1. Consider the periodic function
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Does f(x) has any symmetry?
We clearly have f(—x) = —f(x) so that f is odd.

Is it continuous? Is it sectionally continuous and sectionally smooth?

f is continuous for —1 < x < 1. Moreover f(—1) = f(1) = 0 so that f is
continuous and thus sectionally continuous. f'(x) exists and is continuous for
every x. Thus f is sectionally smooth.

Compute f'(z) and f”(z). Are them continuous, sectionally continuous, section-
ally smooth?
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so that f' is continuous and sectionally smooth while f" is only sectionally smooth.

Compute the Fourier series of f(x), f'(z) and f”(z). We have
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from which we get
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since we clearly have / f(x)dz = 0. Finally we have
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What can you say on the convergence of the Fourier series for f(z), f'(z) and
7 (z)?

Clearly the F.S. for f anf f’ converge uniformly while the F.S. for f” converges
only pointwise.

Let
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Compute:
> nf(an+bn) Y nt(an +b7)

From Parceval equality we get:
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Give an estimate of

sup |f(z) — fn(z)]
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2. Let f(x) be a continuous function of period a with Fourier series given by:
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(i) Find the Fourier series of
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(ii) Find the Fourier series of
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(iii) Find the Fourier series of
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Observe that cos(x +nm) = (—1)" cosz and sin(x + nm) = (—1)"sinz so that we
can write
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where
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3. The oscillation u(t) of a pendulum are desribed by the equation
ii(t) + w?u(t) = cos(t)

Suppose the pendulum is initially at rest at its minimum, i.e. u(0) = 0. You want
to hit it at time O in such a way that after 1 second the pendulum will be back at
the minimum position, i.e. u(1) = 0. Which velocity %(0) should you give to the
pendulum at time 07

We first find a solution of the non homogenous equation. An easy guess is uy(t) =
acos(t). Substituting into the equation we get a = 1/(w?* —1). Two indipendent
solution of the homogenous equation are ui(t) = cos(wt) and us(t) = sin(wt) so that
the general solution is:
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u(t) = ay cos(wt) + ag sin(wt) + 1
The first boundary condition implies a; = —1/(w? — 1) while the second one gives:
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from which
w(cosw — cos 1)

(0) = (w? —1)sinw



