos (2 n-1) \pi / 2=0$ for every $n, \sin (2 n-1) \pi / 2=-(-1)^{n}$ and $\sin (2 n+1) \pi / 2=(-1)^{n}$ so that

$$
b_{n}=\frac{2(-1)^{n}}{\pi}\left(\frac{1}{(2 n+1)^{2}}-\frac{1}{(2 n-1)^{2}}\right)=\frac{2(-1)^{n+1}}{\pi} \frac{8 n}{\left(4 n^{2}-1\right)^{2}}
$$

Finally we have

$$
\begin{aligned}
& f(x)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{8(-1)^{n+1} n}{\left(4 n^{2}-1\right)^{2}} \sin 2 n x \\
& f^{\prime}(x)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{16(-1)^{n+1} n^{2}}{\left(4 n^{2}-1\right)^{2}} \cos 2 n x \\
& f^{\prime \prime}(x)=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{32(-1)^{n} n^{3}}{\left(4 n^{2}-1\right)^{2}} \sin 2 n x
\end{aligned}
$$

Clearly the F.S. for f and f^{\prime} converge uniformly while the F.S. for $f^{\prime \prime}$ converges only pointwise.
(e) (10 points) Let $g(x)$ be the periodic function of period π given by:

$$
g(x)=\sin x \quad-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}
$$

and extended periodically to all \mathbb{R}. Use the results of point (d) to find the Fourier series of g without doing integrals.

Solution: It is enough to observe that

$$
g(x)=-\frac{f^{\prime \prime}(x)+f(x)}{2}
$$

to obtain

$$
g(x)=\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\left(32 n^{3}-8 n\right)(-1)^{n+1}}{\left(4 n^{2}-1\right)^{2}} \sin 2 n x
$$

Question 2. 10 point
Consider the heat equation for a rod of length l and heat conductivity κ :

$$
\left\{\begin{array}{l}
\frac{d}{d t} u(x, t)=\kappa \frac{d^{2}}{d x^{2}} u(x, t) \\
u(0, t)=T_{0} \quad u(l, t)=T_{1} \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

If $u(x, t)$ is a solution of the above equation, set

$$
x=l y \quad t=\frac{l^{2}}{\kappa} s
$$

and

$$
v(y, s)=u\left(l y, \frac{l^{2}}{\kappa} s\right)
$$

Write an equation for $v(y, s)$, including boundary condition and initial condition. (Hint: compute $d v(y, s) / d s$ and $d^{2} v(y, s) / d y^{2}$ in term of $d u(x, t) / d t$ and $d^{2} u(x, t) / d x^{2}$ and use the heat equation.)

Solution: Observe that

$$
\frac{d}{d s} v(y, s)=\frac{l^{2}}{\kappa} \frac{d}{d t} u\left(l y, \frac{l^{2}}{\kappa} s\right) \quad \frac{d^{2}}{d y^{2}} v(y, s)=l^{2} \frac{d^{2}}{d x^{2}} u\left(l y, \frac{l^{2}}{\kappa} s\right)
$$

Substituting in the equation we have:

$$
\frac{d}{d s} v(y, s)=\frac{d^{2}}{d y^{2}} v(y, s)
$$

Moreover $v(0, s)=u(0, t)=T_{0}$ and $v(1, s)=u(l, t)=T_{1}$. Finally $v(y, 0)=u_{0}(l y)$ so that the equation for v is

$$
\left\{\begin{array}{l}
\frac{d}{d s} v(y, s)=\frac{d^{2}}{d y^{2}} u(y, s) \\
v(0, s)=T_{0} \quad u(1, s)=T_{1} \\
v(y, 0)=u_{0}(l y)
\end{array}\right.
$$

Question 3
Consider the boundary value problem in $[0, \pi]$:

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d x^{2}} u(x)+(1+a)^{2} u(x)=\sin 2 x \\
u(0)=u(\pi)=0
\end{array}\right.
$$

where $a \neq 0$.
(a) (10 points) Find the solution $u_{a}(x)$ of the problem.

Solution: Clearly one particular solution is:

$$
u_{p}(x)=\frac{1}{(1+a)^{2}-4} \sin 2 x
$$

The general solution of the homogenous is:

$$
u_{h}(x)=b_{1} \cos (1+a) x+b_{2} \sin (1+a) x .
$$

It is easy to see that, if $a \neq 0, u_{h}$ cannot satisfy the boundary condition. Thus the only solution is:

$$
u_{a}(x)=\frac{1}{(1+a)^{2}-1} \sin 2 x
$$

(b) (10 points) Write the solution you found in point (a) when $a=0$. Is this the only solution of the problem for $a=0$?

Solution: We have $u_{0}(x)=-\sin (2 x) / 3$ but it is clear that there are infinitely many solution given by:

$$
u(x)=-\frac{1}{3} \sin 2 x+b \sin x
$$

with b generic.
(c) (10 points) Consider now the more general boundary value problem in $[0, \pi]$:

$$
\left\{\begin{array}{l}
\frac{d^{2}}{d x^{2}} u(x)+(1+a)^{2} u(x)=f(x) \\
u(0)=u(\pi)=0
\end{array}\right.
$$

with $a \neq 0$. Write

$$
f(x)=\sum_{n=1}^{\infty} f_{n} \sin n x
$$

and

$$
u(x)=\sum_{n=1}^{\infty} u_{n} \sin n x
$$

Find the coefficients u_{n} from the f_{n}. Use the fact that the equation is linear and has homogeneous boundary conditions.

Solution: Substituting into the equation we get:

$$
\left.\sum_{n=1}^{\infty}\left(-n^{2}+(1+a)^{2}\right) u_{n}\right) \sin n x=\sum_{n=1}^{\infty} f_{n} \sin n x
$$

so that for every n :

$$
u_{n}=\frac{f_{n}}{-n^{2}+(1+a)^{2}}
$$

(d) (10 points) Under which conditions on f does the solution you found in point (c) admit a limit when $a \rightarrow 0$?

Solution: Clearly we need $f_{1}=0$ if not u_{1} is not defined.
(e) (10 points (bonus)) Assume that f is piecewise smooth and $a \neq 0$. What can you say on the convergence of the F.S. for u ? and for u^{\prime} ?

Solution: Since f is picewise smooth we have that f_{n} are bounded so that the F.S. for u converges uniformly. On the other hand we cannot say anything on the convergence of the F.S. for u^{\prime}.

