1. Consider the periodic function

$$
f(x)=x(|x|-1) \quad-1 \leq x \leq 1
$$

(i) Does $f(x)$ has any symmetry?

We clearly have $f(-x)=-f(x)$ so that f is odd.
(ii) Is it continuous? Is it sectionally continuous and sectionally smooth?
f is continuous for $-1<x<1$. Moreover $f(-1)=f(1)=0$ so that f is continuous and thus sectionally continuous. $f^{\prime}(x)$ exists and is continuous for every x. Thus f is sectionally smooth.
(iii) Compute $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. Are them continuous, sectionally continuous, sectionally smooth?

$$
f^{\prime}(x)=2|x|-1 \quad f^{\prime \prime}(x)= \begin{cases}-2 & -1<x<0 \\ 2 & 0<x<1\end{cases}
$$

so that f^{\prime} is continuous and sectionally smooth while $f^{\prime \prime}$ is only sectionally smooth.
(iv) Compute the Fourier series of $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$. We have

$$
f^{\prime \prime}(x)=\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{n \pi} \sin (n \pi x)
$$

from which we get

$$
f^{\prime}(x)=-\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{n^{2} \pi^{2}} \cos (n \pi x)
$$

since we clearly have $\int_{-1}^{1} f^{\prime}(x) d x=0$. Finally we have

$$
f(x)=-\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{n^{3} \pi^{3}} \sin (n \pi x)
$$

(v) What can you say on the convergence of the Fourier series for $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$?
Clearly the F.S. for f anf f^{\prime} converge uniformly while the F.S. for $f^{\prime \prime}$ converges only pointwise.
(vi) Let

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \sin \frac{2 n \pi}{a} x+\sum_{n=1}^{\infty} b_{n} \cos \frac{2 n \pi}{a} x
$$

Compute:

$$
\sum_{n=1}^{\infty} n^{2}\left(a_{n}^{2}+b_{n}^{2}\right) \quad \sum_{n=1}^{\infty} n^{4}\left(a_{n}^{2}+b_{n}^{2}\right)
$$

From Parceval equality we get:

$$
\sum_{n=1}^{\infty} n^{2}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{\pi^{2}} \int_{-1}^{1} f^{\prime}(x)^{2} d x=\frac{2}{\pi^{2}} \int_{0}^{1}(2 x-1)^{2} d x=\frac{2}{3 \pi^{2}}
$$

and

$$
\sum_{n=1}^{\infty} n^{4}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{\pi^{4}} \int_{-1}^{1} f^{\prime \prime}(x)^{2} d x=\frac{2}{\pi^{4}} \int_{0}^{1} 4 d x=\frac{8}{\pi^{4}}
$$

(vii) (Bonus) Let

$$
f_{N}(x)=a_{0}+\sum_{n=1}^{N} a_{n} \sin \frac{2 n \pi}{a} x+\sum_{n=1}^{N} b_{n} \cos \frac{2 n \pi}{a} x
$$

Give an estimate of

$$
\sup _{x}\left|f(x)-f_{N}(x)\right|
$$

and

$$
\int_{-1}^{1}\left|f(x)-f_{N}(x)\right|^{2} d x
$$

2. Let $f(x)$ be a continuous function of period a with Fourier series given by:

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \sin \frac{2 n \pi}{a} x+\sum_{n=1}^{\infty} b_{n} \cos \frac{2 n \pi}{a} x
$$

(i) Find the Fourier series of

$$
\begin{array}{r}
g(x)=\frac{f(x)+f(-x)}{2} \\
g(x)=a_{0}+\sum_{n=1}^{\infty} b_{n} \cos \frac{2 n \pi}{a} x
\end{array}
$$

(ii) Find the Fourier series of

$$
g(x)=\frac{f(x)-f(-x)}{2}
$$

$$
g(x)=\sum_{n=1}^{\infty} a_{n} \sin \frac{2 n \pi}{a} x
$$

(iii) Find the Fourier series of

$$
\begin{gathered}
g(x)=f\left(2 x+\frac{a}{2}\right) \\
f\left(2 x+\frac{a}{2}\right)=a_{0}+\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{4 n \pi}{a} x+n \pi\right)+\sum_{n=1}^{\infty} b_{n} \cos \left(\frac{4 n \pi}{a} x+n \pi\right)
\end{gathered}
$$

Observe that $\cos (x+n \pi)=(-1)^{n} \cos x$ and $\sin (x+n \pi)=(-1)^{n} \sin x$ so that we can write

$$
f\left(2 x+\frac{a}{2}\right)=a_{0}+\sum_{n=1}^{\infty} c_{n} \sin \frac{2 n \pi}{a} x+\sum_{n=1}^{\infty} d_{n} \cos \frac{2 n \pi}{a} x
$$

where

$$
c_{n}=\left\{\begin{array}{ll}
(-1)^{\frac{n}{2}} a_{n} & n \text { even } \\
0 & n \text { odd }
\end{array} \quad d_{n}= \begin{cases}(-1)^{\frac{n}{2}} b_{n} & n \text { even } \\
0 & n \text { odd }\end{cases}\right.
$$

3. The oscillation $u(t)$ of a pendulum are desribed by the equation

$$
\ddot{u}(t)+\omega^{2} u(t)=\cos (t)
$$

Suppose the pendulum is initially at rest at its minimum, i.e. $u(0)=0$. You want to hit it at time 0 in such a way that after 1 second the pendulum will be back at the minimum position, i.e. $u(1)=0$. Which velocity $\dot{u}(0)$ should you give to the pendulum at time 0 ?
We first find a solution of the non homogenous equation. An easy guess is $u_{p}(t)=$ $a \cos (t)$. Substituting into the equation we get $a=1 /\left(\omega^{2}-1\right)$. Two indipendent solution of the homogenous equation are $u_{1}(t)=\cos (\omega t)$ and $u_{2}(t)=\sin (\omega t)$ so that the general solution is:

$$
u(t)=a_{1} \cos (\omega t)+a_{2} \sin (\omega t)+\frac{\cos t}{\omega^{2}-1}
$$

The first boundary condition implies $a_{1}=-1 /\left(\omega^{2}-1\right)$ while the second one gives:

$$
a_{2}=\frac{\cos \omega-\cos 1}{\left(\omega^{2}-1\right) \sin \omega}
$$

from which

$$
\dot{u}(0)=\frac{\omega(\cos \omega-\cos 1)}{\left(\omega^{2}-1\right) \sin \omega}
$$

