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Abstract
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tributed, copied, or posted. By and large, the material is not original and it is
extracted from the books and references listed below. These notes have been col-
lected so that students can avoid buying several books.
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Chapter 1

Refresher and all the way to the
Jordan Form

1.1 Preamble

Our goal in this Chapter is to arrive at obtaining the Jordan form of a linear trans-
formation over an arbitrary field. Chances are that some of you have already seen
the Jordan form of a matrix, most likely over the complex field. You will then ap-
preciate the derivation of it over an arbitrary field, since it is obtained just about
in the same way! At a high level, this is a consequence of the fact that elementary
row operations keep us on the field we work in.

Still, to obtain the Jordan form, we will need to introduce the key concepts of
eigenvalues and eigenvectors. No doubt we have all encountered these before, and
we are quite used to define eigenvalues from the characteristic equation

λ : det(A− λI) = 0→ eigenvalues

and associate eigenvector(s) to each eigenvalue, so that each eigenvalue has an as-
sociated algebraic and geometric multiplicity. Of course, this is absolutely fine, but
for the time being we will pretend that we do not know this (yet).

If not the Jordan form itself, you have probably seen already the following pro-
totypical result of diagonalization of matrices with real or complex entries by real
valued or complex valued matrices, respectively:

A ∈
{

Rn×n, with distinct real eigenvalues

Cn×n, with distinct eigenvalues
.

3
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Indeed, quite frequently, in introductory courses in Linear Algebra, these are the
results which are presented, leaving the most misleading expectation that all matri-
ces are diagonalizable! But, let me stress two key properties spelled out above, and
whose relevance will soon be clarified: (a) Matrices were assumed to have distinct
eigenvalues, and (b) Matrices with real entries were assumed to have real eigenvalues.

Observation 1.1.1 As you know, or will soon see, Rn×n can be thought of as a
transformation of vectors from Rn to Rn.

• In the next few pages, we want to keep ourselves somewhat disconnected from
the specificity of the entries in our matrices and obtain results independent of
the numerical type of the entries in the matrices. To do this, we need to brush
up on some abstraction.
Our next goal is to introduce the concept of vector space V over a field F

(F will always indicate a general field).

For the remaining part of this chapter, I have used material from [2] and [4].

1.2 Field

A field is a “commutative division ring”.
1. Ring (associative, always). It is a set R with two operations “+” and “·” such

that ∀ a, b, c ∈ R
(1) a + b ∈ R
(2) a + b = b + a
(3) (a + b) + c = a + (b + c)
(4) ∃ 0 ∈ R : a + 0 = a (zero element)
(5) ∃ − a ∈ R : a + (−a) = 0 (opposite element)
(6) a · b ∈ R
(7) a · (b · c) = (a · b) · c
(8) a · (b + c) = a · b + a · c, and (a + b) · c = a · c + b · c

2. Moreover, if a · b = b · a⇒ it is called a commutative ring.
3. Division ring, if the nonzero elements form a group under multiplication.

[NB: This implies that there is a unit element “1” in ring and every non-zero
element a has an inverse, write it 1/a.]

Examples 1.2.1 Examples of fields.
• Familiar fields we work with: R, C, Q (with the usual + and ·). These are fields

with infinitely many elements.
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• Z (usual + and ·) is a commutative ring, it has unit element, but it is not a field
(∄ “inverse” under multiplication).
• R = {Z (mod 7)} = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄} is a finite field.

(NB: if we had taken, say, {Z (mod 6)} ⇒ not a field.)

Recall. Remember that we say that a field F is of “characteristic 0” if it holds that
na 6= 0, for any a ∈ F, a 6= 0, and n > 0, any integer. On the other hand, F is called
of finite characteristic n if there exist a smallest positive integer n such that na = 0,
for all a ∈ F.

Exercises 1.2.2

(1) Give an example of a ring without unit element.
(2) Explain why {Z (mod 7)} is a field, but {Z (mod 6)} is not. [Hint: Can one

have (or not) a · b = 0 without a = 0 or b = 0?]
(3) Take the field {Z (mod 5)} = {0̄, 1̄, 2̄, 3̄, 4̄}. Complete the addition and multipli-

cation Tables. What is 1̄− 2̄?
(4) Give an example of a field of characteristic 2.
(5) Show that if F is of finite characteristic n, then n is a prime number.

1.3 Vector Space

This will always be indicated as V , over F (V contains the vectors, F the scalars).
V is a set ( 6= ∅) with “addition” + such that with respect to +, V is an Abelian

group. That is, for all w, v, z ∈ V we have

v + w = w + v ∈ V

∃ 0 : v + 0 = 0 + v = v

v + (−v) = 0

v + (w + z) = (v + w) + z

Moreover, ∀ α ∈ F, v ∈ V ⇒ αv ∈ V (multiplication by a scalar) and ∀ α, β ∈ F:

α(v + w) = αv + αw, (α + β)v = αv + βv, α(βv) = αβv, 1 v = v .

Exercise 1.3.1 Refresh yourself with the concepts of linear independence, bases,
dimensions, subspaces, etc., for a vector space V .
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Agreement. For us, V will always be finite dimensional, the default dimension
of V being the value n.

Example 1.3.2 Examples of familiar vector spaces are: V = Rn (F = R), V = Cn

(F = C (technically, also R is legitimate)), V = Qn (F = Q). Also the set of
real valued (m, n) matrices V = Rm×n, etc.. To avoid unneeded confusion, we will
henceforth restrict to the case in which the elements of the set V have numerical
type from the field F; e.g., V = Fm×n.

Definition 1.3.3 Consider a mapping between vector spaces V and W (both over
F):

T : V →W .

If
(1) T (v1 + v2) = Tv1 + Tv2, for all v1, v2 ∈ V ,
(2) T (αv) = αTv, for all v ∈ V and α ∈ F,
⇒ T is called homomorphism (or linear mapping, or linear transformation). The
set of all linear mappings between V and W is written as Hom(V, W ).

• Very important are the linear maps of V into itself, T : V → V . These are
elements of Hom(V, V ).
• It is simple to see that under the obvious operation of “+”, Hom(V, W ) is itself

a vector space over F:

(T + S)(v) = Tv + Sv, T (αv) = αT (v) .

Agreement. We will call two mappings S and T equal, and write S = T , if S and
T agree on a basis of V .

Theorem 1.3.4 Hom(V, W ) is a vector space of dimension mn, where n = dim(V )
and m = dim(W ). In particular, dim

(
Hom(V, V )

)
= n2.

Pf. We build a basis of Hom(V, W ). Let {v, . . . vn} be a basis for V , and {w1, . . . , wm}
be a basis for W . For i = 1, . . . , m, j = 1, . . . , n, define

Tij : V → W s.t. if v ∈ V , v = λ1v1 + · · ·+ λnvn ⇒ Tijv = λjwi ,
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that is:

Tijvk =

{

0, k 6= j

wi, k = j

There are mn such Tij. Now we show that they are a basis, that is:
(a) They span Hom(V, W ) (over F);
(b) they are linearly independent.

Take any S ∈ Hom(V, W ). Now, for i = 1 : n, take Svi ∈ W ⇒ Svi = α1iw1 +
· · ·+αmiwm (αji ∈ F). Also, take S0 = α11T11+α21T21+· · ·+αm1Tm1+α12T12+· · ·+
αn2Tn1 + · · ·+ αmnTmn. Then: S0vi = (α11T11 + · · ·+ αm1Tm1 + · · ·+ αmnTmn)vi =
α1iT1ivi + α2iT2ivi + · · ·+ αmiTmivi = α1iw1 + · · ·+ αmiwm.
.̇. Svi = S0vi, i = 1 : n and S is arbitrary, .̇. S and S0 agree on a basis of V , and .̇.
{Tij} span.
Next, show they are linearly independent. Suppose not. Then, there ∃ βij ∈ F,

i = 1, . . . , m; j = 1, . . . , n, not all 0 such that
∑

i,j βijTij = 0. For any i = 1, . . . , n,
we then have

0 = (
∑

i,j

βijTij)vi = β1iw1 + · · ·βmiwm ,

but {w1, . . . , wm} are linearly independent .̇. β1i = · · · = βmi = 0, for all i = 1 : n.
Contradiction. �

Examples 1.3.5 V = Rn, W = Rm; Hom(V, W ) = {Rn → Rm} (which will soon
be identified with Rm×n), has dimension mn. V = W = Cn, Hom(V, V ) = {Cn →
Cn} (which will soon be identified with Cn×n), has dimension n2 (over C).

Remark 1.3.6 There exists I ∈ Hom(V, V ) such that IT = TI = T (identity
element). This is simply because there exists I such that Iv = v, ∀ v ∈ V ; just take
αij = 0, j 6= i, αii = 1 in previous construction. [In other words, Hom(V, V ) is an
algebra with unit element.]

Definition 1.3.7 A linear transformation T is invertible –or nonsingular– if ∃ S ∈
Hom(V, V ) : TS = ST = I. We write it as S = T−1. If T is not invertible, it is
also called singular.
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1.3.1 Minimal Polynomial

An important consequence of the fact that Hom(V, V ) is a vector space is that
“Given any element T ∈ Hom(V, V ), there is a nontrivial polynomial q(x) ∈ F[x] of
degree at most n2 such that q(T ) = 0”. Let us verify this fact.
Pf. Take T ∈ Hom(V, V ), T 6= 0. Form I, T, T 2, . . . , T n2

. These are n2 +1 elements
⇒ they are linearly dependent.
⇒ ∃ α0, α1, . . . , αn2 ∈ F (not all 0) such that α0I + α1T + · · ·+ αn2T n2

= 0 that is,
T satisfies the nontrivial polynomial q(x) = α0 + α1x + · · ·+ αn2xn2

. �

Definition 1.3.8 The monic1 polynomial of lowest degree p(x) such that p(T ) = 0
is called minimal polynomial for T (over F).

Exercises 1.3.9 (Most from [2].) Below, T ∈ Hom(V, V ) and V is n-dimensional,
unless otherwise stated.
(1) Show that the minimal polynomial of T is unique. [Note that there must exist

one, since V is finite dimensional.]
(2) Show that T ∈ Hom(V, V ) is invertible ⇔ the constant term of the minimal

polynomial is not 0. [Hint: Seek directly a form for T−1.]
(3) Show that T singular ⇔ ∃ v ∈ V, v 6= 0 : Tv = 0.
(4) This is about nonsingular linear maps.

(a) Prove that the nonsingular elements in Hom(V, V ) form a group.
(b) Let F = {Z (mod 2)}, and let V be 2-dimensional over F. Compute the group

of nonsingular elements in Hom(V, V ). [Hint: Consider S3, the symmetric
group of order 3.]

(5) The transformation T ∈ Hom(V, V ) is called nilpotent, if T k = 0, for some
(integer) k > 0. [T k(v) is defined as the action T (T · · · (T (v)) · · · ) k-times. For
completeness, we also define T 0 = I.]
(a) Show that if T is nilpotent and Tv = αv, for some v 6= 0 and α ∈ F, then

α = 0.
(b) Show that if T is nilpotent, that is T k = 0 for some k, then T n = 0.
(c) Show that if T is nilpotent and α0 6= 0, then S = α0I + α1T + · · ·+ αpT

p is
invertible.

(6) Show that if T satisfies a polynomial q(x) ∈ F[x], and S is invertible, then
also S−1TS satisfies q(x). In particular, T and S−1TS have same minimal
polynomial.

1The leading coefficient is 1 ∈ F
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1.4 Eigenvalues and Eigenvectors

Here, let T ∈ Hom(V, V ) and V is n-dimensional.

Definition 1.4.1 λ ∈ F is eigenvalue of T if T−λI is singular. [NB: we are asking
λ ∈ F].
A vector v ∈ V , v 6= 0, is an eigenvector of T associated to the eigenvalue λ ∈ F, if
Tv = λv.

Exercises 1.4.2
(1) λ ∈ F is an eigenvalue of T ⇔ for some v 6= 0, v ∈ V , Tv = λv. In particular,

0 is an eigenvalue of T if and only if T is singular.
(2) Show that if λ ∈ F is eigenvalue of T ∈ Hom(V, V ), then λ is a root of the

minimal polynomial. [Hint: You know that P (T ) = 0.]
NB: As a consequence of this exercise, T has finitely many eigenvalues in F.

(3) If λ1, λ2, . . . , λk ∈ F are distinct eigenvalues of T ∈ Hom(V, V ) and v1, v2, . . . vk

are the associated eigenvectors, then v1, v2, . . . , vk are linearly independent.

A consequence of this last exercise is that:
“If dim(V ) = n⇒ T has at most n distinct eigenvalues in F”.
(Any k distinct eigenvalues correspond to k linearly independent eigenvectors.
But V is n-dimensional.)

Further, this last fact can be also reformulated as saying:

Basis of Eigenvectors
“If dim(V ) = n and T has n distinct eigenvalues in F ⇒ V has a basis of
eigenvectors of T”.

1.5 Matrices and canonical forms

As you may have seen before, to a linear transformation there is associated a matrix.
Let us see this correspondence.

Consider T ∈ Hom(V, W ), and let V be n-dimensional with basis {v1, . . . , vn},
and W be m-dimensional with basis {w1, . . . , wm}. Then, we have

Tvj =

m∑

i=1

aijwi , j = 1, . . . , n ,
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that is we associate to T the matrix A = (aij)i=1:m,j=1:n ∈ Fm×n. In the particular
case of T ∈ Hom(V, V ), we obtain a square matrix A = (aij)i=1:n,j=1:n ∈ Fn×n.

Remark 1.5.1 By virtue of the above correspondence, we will freely identify linear
transformations and matrices. Any result for matrices can be equivalently phrased
for linear transformations. Definitions of eigenvalues and eigenvectors are likewise
transported immediately to the matrix setting.

Exercise 1.5.2 Let {e(n)
i }i=1,...,n and {e(m)

i }i=1,...,m be the standard bases for Rn

and Rm, respectively. (As usual, these are the standard unit vectors:
(
e
(n,m)
i

)

j
=

{

0, i 6= j

1, i = j
, the only difference being how many entries there are in e

(n)
i and e

(m)
i .)

Find the basis {Tij} of which in Theorem 1.3.4 for Hom(V, W ) (equivalently, for
Rm×n).

Remark 1.5.3 We stress that the matrix associated to T depends on the basis cho-
sen for V . So, while the transformation viewed as mapping from V to V , say, is not
ambiguous, the matrix representation of T is.

The last remark is actually deeper than it sounds, because it suggests an Idea:
“Choose appropriate bases to get nice matrices”!

What precisely is meant by “nice” is in the eye of the beholder, but let us
tentatively agree that a nice matrix is one which has a form which reveals important
information, such as the eigenvalues, or the rank, etc..

As a matter of fact, this innocent sounding consideration above is at the heart
of much linear algebra: we usually (for convenience, simplicity, or necessity) use
simple bases to express linear transformations, and end up with matrices which are
not necessarily revealing structural information on the transformation itself. After-
wards, we try to transform these matrices into a nice form which reveals structural
information on the transformation. The operations we do (see Theorem 1.5.5) are
tantamount to changing bases. If we were able to guess the right basis before as-
sociating a matrix to the transformation, there would be little scope for further
work!

Example 1.5.4 For example, a nice matrix A, when T has n distinct eigenvalues
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in F, will be obtained upon realizing that relatively to its eigenvectors we have

For i = 1, . . . , n : Tvi = λivi ⇒ in this basis A =








λ1 0
λ2

. . .

0 λn








.

We will consider this diagonal form very nice indeed. As a matter of fact, we may
as well agree that a nice matrix is one which is as close as possible to being diagonal.

• An important result is that matrices representing the same linear transformation
in different bases, are similar matrices. That is:

Theorem 1.5.5 Let T ∈ Hom(V, V ), and suppose that A is the matrix associated
to T in the basis V = {v1, . . . , vn}, and B in the basis W = {w1, . . . , wn}. Then,
there exists C ∈ Fn×n, invertible, such that B = C−1AC.2 The matrix C is the
matrix associated to the linear transformation S which changes bases: Swi = vi,
i = 1 : n.

Exercises 1.5.6
(1) Prove Theorem 1.5.5.
(2) Show that similarity is an equivalence relation, and that it does not change eigen-

values of T .

As a consequence, we have

Corollary 1.5.7 (First Canonical Form: Diagonalization over F.) If A ∈ Fn×n

has n distinct eigenvalues λ1, . . . , λn in F, then AV = V Λ, where Λ =








λ1 0
λ2

. . .

0 λn








and V = [v1, . . . , vn] is the matrix of the eigenvectors.

Remark 1.5.8 Corollary 1.5.7 expresses a sufficient condition, but naturally a ma-
trix may be diagonalizable even if it has repeated eigenvalues. All one needs to have
are n linearly independent eigenvectors.

2This is called a similarity transformation and A and B are called similar matrices.
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Exercises 1.5.9
(1) Show that the only matrices in Fn×n commuting with all matrices in Fn×n are

αI.
(2) Show that there cannot be A, B ∈ Rn×n : AB − BA = I.

(3) Show that if A ∈ Fn×n, A =








α ∗ · · · ∗
. . .

. . .
...

. . . ∗
0 α








, α 6= 0, then A is invertible and

find its inverse.
(4) Let A ∈ Fn×n, and suppose Ak = 0 for some k. Show that I + A is invertible

and find (I + A)−1.

(5) Let M ∈ Fn×n be M =

(
A 0
0 B

)

with A ∈ Fn1×n1 and B ∈ Fn2×n2, n1 + n2 = n.

Then, show that C is diagonalizable (over F) if and only if A and B are.

The next theorem characterizes, fully, the situation when two matrices can be
diagonalized by the same similarity transformation.

Theorem 1.5.10 (Simultaneous Diagonalizability.) Let A, B ∈ Fn×n be diag-
onalizable (over F). Then, they are simultaneously diagonalizable if and only if
AB = BA.

Pf. Suppose there exist V such that V −1AV = DA and V −1BV = DB, with DA

and DB both diagonal. Then, obviously DADB = DBDA and thus

V DAV −1V DBV −1 = V DBV −1V DAV −1 ⇒ AB = BA .

Next, suppose that AB = BA and let V be the similarity that diagonalizes A:
V −1AV = DA, ordering the eigenvalues so that equal eigenvalues appear consecu-
tively along the diagonal of DA: DA = diag(λkInk

, k = 1, . . . , p). Let C = V −1BV ,
so that AB = BA rewrites as DAC = CDA. Partitioning C in block form confor-
mally to DA’s partitioning, we immediately get that C = diag(Ckk, k = 1, . . . , p).
Since B is diagonalizable, so is C, and thus so are the blocks Ckk, k = 1, . . . , p.
Let Tk be the similarities diagonalizing these blocks Ckk, k = 1, . . . , p, and let
T = diag(Tk, k = 1, . . . , p), so that T−1CT is diagonal. Now, given the block
diagonal structure of T , we also have T−1DAT = DA and so:

T−1
(
V −1AV

)
T and T−1

(
V −1BV

)
T
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are both diagonal. �

Although diagonal form is very nice, we may not be able to achieve it for a
certain transformation. In other words, for a certain given transformation T , there
may be no basis leading to a diagonal matrix representation of T . The next “nice”
form we look at is triangular (upper). This means that R ∈ Fn×n, R = (ri,j)i,j=1,...,n

is such that rij = 0 , i > j.

Fact 1.5.11 (Backward substitution) If R ∈ Fn×n is triangular and nonsingu-
lar, then we can always uniquely solve the linear system

Rx = b, for b ∈ Fn getting x ∈ Fn .

Remark 1.5.12 This is a very useful result. The algorithm to obtain x is called
“backward substitution.” Key ingredients are nonsingularity and the fact we are
doing the arithmetic in a field.

Exercises 1.5.13
(1) Develop the backward substitution algorithm of which above. Convince yourself

that all arithmetic operations keep you on the field F.
(2) Show that if R is triangular ∈ Fn×n, then its eigenvalues are precisely the ele-

ments on diagonal of R, and only these.

(3) Suppose that M ∈ Fn×n is in the block form M =

(
A C
0 B

)

, where A ∈ Fn1×n1

and B ∈ Fn2×n2, n1 +n2 = n, and that M has eigenvalues in F. Then, show that
λ ∈ F is an eigenvalue of M if and only if it is an eigenvalue of either A or B,
or both.

• The next result tells us that “If T ∈ Hom(V, V ) has all eigenvalues in F, then
there is a basis of V in which T is triangular” (i.e., its matrix representation
in this basis is). This result is effectively akin to the famous Schur’s form of a
matrix.

Theorem 1.5.14 (Second Canonical Form: Triangularization over F.) Suppose
A ∈ Fn×n has all its eigenvalues in F. Then, there is an invertible matrix B ∈ Fn×n

such that R = B−1AB is (upper) triangular. Moreover, we can arrange the entries
on the diagonal of R (the eigenvalues) in any order we like.
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Pf. Suppose we have eigenvalues λ1, λ2, . . . , and that this is the ordering we are
after.

The proof is by induction on n. Let c1 6= 0, Ac1 = λ1c1. Complete c1 to a basis:

⇒ A [c1, c̃2, . . . , c̃n]
︸ ︷︷ ︸

E

= [c1, c̃2, . . . , c̃n]
︸ ︷︷ ︸

E

[
λ1 ∗ · · · ∗
0 C

]

Now, eigenvalues of C must be also eigenvalues of A (because E−1AE =

(
λ1 ∗
0 C

)

).

By induction, ∃ D such that D−1CD is triangular with eigenvalues on the diagonal
ordered as we please. But then

A E

[
1 0
0 D

]

︸ ︷︷ ︸

B

= E

[
1 0
0 D

]

︸ ︷︷ ︸

B

[
1 0
0 D−1

] [
λ1 ∗
0 C

] [
1 0
0 D

]

︸ ︷︷ ︸

R

and R is upper triangular of the type we wanted (note that B is invertible since it
is the product of invertible matrices.) �

Corollary 1.5.15 If all eigenvalues of A (equivalently, of T ) are in F, then ∃ a
polynomial q(x) ∈ F[x] of degree n such that q(A) = 0 (equivalently, q(T ) = 0).

Pf. Take basis given by columns of B in Theorem 1.5.14, call these v1, . . . , vn:

A[v1, . . . , vn] = [v1, . . . , vn]






λ1 r12 · · · r1n

λ2 · · · ...

0
. . . λn




 :







Av1 = λ1v1

Av2 = r12v1 + λ2v2

...

Avi = r1iv1 + r2iv2 + · · ·+ ri−1,ivi−1 + λivi, i = 1, 2, . . . , n

⇒







(A− λ1I)v1 = 0

(A− λ2I)v2 = r12v1

...

(A− λiI)vi = r1iv1 + r2iv2 + · · ·+ ri−1,ivi−1, i = 1, 2, . . . , n.
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Now, observe that

(A− λ1I)(A− λ2I) = (A− λ2I)(A− λ1I) etc.,

.̇. (A− λ1I)(A− λ2I) · · · (A− λiI)vk = 0, k = 1, . . . , i
.̇. (A− λ1I)(A− λ2I) · · · (A− λnI)
︸ ︷︷ ︸

S

vk = 0, k = 1 : n

.̇. S annihilates a basis of V .̇. S ≡ 0
.̇. A satisfies the polynomial equation (x− λ1) · · · (x− λn) = 0. �

Remarks 1.5.16
(1) To get triangular form, we did not assume distinct eigenvalues, but still assumed

all eigenvalues in F.
(2) The polynomial in Corollary 1.5.15 is effectively the characteristic polynomial,

to be introduced below. Corollary 1.5.15, then, is the celebrated Cayley–Hamilton

theorem.

• Our next step will be to further simplify, if possible, the triangular structure
we achieved. (Remember that we can get diagonal over F if all eigenvalues are
distinct and in F). The key step will be developed in Exercise 1.5.18 below.

Exercise 1.5.17 This is a referesher of frequent matrix manipulations.

• Block multiplication. We will make repeated use of multiplying matrices parti-
tioned in compatible blocks. For example, let Aii, Bii ∈ Fni,ni, i = 1, 2, and let
A12, B12 ∈ Fn1,n2 and A21, B21 ∈ Fn2,n1, then:

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)

=

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)

.

• Transpose. If A ∈ Fm×n with entries (A)ij = aij, then AT ∈ Fn×m is the
matrix with entries (AT )ij = aji. AT is called transpose of A.

Exercise 1.5.18 We are going to put together several of the previous ingredients.

Given R ∈ F(n+m)×(n+m), R =

(
A −C
0 B

)

where C ∈ Fn×m, and

A ∈ Fn×n =






λ a12 · · · a1n

λ · · · ...

0
. . . λ




 , B ∈ Fm×m =






µ b12 · · · b1m

µ · · · ...

0
. . . µ




 , λ 6= µ.
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Then, ∃ unique X ∈ Fn×m such that

(
In −X
0 Im

)(
A −C
0 B

)(
In X
0 Im

)

=

(
A 0
0 B

)

.

Solution: Note that X must solve

AX −XB = C .

Rewrite this matrix equation as







λ a12 · · · a1n

. . .
. . .

...
λ an−1,n

λ













x11 · · · x1m
...

...
xn1 · · · xnm




−






x11 · · · x1m
...

...
xn1 · · · xnm













µ b12 · · · b1m

. . .
. . .

...
µ bm−1,m

µ








=






c11 · · · c1m
...

...
cn1 · · · cnm






Let us solve for the entries of X from the bottom to the top, and left to right.
From n-th row of X

1st column : λxn1 − µxn1 = cn1 → xn1 = cn1/(λ− µ)

2nd column : λxn2 − xn1bn2 − xn2µ = cn2 → xn2 = (cn2 + xn1b2)/(λ− µ)

...

m-th column :⇒ xnm

⇒ n-th row of X found.

Next, use the (n−1)-st row X. 1st column: λxn−1,1+an−1,nxn1−xn−1,1µ = cn−1,1 →
xn−1,1. Keep going. �

Exercise 1.5.19 Given R =








n1 n2 · · · np

n1 R11 R12 · · · R1p

n2 R22
. . .

...
...

. . . Rp−1,p

np O Rpp








where Rii =






λi ∗ · · · ∗
. . .

...∗
O λi




,

i = 1, . . . , p, and λi 6= λj, i 6= j. Then, there exist -unique- T =








In1 X12 · · · X1p

In2

. . .
...

. . .

O Inp







,
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Xij ∈ Fni×nj , such that T−1RT =








R11 O
R12

. . .

O Rpp







.

As a consequence of Exercise 1.5.19, we have

Corollary 1.5.20 (Block Diagonal Form.) If A ∈ Fn×n has all eigenvalues in F,

then there ∃ T ∈ Fn×n, invertible, such that T−1AT is block diagonal,






R11 0
. . .

0 Rpp




,

where each Rii is upper triangular with constant diagonal: Rii =








λi ∗ · · · ∗
. . .

. . .
...

. . . ∗
0 λi








,

and λi 6= λj, i 6= j.

• Is this as “simple” a form as we can get? The answer has a lot to do with
multiple eigenvalues, and nilpotent matrices. To appreciate this phrase, let us
first give the desired target result, then we’ll see how to get it.

1.5.1 Jordan Form

Definition 1.5.21 A matrix Jk(λ) ∈ Fk×k is called a Jordan block of size k, rel-

atively to the eigenvalue λ, if it is of the form Jk(λ) =










λ 1 0
λ 1

. . .
. . .
. . . 1

0 λ










. A

matrix J ∈ Fn×n is said to be in Jordan form if it is the direct sum of Jordan blocks:

J =








Jn1(λ1)
Jn2(λ2) O

. . .

O Jnk
(λk)








where n1 +n2 + · · ·+nk = n. The λi’s need

not be distinct.
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Remarks 1.5.22
(1) If k = n (hence ni = 1, for all i) ⇒ J is diagonal.
(2) Relatively to the same eigenvalue, customarily one chooses (as we will do below)

the sizes of the Jordan blocks in decreasing order.
(3) If k < n⇒ J cannot be transformed to diagonal form.

(If k < n ⇒ there is one block, say Jp ∈ Fp×p, p > 1. We show that this block
cannot be diagonalized. For, suppose the contrary: ∃ S : S−1JpS = Λp, diagonal

⇒ Λp =






λp 0
. . .

0 λp




 = λpI ⇒ Jp−λpI = SΛpS

−1−λpI = S(λpI−λpI)S−1 =

0, which is not true if p > 1.)

We are ready for the important result that matrices with eigenvalues in F can
be brought to Jordan form. In light of the last Remark above, this form cannot be
further simplified; that is, the form is as close to being diagonal as possible.

Theorem 1.5.23 (Jordan canonical form.) Given A ∈ Fn×n with all eigenval-
ues in F. Then, there exist S ∈ Fn×n, invertible, such that S−1AS is in Jordan form.
This form (that is, the values n1, . . . , nk) is unique, aside from trivial reordering of
the diagonal blocks.

To prove this result we make some preliminary observations, which will simplify
our life.

Remarks 1.5.24
(1) We can assume – without loss of generality – that the matrix A is in block di-

agonal form and the diagonal blocks are upper triangular corresponding to the
different eigenvalues. Clearly, if we can bring to their respective Jordan forms
all of these blocks on the diagonal of A, then we can bring A to Jordan form!

(2) So, we may as well assume that A ∈ Fn×n is given by a single triangular block:
A = λI + N , where N is the strictly upper triangular part of A. That is, A =





λ ∗ · · · ∗
. . .

. . .
...∗

0 λ




 = λI + N . Since S−1AS = λI + S−1NS, we will only need

to prove that N can be taken to Jordan form as claimed. So, we will focus on
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transforming N to Jordan form,

N =






0 ∗ · · · ∗
. . .

. . .
...∗

0 0




 . (1.5.1)

Observe that obviosuly N is nilpotent and for sure Nn = 0.

Definition 1.5.25 A given nilpotent matrix N ∈ Fn×n is said to have index of
nilpotency n1 if Nn1 = 0 but Nn1−1 6= 0.

Example 1.5.26 Take

N =





0 a c
0 0 b
0 0 0



 .

Easily, we always have N3 = 0, but N2 =





0 0 ab
0 0 0
0 0 0



, i.e., N2 = 0 if and only if

a or b is 0.
.̇. N has index of nilpotency 3 if a 6= 0, b 6= 0, nilpotency index 2 if a = 0 or b = 0,

and the nilpotency index is 1 if a = b = c = 0.

In light of Remarks 1.5.24, Theorem 1.5.23 will follow from the following:

Theorem 1.5.27 Let N ∈ Rn×n be strictly upper triangular as in (1.5.1). Then,
there is an invertible V ∈ Fn×n and indices n1, n2, . . . , np : n1 ≥ n2 ≥ · · · ≥ np ≥ 1,
n1 + n2 + · · ·+ np = n such that

V −1NV =








Jn1(0) 0
Jn2(0)

. . .

0 Jnp
(0)








.

Here, n1 is the nilpotency index of N . The indices n1, . . . , np are unique.

Example 1.5.28 Take N =





0 a c
0 0 b
0 0 0



 and let us examine different cases.
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1) a = b = c = 0⇒ N = 0 and n1 = n2 = n3 = 1.

2) a = b = 0, c 6= 0⇒ N =





0 0 c
0 0 0
0 0 0



, N2 = 0.

Observe that N is similar to Ñ =





0 0 1
0 0 0
0 0 0





(

use





1/c 0 0
0 1 0
0 0 1



N





c 0 0
0 1 0
0 0 1





)

,

which is

similar to







0 1 | 0
0 0 | 0
− − | −
0 0 | 0







(

use





1 0 0
0 0 1
0 1 0



 Ñ





1 0 0
0 0 1
0 1 0





)

, then n1 = 2, n2 =

1.

3) a = 0, b 6= 0, N =





0 0 c
0 0 b
0 0 0



⇒ N2 = 0.

N is similar to





0 0 c
0 0 1
0 0 0





(

use





1 0 0
0 1/b 0
0 0 1





)

, which is similar to





0 0 0
0 0 1
0 0 0





(

use





1 −c 0
0 1 0
0 0 1





)

, which is similar to







0 1 | 0
0 0 | 0
− − | −
0 0 | 0







, so n1 = 2, n2 = 1.

4) a 6= 0, b = 0⇒ as in 3).

5) a 6= 0, b 6= 0, N2 6= 0, N3 = 0; N =





0 a c
0 0 b
0 0 0



, which is similar to





0 ab c
0 0 1
0 0 0





(

use





1 0 0
0 1/b 0
0 0 1





)

, which is similar to





0 1 c/ab
0 0 1
0 0 0





(

use





1/ab 0 0
0 1 0
0 0 1





)

, which is finally similar to





0 1 0
0 0 1
0 0 0





(

use





1 −c/ab 0
0 1 0
0 0 1





)

, that is n1 = 3. �

Proof of Theorem 1.5.27. [The proof is adapted from [4].]
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By induction on n. n = 1⇒ N = [0], and the statement is trivially true.
So, suppose that the result is true for all strictly upper triangular matrices of

size < n.

Write N =

(
1 n− 1

1 0 aT

n− 1 0 N1

)

(we write aT to clarify that it is a row vector).

By induction, ∃ V1 : V −1
1 N1V1 =






Jk1 0
. . .

0 Jks




 =

[
Jk1 0
0 J

]

with k1 ≥ · · · ≥ ks ≥ 1

and k1 + · · ·+ ks = n− 1, and note that Jk1 = 0. So

(
1 0
0 V −1

1

)

N

(
1 0
0 V1

)

=





1 k1 k2 + · · ·+ ks

1 0 aT
1 V1 aT

2 V2

k1 0 Jk1 0
k2 + · · ·+ ks 0 0 J



 =:





0 bT
1 bT

2

0 Jk1 0
0 0 J



 .

This is further transformed by similarity as follows





1 −bT
1 JT

k1
0

0 I 0
0 0 I









0 bT
1 bT

2

0 Jk1 0
0 0 J









1 bT
1 JT

k1
0

0 I 0
0 0 I





=





0 bT
1 (I − JT

k1
Jk1) bT

2

0 Jk1 0
0 0 J



 =





0 (bT
1 e1)e

T
1 bT

2

0 Jk1 0
0 0 J



 ,

since (verify!)

I − JT
k1

Jk1 = e1e
T
1








e1 =








1
0
...
0







∈ Fk1, with e2, e3, . . . similarly defined








.

There are two cases to consider.

1) bT
1 e1 = 0⇒ have





0 0 bT
2

0 Jk1 0
0 0 J



which is similar to (via permutation)







Jk1 | 0 0
− | − −
0 | 0 bT

2

0 | 0 J







,

but by induction there is V2 ∈ F(n−k1)×(n−k1) such that V −1
2

(
0 bT

2

0 J

)

V2 = J̃ is in

Jordan form.
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.̇. N is similar to

(
Jk1 0

0 J̃

)

which is in Jordan form (it may be that blocks are not

arranged in non-increasing order, in which case we can permute them to obtain
desired ordering).

2) bT
1 e1 6= 0 ⇒ have





0 [∗, 0, . . . , 0] bT
2

0 Jk1 0
0 0 J



. Now, first we make the “∗” entry

become 1:




1
bT
1 e1

0 0

0 I 0
0 0 I









0 (bT
1 e1)e

T
1 bT

2

0 Jk1 0
0 0 J









(bT
1 e1) 0 0
0 I 0
0 0 I



 =:





0 eT
1 cT

2

0 Jk1 0
0 0 J





Note that Ĵ =

(
0 eT

1

0 Jk1

)

is a Jordan block of size k1 + 1 : Ĵ = Jk1+1(0). So, we

have

(
k1 + 1 k2 + · · ·+ ks

k1 + 1 Ĵ e1c
T
2

k2 + · · ·+ ks 0 J

)

.

Next, we “chase away” e1c
T
2 by a sequence of similarities:

(
I e2c

T
2

0 I

)(

Ĵ e1c
T
2

0 J

)(
I −e2c

T
2

0 I

)

=

(

Ĵ −Ĵe2c
T
2 + e1c

T
2 + e2c

T
2 J

0 J

)

=

(

Ĵ e2c
T
2 J

0 J

)

,

since Ĵe2 = e1. And, recursively, for i = 1, 2, 3, . . . , k1:
(

I ei+1c
T
2 J i−1

0 I

)(

Ĵ eic
T
2 J i−1

0 J

)(
I −ei+1c

T
2 J i−1

0 I

)

=

(

Ĵ −Ĵei+1c
T
2 J i−1 + eic

T
2 J i−1 + ei+1c

T
2 J i

0 J

)

=

(

Ĵ ei+1c
T
2 J i

0 J

)

,

since Ĵei+1 = ei. But Jk1 = 0, and so we eventually get the form

(

Ĵ 0
0 J

)

=








Jk1+1(0) 0
Jk2(0)

. . .

0 Jks
(0)








as desired. (Here, n1 = k1 + 1, nj = kj, j = 2, . . . , s and s = p.)
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The last thing that we need to justify is the uniqueness part. We have obtained
the Jordan form for N :

J =






Jn1(0)
. . .

Jnp(0)




 ; n1 + · · ·+ np = n, n1 ≥ · · · ≥ np ≥ 1 .

We’ll show that the set of Jordan blocks (i.e., the values n1, . . . , np) is completely
specified by the values rank(Jm), m = 1, 2, . . . , n. [This will give the result, because
if A and B are similar ⇒ Am and Bm are too and, thus, their ranks are the same.]

Now: Jm
nk

= 0 if m ≥ nk and rank(Jm−1
nk

) − rank(Jm
nk

) = 1 if m < nk. Set
rm = rank (Jm), m = 1, 2, . . . , r0 = n and dm = rm−1 − rm.
.̇. dm is # of Jordan blocks in J of size k ≥ m and surely dm = 0, if m > n.
.̇. the # of Jordan blocks in J of exact size k = m is given by dm − dm+1 =

rm−1 − 2rm + rm+1, m = 1, 2, . . . , n and so the # of Jordan blocks of size k = m
is given by rank(Jm−1)−2 rank(Jm)+rank(Jm+1) = rank(Nm−1)−2 rank(Nm)+
rank(Nm+1). �

Remarks 1.5.29
(1) The Jordan form is a very useful theoretical result, which further allows one to

create equivalency classes for matrices with the same Jordan form, in the sense
that matrices are similar if and only if they have the same Jordan form.

(2) The number of Jordan blocks corresponding to the same eigenvalue gives the ge-
ometric multiplicity of that eigenvalue. The algebraic multiplicity of that eigen-
value is the sum of the sizes of all Jordan blocks relative to that eigenvalue.
[As an aside observation, this fact tells us that the algebraic multiplicity of an
eigenvalue cannot be less than its geometric multiplicity.]

(3) Unfortunately, the Jordan form of a matrix is not continuous in the entries of the
matrix, and small changes in the entries of a matrix can produce Jordan forms

with different blocks sizes. For example, consider the Jordan form of

[
ε 0
1 0

]

.

Exercise 1.5.30 Verify the above remarks (1) and (3).

1.5.2 Extending the field, characteristic polynomial

We must stress that to obtain the Jordan form (over an arbitrary field F), we have
assumed all the eigenvalues to be in F. This restriction cannot be removed.
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So, to proceed further, we need to understand where can be the eigenvalues of a
matrix in Fn×n, if not in F. Or, alternatively, can we have some situations (that is,
some special classes of transformations/matrices, and/or of F) which are guaranteed
to give eigenvalues in F?

To make progress, we take two steps back and revisit our concept of eigenvalue.
This is the idea. We have A ∈ Fn×n, but we can also think of A ∈ Kn×n, where

K is an extension of the field F. And, we will want to think of the extension K so
that all the eigenvalues of A will be in K. That is, so that all the values λ such
that

A− λI is singular (in Kn×n) ,

will be in K. To decide what K should be, we finally resort to the concepts of
determinant and characteristic polynomial. For completeness, let us refresh
these concepts and the relevant properties.

1st. Recall that for A ∈ Fn×n, det A =
∑

σ∈S(−1)σa1σ(1)a2σ(2) · · ·anσ(n) where S is the
set of permutations on {1, 2, . . . , n} (symmetric group). Here, σ is a permutation,
and

(−1)σ =

{

1, for even permutations

−1, for odd permutations

(recall that “even” means that the minimal number of pairwise exchanges (trans-
positions) needed to produce σ from {1, 2, . . . , n} is even). Alternatively, you may
want to repeatedly use the (Laplace Expansion) formula for the determinant:

det A =

n∑

j=1

(−1)i+jaij det Aij =

n∑

i=1

(−1)i+jaij det Aij , (1.5.2)

where Aij ∈ Fn−1,n−1 is the matrix obtained by deleting the i-th row and j-th
column of A.

2nd. Recall that A is nonsingular ⇔ det A 6= 0. Therefore, A − λI singular ↔
det(A− λI) = 0. Finally, note that det(λI − A) is a polynomial in λ of degree
n with coefficients in F (it is called the characteristic polynomial).

Exercises 1.5.31
(1) Show that det A =

∏n
j=1 λj is the constant term in the characteristic polynomial.

This also shows that
∏n

j=1 λj ∈ F and that A is singular if and only if det A = 0.

(2) Show that if A is invertible, then the eigenvalues of A−1 are the reciprocal of the
eigenvalues of A. In particular, det A−1 = 1/ detA.



MATH 6112: ADVANCED LINEAR ALGEBRA 25

(3) Let tr(A) = (a11 + a12 + · · · + ann) [trace of A]. Show that tr(A) is the coeffi-
cient (possibly, except for the sign) relative to degree (n − 1) in the character-
istic polynomial. Moreover, show that tr(A) =

∑n
j=1 λj (which also shows that

∑n
j=1 λj ∈ F).

Remark 1.5.32 A consequence of the above Exercises is that both det A and trA
are invariant under similarity transformations.

To sum up, the extension field K should be chosen so to include all the roots of
the characteristic polynomial, that is of all monic algebraic equations of degree n
with coefficients in F. In general (that is, unless we are willing to restrict to special
classes of matrices), this effectively forces us to consider the complex field C (which
is a closed field).

In particular, from our previous construction, we have proven the fundamental
result that

Theorem 1.5.33 Any matrix A ∈ Cn×n is similar to a Jordan form as in Definition
1.5.21. That is, for any given A ∈ Cn×n, there exists invertible V ∈ Cn×n such that
V −1AV is in Jordan form.

As a consequence of Theorem 1.5.33, one may as well assume that a matrix
A ∈ Cn×n is in Jordan form, in that it can be brought to Jordan form if it is not so
to begin with. This line of thought allows us to prove useful facts in a simple way,
as exemplified by the next exercise.

Exercise 1.5.34 Let A ∈ Cn×n. Suppose there exist an integer k > 1 such that
Ak = A. Show that A is diagonalizable.

Solution. Without loss of generality, we can assume that A is in Jordan form

J = diag(Jnk
(λk), k = 1, . . . , p) .

By contradiction, we suppose that at least one Jordan block is non-diagonal (i.e.,
at least one nk > 1, for some k = 1, . . . , p). Since Ak = A implies Jk = J , and J
is block diagonal, we can assume that we are dealing with just one Jordan block:
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J =










λ 1 0
λ 1

. . .
. . .
. . . 1

0 λ










. It is immediate to realize (use induction) that Jk has

the form Jk =











λk kλk−1 · · · · · ·
λk . . .

. . .
. . .
. . . kλk−1

0 λk











. Therefore, to have Jk = J , we need

to have
λk = λ and kλk−1 = 1 .

So, either λ = 0 or λk−1 = 1. If λ = 0, then we surely cannot satisfy kλk−1 = 1, but
if λk−1 = 1, then k = 1. Either way, we would reach a contradiction. Therefore, all
Jordan blocks must be diagonal. �

Remark 1.5.35 We will not look at other canonical forms, the so-called rational
canonical forms (nothing to do with Q), which maintain us in the original field F
(and not an extension), since they are seldom used. If interested, please refer to
[2, 4].

Exercises 1.5.36 Here, we explore the connection between Jordan form and min-
imal and characteristic polynomials. You may assume that A ∈ Cn×n or that
A ∈ Fn×n with all eigenvalues in F.
(1) Suppose that the distinct eigenvalues of A are λ1, . . . , λk. Show that the minimal

polynomial of A is p(x) =
∏k

j=1(x − λj)
nj , where nj is the size of the largest

Jordan block relative to λj.
3 Conclude that A is diagonalizable if and only if its

minimal polynomial is simply (x − λ1) · · · (x − λk). What is the characteristic
polynomial of A?

3How is nj related to the nilpotency index?
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(2) Consider the following matrix C:

C =










0 0 · · · 0 −a0

1 0 · · · 0 −a1

0
. . .

. . .
...

...
...

. . . 1 0 −an−2

0 · · · 0 1 −an−1










.

Show that the characteristic and minimal polynomials of C are the same. [C is
called the companion matrix of its characteristic polynomial.] Note that we are
not saying that a certain matrix A with given characteristic polynomial p(x) =
a0 +a1x+ · · ·+an−1x

n−1 +xn is similar to C; however, show that A is similar to
C if and only if the minimal and characteristic polynomials of A are the same.

We conclude this first set of lectures with a question.

Question. Suppose we have a matrix in A ∈ Rn×n. We find its eigenvalues as
roots of the characteristic polynomial, and have that some of these are complex
conjugate. Surely we can triangularize it with respect to C. But, what can we
achieve if we insist that the similarities be real? Of course, we could ask the same
question relatively to the Jordan form.



Chapter 2

Schur decomposition, SVD, and
their consequences

This chapter contains the core material of linear algebra. At a high level, the
theoretical results in this chapter are consequences of having an inner product. At
a finer level, we will obtain very specialized results for important classes of matrices
and important inequalities for eigenvalues.

Most of the material in this chapter can be found in [4] and [7].
Hereafter, we will always work with matrices in Cn×n or Rn×n.

2.1 Inner Product

Let us recall the concept (Euclidean or standard) of inner product 〈x, y〉 on vectors
x, y in Cn (or Rn):

x, y ∈ Cn ⇒ 〈x, y〉 = y∗x ,

x, y ∈ Rn ⇒ 〈x, y〉 = yTx ,

where we are using the notation: y∗ = ȳT (conjugate transpose, also called Hermitian
of y).

Note that in Rn we have 〈x, y〉 = 〈y, x〉, but the same is not true in Cn, in
general. In fact, in Rn, inner product is bilinear, that is for any α, β ∈ R:
a) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉;
b) 〈x, αy + βz〉 = α〈x, y〉+ β〈x, z〉;

But in Cn, the inner product is linear in the first argument, but “conjugate-
linear” in the second:

28
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c) 〈x, αy + βz〉 = ᾱ〈x, y〉+ β̄〈x, z〉, for any α, β ∈ C. In particular, 〈x, y〉 = 〈y, x〉.
Regardless of being in C or R, the norm of a vector x (Euclidean norm, 2-norm,

or simply length) induced by the above inner product is

‖x‖2 = (〈x, x〉)1/2 .

Accordingly, we define the induced matrix norm (2-norm) as

‖A‖2 = max
x:‖x‖2=1

‖Ax‖2 .

A most important result is the following inequality.

Lemma 2.1.1 (Cauchy-Schwartz inequality) For any x, y ∈ Cn (or Rn), we
have

|〈x, y〉| ≤ ‖x‖2‖y‖2 , (2.1.1)

with equality only if y = αx.

Exercise 2.1.2 Prove Lemma 2.1.1.

Remark 2.1.3 A consequence of the Cauchy-Schwartz inequality is that we can
define an angle θ between x and y from the relation:

cos θ =
〈x, y〉
‖x‖2‖y‖2

, (2.1.2)

customarily taking −π < θ ≤ π.

In particular, we call two vectors orthogonal if their inner product is 0. Further,
we call them orthonormal if each of them has unit length.

An extremely useful and important process is the “Gram-Schmidt orthogonal-
ization”, which allows to transform a given set of p linearly independent vectors into
another set of p orthonormal vectors, spanning the same subspace as the original
set.

Algorithm 2.1.4 (Gram-Schmidt) Given {x1, xk, . . . , xp} linearly independent
vectors in Cn (or Rn). The procedure below will produce {u1, u2, . . . , up} such that
〈ui, uj〉 = 0, i 6= j, 〈ui, ui〉 = 1, and span{u1, u2, . . . , up} = span{x1, x2, . . . , xp}.

i = 1 :
y1 = x1 , u1 = y1/‖y1‖ .
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i > 1 :
{

y2 = x2 − 〈x2, u1〉u1 (subtract from x2 its component in direction of u1)

u2 = y2/‖y2‖
...

{

yk = xk − 〈xk, uk−1〉uk−1 − · · · − 〈xk, u1〉u1

uk = yk/‖yk‖
, k = 2, . . . , p.

If we write U = [u1, u2, . . . , up] ∈ Cn×p and X = [x1, x2, . . . , xp] ∈ Cn×p, then
we have found that X = UR, where R ∈ Cp×p is upper triangular. Moreover,
the diagonal of R is positive (it is ‖yk‖, k = 1, . . . , p). Finally, the matrix U has
orthonormal columns: u∗

juk = 0, j 6= k, and u∗
juj = 1, j = 1, . . . , p. For this reason,

U is called orthonormal: U∗U = Ip. If p = n ⇒ U is called unitary: U∗U = I
(= UU∗).

Also, note that the Gram-Schmidt process holds unchanged in the real case. In
this case, when p = n, U is called orthogonal: UT U = I (= UUT ). [We will reserve
the term orthogonal for real matrices (other texts use orthogonal also for A ∈ Cn×n

whenever AT A = I).]

Exercise 2.1.5 Give the formula for the non-zero entries of R obtained from the
Gram-Schmidt process.

We summarize the construction given by the Gram-Schmidt process in the fol-
lowing theorem.

Theorem 2.1.6 (QR factorization) Let A ∈ Cn×p (or Rn×p), n ≥ p, be full rank.
Then there is an orthonormal (n, p) matrix Q and a (p, p) upper triangular R, with
real diagonal, such that A = QR. This factorization is unique for any assigned
sign pattern on the diagonal of R (e.g., all positive). If p = n, then Q is unitary
(orthogonal in the real case). �

The following are important properties of unitary matrices U (similar properties
hold for orthogonal matrices):
(1) U−1 = U∗ and U∗ is unitary.
(2) UV is unitary if U and V are.
(3) The set {U ∈ Cn×n, U unitary} is a group; it is a subgroup of GL(n, C) (the

orthogonal matrices are a subgroup of GL(n, R)).
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(4) The set {U ∈ Cn×n, U unitary} is closed and bounded (as subset of Cn2
) and

therefore compact.
(5) ‖Ux‖2 = ‖x‖2, ∀ x ∈ Cn.

Exercises 2.1.7
(1) Show properties (1), (2), (3), (4), (5) above. (Hint: To show property (4), reason

as follows. Let {Uk} be a sequence of unitary matrices and suppose that Uk → U .
Show that U is unitary. Here, convergence is entrywise.)

(2) Show that all the eigenvalues of a unitary matrix U are on the unit circle and
that | detU | = 1. The result is true also in the real case, but det U can only take
values ±1 in the real case. [As an aside remark, this means that there are two
disjoint classes of orthogonal matrices: Those with determinant 1 and those with
determinant −1. In the plane, these are rotations and reflections, respectively.]

(3) Suppose that A ∈ Cn×n is similar to U , and that U is unitary. Show that A−1 is
similar to A∗.

Let us now see some consequence of unitary similarity (orthogonal similarity in
Rn×n). By this we mean that given A and B: A = U∗BU , where U is unitary.

First of all, observe that unitary similarity is an equivalence relation, and that
the 2-norm of a matrix is trivially unitarily invariant, since unitary transformations
maintain length. The following result tells us that also the Frobenius norm of a
matrix is unitarily invariant, where

‖A‖2F =

n∑

i,j=1

|aij |2

is the Frobenius norm of the matrix A (it is also called the Hilbert-Schmidt norm).

Theorem 2.1.8 (Frobenius invariance) If A = U∗BU , U unitary, then
∑

i,j

|aij|2 =
∑

i,j

|bij|2 .

Pf. First, observe that
∑

i,j |aij|2 = tr(ĀT A) = tr(A∗A). But tr(A∗A) = tr(U∗B∗UU∗BU) =
tr(U∗B∗BU) and the trace is invariant under similarity transformations (see Remark
1.5.32) .̇. tr(A∗A) = tr(B∗B). �

Remark 2.1.9 Careful: Similar matrices may fail to satisfy Frobenius invariance.

For example, take A =

[
1 0
1 2

]

, B =

[
−9 −110
1 12

]

,

(

B = T−1AT, T =

[
1 10
0 1

])

.
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Exercise 2.1.10 Let A ∈ Cn×n (or also in Rn×n). Show that ‖A‖2 ≤ ‖A‖F .

2.2 Schur Decomposition

We know that A ∈ Cn×n can be triangularized by similarity (see Theorem 1.5.14).
A very important result is that unitary similarity is sufficient to achieve the trian-
gularization of a matrix A ∈ Cn×n.

Theorem 2.2.1 (Schur) Given A ∈ Cn×n. There is a unitary U such that U∗AU =
R, where R is upper triangular. The eigenvalues on the diagonal of R can be ar-
ranged in any desired way, say λ1, λ2, . . . , λn.

Pf. “Constructive.” Let v1 be such that Av1 = λ1v1 and v∗
1v1 = 1. Extend

v1 to a basis of Cn : v1, y2, . . . , yn. Use the Gram-Schmidt process to produce
an orthonormal basis: v1, z2, . . . , zn. Form unitary U1 = [v1, z2, . . . , zn], U∗

1 U1 =

I. We have U∗
1 AU1 =





λ1 | ∗ · · · ∗
−− | −−
0 | A1



, where A1 ∈ Cn−1,n−1 has eigenvalues

λ2, . . . , λn. Let x2 ∈ Cn−1 : A1x2 = λ2x2, x∗
2x2 = 1. Extend x2 to a basis of

Cn−1 and use the Gram-Schmidt process on this to form V2 ∈ Cn−1,n−1 unitary

⇒ V ∗
2 A1V2 =





λ2 | ∗ · · · ∗
−− | −−
0 | A2



, A2 = Cn−2,n−2 with eigenvalues λ3, . . . , λn. Form

U2 =





1 | 0 · · ·0
−− | −−
0 | V2



⇒ U∗
2 U∗

1 AU1U2 =







λ1 ∗
0 λ2

| ∗
−− | −−
0 | A2







. Keep going. �

Remark 2.2.2 In general, U in theorem 2.2.1 is not unique, nor is R. For example,

take R1 =





1 1 4
0 2 2
0 0 3



, and R2 =





2 −1 3
√

2

0 1
√

2
0 0 3



, which are unitarily equivalent via

U = 1√
2





1 1 0
1 −1 0

0 0
√

2



, U∗R1U2 = R2, and the off-diagonal entries of R1 and R2

are quite different! As another example, with repeated eigenvalues, consider R1 =[
1 −1
0 1

]

, and R2 =

[
1 1
0 1

]

, which are trivially unitarily equivalent via U =

[
1 0
0 −1

]

.



MATH 6112: ADVANCED LINEAR ALGEBRA 33

Note that the example in the last Remark also shows that two matrices which
are simultaneously triangularized by unitary similarity, in general do not commute.
The converse, however, is true.

Exercise 2.2.3 Let A, B ∈ Cn×n. Show that if AB = BA ⇒ A and B can be
simultaneously triangularized by a unitary similarity transformation.

To answer a question posed at the end of Chapter 1, let us see what happens
when we have a matrix A ∈ Rn×n and try to use orthogonal transformations to bring
it to triangular form. The issue is how to deal with complex conjugate eigenvalues,
since obviously they preclude us from being able to obtain a full triangularization
maintaining the triangular factor in the real field!

Theorem 2.2.4 (Real Schur Theorem: Quasi-Upper Triangular Form) Let
A ∈ Rn×n. Then, there exists Q ∈ Rn×n, orthogonal, such that

QT AQ = R =






R1 ∗ · · · ∗
R2

. . . ∗
0 Rk




 , 1 ≤ k ≤ n ,

where each Ri is either (1, 1) or (2, 2) containing a pair of complex conjugate eigen-
values.

Sketch of proof. Whereas the real eigenvalues can be treated as in the previous
Schur’s theorem 2.2.1, let’s see how to deal with a complex conjugate pair. So,
suppose λ, λ̄ = α ± iβ, and let x 6= 0 be an eigenvector associated to λ: Ax = λx.
Write x ∈ Cn as x = u + iv, u, v ∈ Rn, and notice that also Ax̄ = λ̄x̄. Therefore,

we have A[u, v] = [u, v]

[
α β
−β α

]

, all real. Since λ 6= λ̄ ⇒ {x, x̄} are linearly

independent over C and thus {u, v} are linearly independent over R. Now extend
{u, v} to a basis for Rn, and use the Gram-Schmidt process on this to obtain an
orthonormal basis of Rn. Then, there exists Q orthogonal such that QT AQ =



R1 | ∗
−− | −−
0 | A1



, where R1 has eigenvalue λ, λ̄, and A1 ∈ Rn−2,n−2. Now, continue on

A1. �

Exercises 2.2.5 Here we explore the degree to which unitary (respectively, orthog-
onal) similarities to upper triangular form (respectively, quasi-uppper triangular
form) are unique.
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(1) Suppose that all eigenvalues λ1, . . . , λn, of A ∈ Cn×n are distinct, and that we
have transformed A, by unitary similarity, to upper triangular form with the
eigenvalues appearing on the diagonal as λ1, . . . , λn. Discuss uniqueness of the
unitary transformation. What if the eigenvalues are not distinct?

(2) Suppose that all eigenvalues λ1, . . . , λn, of A ∈ Rn×n are distinct (though not
necessarily all of them real), and that we transform A using orthogonal simi-
larity to quasi-upper triangular form with a given ordering of the eigenvalues
(complex conjugate eigenvalues appear on a (2, 2) diagonal block but are not oth-
erwise distinguished). Discuss uniqueness of the orthogonal factor. What if the
eigenvalues are not distinct?

An important consequence of Schur theorem (complex case) is that “the set
of diagonalizable matrices is dense in the set of matrices.” This means that given
any non-diagonalizable matrix, there is a matrix arbitrarily close to it which is
diagonalizable. We will actually show a stronger result, that there is a matrix with
distinct eigenvalues.

Theorem 2.2.6 Given A ∈ Cn×n. Then, ∀ ε > 0, there exist A(ε) ∈ Cn×n with
distinct eigenvalues and such that

‖A− A(ε)‖2F < ε.

Pf. Let U unitary be such that U∗AU = R is upper triangular with eigenvalues

λ1, . . . , λn along the diagonal. Let α1, α2, . . . , αn ∈ C such that |αi| <
(

ε
n

)1/2
and

such that λ1 +α1, λ2 +α2, . . . , λn +αn are all distinct. Take E(ε) = diag(α1, . . . , αn)
and form R(ε) = R + E(ε) and, from this, set A(ε) = UR(ε)U∗. Now, observe that

‖A(ε)−A‖2F = ‖R(ε)−R‖2F =
∑

i,j

|Rij(ε)−Rij |2 =
n∑

i=1

|αi|2 < ε. �

Exercise 2.2.7 State and prove an analog of Theorem 2.2.6 for A ∈ Rn×n, making
A(ε) ∈ Rn×n. [Hint: Produce a real matrix with distinct eigenvalues, whether real
or complex conjugate.]

In light of Theorem 2.2.6, and Exercise 2.2.7, it is natural to ask why we should
bother with non-diagonalizable matrices.
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Example 2.2.8 Think about this problem. Suppose we have the real valued function

A(t) =

(
0 1
t 0

)

, which is clearly non-diagonalizable at t = 0. We claim that if we

take any real perturbation εB of this, it will be non-diagonalizable in a neighborhood
of t = 0. [Exercise: Verify this claim.] In other words, whereas each single matrix
may be effectively perturbed into a diagonalizable one, the entire family cannot!

2.3 Self-adjoint (symmetric) and normal matrices

In general, in Schur’s theorem 2.2.1, U and R are not uniquely determined. However,
the quantity

ν =
∑

i<j

|Rij |2 (2.3.1)

is always uniquely determined. (This is simply a consequence of Frobenius invari-
ance, see Theorem 2.1.8.) For reasons that will clarify below, ν is called “departure

from normality” of A. Schur’s theorem, and the fact that ν is invariant under unitary
transformations, give us an important consequence: In general, we cannot expect
being able to transform a matrix to diagonal form with unitary similarity. Or, to put
it in other words, we are able to do so only if –during the process of triangularizing
it– we have effectively diagonalized it!

Our next task is to specialize Schur theorem to extremely important classes of
matrices, those which are diagonalizable by a unitary transformation.

Definition 2.3.1 A matrix A ∈ Cn×n such that A∗ = A is called Hermitian (or self-
adjoint). If A∗ = −A, then A is called anti-Hermitian (or skew-Hermitian). In the
real case, A ∈ Rn×n, if AT = A then A is called symmetric (or, again, self-adjoint),
whereas if AT = −A then A is called anti-symmetric (or skew-symmetric).

Unless otherwise explicitly stated, the name symmetric by itself will always be
used for real matrices; on occasion, we may use the term “complex symmetric” to
identify a complex matrix A which happens to formally satisfy A = AT .

Remark 2.3.2 If A∗ = −A, then iA is Hermitian (similarly, if A∗ = A then
iA is anti-Hermitian). Therefore, a result proven for Hermitian matrices has an
immediate counterpart for anti-Hermitian ones.
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Hermitian (symmetric) matrices appear pervasively in applications, and this jus-
tifies paying special attention to these matrices. In particular, symmetric (Hermi-
tian) matrices are of fundamental importance in studying behavior of functions near
critical points.

Example 2.3.3 Let f : Rn → R be sufficiently smooth (at least twice continuously
differentiable). Consider the Taylor expansion of f near a point x0: f(x) = f(x0)+
(∇f(x0))

T (x− x0) + 1
2
Q(x− x0) + ‖x− x0‖2r(‖x− x0‖) (here, r(‖x− x0‖)→ 0 as

‖x− x0‖ → 0). The function Q(x− x0) is a quadratic function of the form

Q(y) =
∑

i,j

Hijyiyj , and Hij =
∂2f

∂xi∂xj

∣
∣
∣
x=x0

.

Therefore, Q(x − x0) = (x − x0)
T H(x − x0) where the Hessian H is symmetric:

Hij = Hji.
Now, if x0 is a critical point ⇒ ∇f(x0) = 0 .̇. the quadratic function determines

the nature of the critical point. Undoubtedly, it would be simpler if H happened to
be diagonal! �

The next exercise is useful to understand the nature of the eigenvalues of Her-
mitian (anti-Hermitian) matrices.

Example 2.3.4 Let A ∈ Cn×n. Define As = (A+A∗)/2 (Hermitian, or self-adjoint,
part of A) and Aa = (A−A∗)/2 (anti-Hermitian part of A). Clearly, A = As + Aa

and this is the unique decomposition of A into the sum of a Hermitian and an
anti-Hermitian matrix. Then, we claim that:

Re〈x, Ax〉 = 〈x, Asx〉
Im〈x, Ax〉 = 〈x, Aax〉 .

The verification of this claim is simple. Take

〈x, Ax〉 = x∗A∗x =
x∗(A∗ − A + A + A∗)x

2

=
x∗(A∗ + A)x

2
+

x∗(A∗ − A)x

2
= 〈x, Asx〉+ 〈x, Aax〉.

Now:

〈x, Asx〉 = (〈x, Asx〉)∗ .̇. 〈x, Asx〉 ∈ R
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and 〈x, Aax〉 = −(〈x, Aax〉)∗ .̇. 〈x, Aax〉 ∈ iR ,

as claimed.
Furthermore, if (λ, x) is an eigenpair of A such that x∗x = 1 then Ax = λx and

so

{

x∗Ax = λ

x∗A∗x = λ̄
, from which Reλ = x∗Asx , and Imλ = x∗Aax .

An immediate consequence of the above Example is the following result.

Corollary 2.3.5 If A ∈ Cn×n (or A ∈ Rn×n) is Hermitian, then its eigenvalues are
real. If A ∈ Cn×n (or A ∈ Rn×n) is anti-Hermitian, then its eigenvalues are purely
imaginary.

We are now ready for one of the key results in linear algebra.

Theorem 2.3.6 (Spectral Theorem for Hermitian matrices) Let A ∈ Cn×n

be Hermitian: A = A∗. Then, A is unitarily diagonalizable. That is, there exist
unitary U ∈ Cn×n such that U∗AU is diagonal. The eigenvalues can be ordered in
any desired way.

Pf. From Schur’s theorem 2.2.1, we have that there exists U unitary such that
U∗AU = R, R upper triangular with eigenvalues ordered as we like. Therefore,
U∗A∗U = R∗ ⇒ R = R∗, .̇. Rij = 0, i 6= j, .̇. R diagonal (and the diagonal is real).
�

Much the same result holds if A ∈ Rn×n. Before stating the theorem in this case,
let us make an observation.

Observation 2.3.7 If A ∈ Rn×n with eigenvalue λ ∈ R (e.g., if A = AT ), then we
can (and will) take the corresponding eigenvector to be real. This is simply because
if Ax = λx, x 6= 0 and we chose x = u + iv, with u, v,∈ Rn, then we must have

Au + iAv = λu + 0 · iv .̇.

{

Au = λu

Av = 0
and so we can take v = 0 and u to be a real

eigenvector.

Theorem 2.3.8 (Spectral theorem for symmetric matrices) Let A ∈ Rn×n

be symmetric: A = AT . Then, there exist orthogonal Q ∈ Rn×n such that QT AQ is
diagonal. The eigenvalues can be ordered in any desired way.

Pf. Since all eigenvalues are real, the real Schur theorem 2.2.4 gives that there exists
Q, orthogonal, such that QT AQ = R, with R upper triangular with eigenvalues
ordered as we like. But then QT AT Q = RT ⇒ R is diagonal. �
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Remark 2.3.9 We have achieved diagonalization for a Hermitian (respectively,
symmetric) matrix without the need to assume distinct eigenvalues. Hermitian (sym-
metric) matrices lead to a basis of orthonormal eigenvectors: Hermitian matrices
are diagonalized by a unitary similarity transformation. So, conceptually at least,
we can always think of a Hermitian (symmetric) matrix as being diagonal. For ex-
ample, in Example 2.3.3, we can change coordinates and diagonalize the Hessian; if
we do so, we would be using the so-called principal axes as coordinate system.

• Finally, let us see how far we can push diagonalization by unitary similarity. To
motivate the next definition, consider the following.

Take A ∈ Cn×n and write A = As + Aa. We know that As = A∗
s ⇒ ∃ U unitary

such that U∗AsU = D (and real). Likewise (since iAa is Hermitian) also Aa can be
unitarily diagonalized. We also know (see Theorem 1.5.10) that two diagonalizable
matrices are simultaneously diagonalizable ⇔ they commute. Now, observe the
following.

AsAa =
A + A∗

2

A−A∗

2
=

A2 + A∗A−AA∗ − (A∗)2

4

AaAs =
A− A∗

2

A + A∗

2
=

A2 −A∗A + AA∗ − (A∗)2

4

.̇. AsAa = AaAs ⇔ AA∗ −A∗A = A∗A− AA∗ ⇔ AA∗ = A∗A.

Definition 2.3.10 If A ∈ Cn×n (or Rn×n) is such that AA∗ = A∗A (respectively,
AAT = AT A) then A is called a normal matrix.

So, we know that normal matrices are diagonalizable (since both As and Aa are).
What we will show next is that the diagonalizing transformation can be taken to be
unitary. The following observation is trivial to verify, and it will come in handy.

Observation 2.3.11 Unitary similarity preserves normality.

Theorem 2.3.12 (Spectral Theorem for normal matrices) A ∈ Cn×n is nor-
mal ⇐⇒ it is is unitarily diagonalizable.

Pf. (⇐) Let U unitary be such that U∗AU = D, where D is diagonal. Thus,
U∗A∗U = D∗ ⇒ AA∗ = U(U∗AUU∗A∗U)U∗ = UDD∗U∗ = UD∗DU∗ = UD∗U∗UDU∗ =
A∗A.

(⇒) We proceed by induction on n. Obviously the result is true for n = 1.
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Next, let U be such that U∗AU = R is upper triangular (Schur theorem). Then,
since A∗A = AA∗, then also RR∗ = R∗R.

Write R =

[
r11 a∗

0 R1

]

⇒ R∗R =

[
r∗11 0
a R∗

1

] [
r11 a∗

0 R1

]

=

[
r∗11r11 r∗11a

∗

ar11 R∗
1R1

]

and

RR∗ =

[
r11 a∗

0 R1

] [
r∗11 0
a R∗

1

]

=

[
r11r

∗
11 + a∗a a∗R∗

1

R1a R1R
∗
1

]

. Thus, from r∗11r11 = r11r
∗
11 +

a∗a we immediately get a = 0 .̇. R1R
∗
1 = R∗

1R1 and so R1 is normal. Now use
induction hypothesis. �

Remark 2.3.13 Careful! Theorem 2.3.12 says that there exists U , unitary, diag-
onalizing a normal matrix A. But it does not say that a unitary similarity diag-

onalizing As also diagonalizes Aa. For example, take M ∈ Cn,n, M =

[
A 0
0 B

]

,

A∗ = A ∈ Cn1,n1 and B∗ = −B ∈ Cn2,n2, n1 + n2 = n, ⇒ Ms =

[
A 0
0 0

]

,

Ma =

[
0 0
0 B

]

. Let U1 ∈ Cn1,n1, U∗
1 U1 = I, be such that U∗

1 AU1 = DA(∈ Re),

and likewise let U2 ∈ Cn2,n2, U∗
2 U2 = I, be such that U∗

2 BU2 = DB(∈ Im); then,

U =

(
U1 0
0 U2

)

diagonalizes all of Ms, Ma, M . But, we could have also taken

V1 =

(
U1 0

0 Û

)

, V1 unitary : V ∗
1 MsV1 =

(
DA 0
0 0

)

⇒ V ∗
1 MV1 =

(
DA 0

0 Û∗BÛ

)

and generally Û∗BÛ is not diagonal.
However, if the orthonormal eigenvectors of As and Aa are the same, then A is

normal and it is diagonalized by these very same eigenvectors. �

Exercise 2.3.14 If the orthonormal eigenvectors of As are also eigenvectors of
Aa ⇒ A = As + Aa is normal.

In the real case, similar results hold. To begin with, just as in the complex
case, being normal is equivalent to AsAa = AaAs, where As = A+AT

2
, Aa = A−AT

2
.

Moreover, normality is preserved by orthogonal similarity.
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Theorem 2.3.15 (Spectral Theorem for real normal matrices) Let A ∈ Rn×n.
Then, A is normal ⇐⇒ there exists Q ∈ Rn×n, orthogonal, such that

QT AQ = E =








D1

D2

. . .

Dp








,

where each Dj is either a (1, 1) block (real eigenvalues) or a (2, 2) block of the type
(

αj βj

−βj αj

)

(complex conjugate eigenvalues).

Pf. (⇐) QT AQ = E ⇒ QT AT Q = ET ⇒ A = QEQT , AT = QET QT ⇒ AAT =
QEQT QET QT = QEET QT = QET EQT = QET QT QEQT = AT A.

(
Note:

[
a b
−b a

] [
a −b
b a

]

=

[
a2 + b2 0

0 a2 + b2

]

=

[
a −b
b a

] [
a b
−b a

]
)

(⇒) Using the real Schur Theorem 2.2.4, we can assume that A is in quasi-triangular
form as

A =








R11 A12 · · · · · · A1p

R22 A22 · · · A2p

. . .
. . .

Rpp








,

where R11 is upper triangular and has all the real eigenvalues of A, and R22, . . . , Rpp

are (2, 2) real matrices corresponding to complex conjugate eigenvalues.
Now, since AT A = AAT , then RT

11R11 = R11R
T
11 + A12A

T
12 + · · · + A1pA

T
1p and

therefore also tr(RT
11R11) = tr(R11R

T
11 + · · ·+ A1pA

T
1p) = tr(R11R

T
11) + tr(A12A

T
12) +

· · ·+ tr(A1pA
T
1p). But, tr(R11R

T
11) = tr(RT

11R11), and so we must have tr(A12A
T
12) +

· · ·+ tr(A1pA
T
1p) =

∑
(A12)

2
ij + · · ·+∑(A1p)

2
ij = 0 from which it follows that A12 =

0, · · · , A1p = 0. So, A really has the form

A =








R11 0 · · · · · · 0
R22 A22 · · · A2p

. . .
. . .

Rpp








.

Now, reasoning as in the proof of Theorem 2.3.12, since R11 is upper triangular and
normal, then it must be diagonal, call it D1.
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Now, since AT A = AAT , then we must also have RT
22R22 = R22R

T
22 + A23A

T
23 +

· · · + A2pA
T
2p and again tr(RT

22R22) = tr(R22R
T
22) + tr(A23A

T
23) + · · · + tr(A2pA

T
2p),

from which at once we get A23 = 0, · · · , A2p = 0, and R22 is normal.
Continuing this way, we end up with

A =








D1

R22

. . .

Rpp








,

where each Rjj is (2, 2), normal, with complex conjugate eigenvalues. So, we now

verify that a real matrix B =

(
a b
c d

)

with complex conjugate eigenvalues and

normal, BT B = BBT , must have the form

(
a b
−b a

)

. We have

(
a c
b d

)(
a b
c d

)

=

(
a2 + c2 ab + cd
ab + cd b2 + d2

)

=

(
a b
c d

)(
a c
b d

)

=

(
a2 + b2 ac + bd
ac + bd c2 + d2

)

.̇.

{ a2 + c2 = a2 + b2

d2 + b2 = d2 + c2 → c2 = b2 ⇒ b = c or b = −c
ab + cd = ac + bd→ a(b− c) = d(b− c)

.

Now, if b = c ⇒ B symmetric .̇. it has real eigenvalues, which is excluded. So,
it must be b = −c ⇒ 2ba = 2bd ⇒ a = d (b 6= 0 otherwise again B would be

symmetric) .̇. B =

(
a b
−b a

)

. �

Remark 2.3.16 In Theorem 2.3.15, note the specific form of the (2, 2) blocks of
complex conjugate eigenvalues.

• Who is “normal”? For example, a diagonal matrix, or Hermitian, or anti-
Hermitian, or unitary, or the direct sum of any of these is normal. In the
appropriate basis, these types of matrices are all diagonal. In the real case,
see Theorem 2.3.15, one can only achieve quasi-diagonal structure. For example,
the next result holds as immediate consequence of Theorem 2.3.15.
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Corollary 2.3.17 (Spectral Theorem for antisymmetric matrices) Let A ∈
Rn×n, AT = −A. Then, there exists Q ∈ Rn×n, orthogonal, such that

QT AQ = E =








0n1

D2

. . .

Dp








,

where each Dj, j = 2, . . . , p, is a (2, 2) block of the type

(
0 βj

−βj 0

)

.

Exercises 2.3.18
(1) A ∈ Cn×n is normal ⇔ ‖Ax‖2 = ‖A∗x‖2, ∀ x ∈ Cn.
(2) A ∈ Cn×n is normal ⇔ ∃ U , unitary: A∗ = AU .
(3) A ∈ Cn×n, z ∈ C be given. A is normal ⇔ A + zI is normal.
(4) If A is normal and q(t) is a polynomial ⇒ q(A) is normal.
(5) Show that if A ∈ Cn×n is normal, ker(A) = ker(A∗). [This is trivial after the

next exercise, so do it without using it.]
(6) Show that A ∈ C×n is normal ⇔ every eigenvector of A is also eigenvector of

A∗.
(7) Show that if A ∈ Cn×n is normal ⇒ ‖A‖2 = maxj |λj(A)|, where λj(A) are the

eigenvalues of A. Is the converse also true?
(8) Show that ‖A∗A‖2 = maxj(λj(A

∗A)). [Hint: Observe that the eigenvalues of
A∗A are ≥ 0, then diagonalize A∗A with a unitary transformation.]

Theorem 2.3.19 (Spectral norm for matrices) Let A ∈ Cn×n (or Rn×n). Then

‖A‖2 = max
j

(λj(A
∗A))1/2 .

Pf. Recall that ‖A‖2 = maxx:‖x‖2=1 ‖Ax‖2. Let x be an aribitrary unit vector,
‖x‖2 = 1. Then, we have

‖Ax‖22 = 〈Ax, Ax〉 = x∗A∗Ax = 〈A∗Ax, x〉
Cauchy−Schwartz

≤ ‖x‖2‖A∗Ax‖2
.̇. ‖Ax‖22 ≤ ‖A∗Ax‖2 ⇒ ‖A‖22 ≤ ‖A∗A‖2 = maxj(λj(A

∗A)) = λmax(A
∗A), where

we used Exercise 2.3.18-(8).
Now, let xmax be an eigenvector (of norm 1) such that A∗Axmax = λmaxxmax,

where λmax is the largest eigenvalue of A∗A. Then, 〈A∗Axmax, xmax〉 = λmax =
‖Axmax‖22. �
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Exercises 2.3.20
(1) Given A ∈ Cn×n, normal, characterize rank(A), nullity(A), Ker(A), Im(A) in

terms of A’s eigenvalues/eigenvectors. If A is not normal, relate its rank to its
eigenstructure.

(2) Show that ‖A‖2 = ‖A∗‖2 for any A ∈ Cn×n.
(3) Let A ∈ Cn×n, and λj, j = 1, . . . , n, be its eigenvalues. Show that ‖A‖2 ≥

maxj |λj|.

2.3.1 Projections from Eigenspaces

Let us now look at some implications of the spectral theorems for Hermitian (sym-
metric) matrices (Theorems 2.3.6 and 2.3.8).

What these theorems say is that Cn (or Rn) can be decomposed as the direct
sum of pairwise orthogonal eigenspaces of a Hermitian (symmetric) matrix A. That
is, if A has distinct eigenvalues λ1, . . . , λp, of multiplicity n1, . . . , np, respectively,
then:

Cn = V (1) ⊕ V (2) ⊕ · · · ⊕ V (p) (or Rn = V (1) ⊕ · · · ⊕ V (p))

where, for each j = 1, . . . , p, V (j) is the subspace spanned by the nj eigenvectors
relative to the eigenvalue λj (and λj 6= λi, i 6= j, i, j = 1, . . . , p).

Therefore, every given v ∈ Cn (or in Rn) can be written (uniquely) as

v = v(1) + · · ·+ v(p), v(j) ∈ V (j) ⇒ Av = λ1v
(1) + · · ·+ λpv

(p) .

Observe that each v(j) is a function of v. Indeed, we have v(j) =
∑nj

k=1 α
(j)
k v

(j)
k , so

v =

n1∑

k=1

α
(1)
k v

(1)
k + · · ·+

np∑

k=1

α
(p)
k v

(p)
k

and thus α
(j)
k = (v

(j)
k )∗v, from which

v =

n1∑

k=1

(v
(1)
k (v

(1)
k )∗)v +

n2∑

k=1

(v
(2)
k (v

(2)
k )∗)v + · · ·+

np∑

k=1

(v
(p)
k (v

(p)
k )∗)v .

Now, let Pj =
∑nj

k=1 v
(j)
k (v

(j)
k )∗. Then we have v =

(
∑p

j=1 Pj

)

v and Av =

(
∑p

j=1 λjPj

)

v. Therefore (since v is arbitrary), these give

{

I =
∑p

j=1 Pj

A =
∑p

j=1 λjPj .
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The following properties are immediate.

(1) PjPℓ = 0, j 6= ℓ, and P 2
j = Pj. [Obvious, since Pj =

∑nj

k=1 v
(j)
k (v

(j)
k )∗ and

{v(j)
k }k=1:p

j=1:nj

is an orthonormal set.]

(2) P ∗
j = Pj (⇒ P ∗

j Pj = P 2
j = Pj). [Again obvious from the form of Pj ].

Therefore, each Pj is symmetric and idempotent. These two properties character-
ize an orthogonal projection operator: Each Pj projects (orthogonally) a vector onto
the eigenspace V (j) (i.e., onto the subspace spanned by the eigenvectors in V (j)).

The formula

I =

p
∑

j=1

Pj is called resolution of the identity

and A =

p
∑

j=1

λjPj is called spectral resolution of A.

Note that the resolution of the identity holds no matter what was the matrix A
from which we formed the eigenspaces and the projections, whereas in the spectral
resolution of A we must use the projections formed by A itself.

Example 2.3.21 Suppose A =
∑p

j=1 λjPj as above.

(a) Then A2 =
(
∑p

j=1 λjPj

)(
∑p

j=1 λjPj

)

=
∑p

j=1 λ2
jPj and inductively Am =

∑p
j=1 λm

j Pj.
(b) q(A) =

∑p
j=1 q(λj)Pj for any polynomial in A

(c) If f(A) = eA =
∑∞

k=0
Ak

k!
⇒ eA =

∑p
j=1 eλj Pj.

The most important consequence of having an orthogonal projection operator is
the possibility to approximate, optimally, from within a certain subspace.

Example 2.3.22 (On Best Approximation) Let us see one common use of pro-
jections formed from the spectral decomposition of a symmetric matrix: A ∈ Rn×n,
A = AT . Recall that

Rn : V (1) ⊕ V (2) ⊕ · · · ⊕ V (k) ,

{

I =
∑k

j=1 Pj, PjPℓ = 0, j 6= ℓ

A =
∑k

j=1 λjPj , P 2
j = Pj, P

T
j = Pj

and Pj =

nj∑

i=1

v
(j)
i (v

(j)
i )T , j = 1, . . . , k,
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are the orthogonal projections onto the subspaces V (j)’s.
Now, suppose we want to solve this frequently arising problem: “Find v ∈ V (j)

closest (in the 2-norm) to a given vector b ∈ Rn.” [Best approximation out of a
subspace.]

That is, we want
min

v∈V (j)
‖v − b‖22 .

Since v ∈ V (j) ⇒ v = Pjv and we can write b = I · b =
∑k

j=1 Pjb. So, we have

‖P1b + · · ·+ Pjb + · · · + Pkb − Pjv‖2 = (P1b + · · · + Pj(b − v) + · · · + Pkb)
T (P1b +

· · ·+ Pj(b− v) + · · ·+ Pkb) = ‖P1b‖2 + · · ·+ ‖Pjb− v‖2 + · · ·+ ‖Pkb‖2 and the only
part we can control is ‖Pjb − v‖. As a consequence, the minimum is obtained by
choosing v = Pjb. �

Definition 2.3.23 The vector v = Pjb is called the orthogonal projection of b onto
V (j).

The following consequence of the above is now immediate.

Theorem 2.3.24 In the 2-norm, the orthogonal projection is the best approximation
to b by a vector in V (j).

Example 2.3.25 Suppose we have the overdetermined system of equations Ax = b,
where A ∈ Rm×n, b ∈ Rm, m > n, and A is full rank. We seek x ∈ Rn such that
‖Ax− b‖22 is minimized. We recognize this as a standard least squares problem, and
we know that if A is full rank, then the solution (via a simple calculation) is given
by x = (AT A)−1AT b (in the notation of Example 2.3.22, it is v = Ax). Therefore,
A(AT A)−1AT must be the orthogonal projection onto range of A. Let

P = A(AT A)−1AT ,

and let us verify that this P ∈ Rm×m is the orthogonal projection onto R(A).
1) Obviously, P = P T , and P 2 = A(AT A)−1AT A(AT A)−1AT = P .
2) Clearly Px ∈ R(A), ∀ x ∈ Rm.
2) Now, let b ∈ R(A) ⇒ b = Ay, y ∈ Rm, so we need to show that ‖b − z‖ for

z ∈ R(A) is minimized by z = A(AT A)−1AT b. But this is exactly how we derived
it: ‖b− z‖2 = miny∈Rn ‖b− Ay‖2 ⇒ y = (AT A)−1AT b.
To conclude this Example, we observe that there has to be a complementary
orthogonal projection as well, which we find from the resolution of identity, which
projects onto the orthogonal complement of R(A). We call it P⊥ = I −P and .̇.
P⊥ = I − A(AT A)−1AT and clearly P⊥P = 0. �
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As it turns out, every projection has a very simple canonical form. Below we
find this form working in R, but same result holds in C. To begin with, we have the
following result.

Exercise 2.3.26 Let P be the orthogonal projection onto a nontrivial subspace V
of Rn. Then: ‖P‖2 = 1.

Solution. ‖P‖22 = λmax(P
TP ) = λmax(P

2) = λmax(P ). Now, take x and write it as
x = xP + xP⊥ = Px + (I − P )x⇒ ‖Px‖2 = ‖PxP‖2 = ‖xP‖2.
.̇. maxx∈Rn, ‖x‖=1 ‖Px‖22 = maxx∈R(P ), ‖x‖=1 ‖Px‖22 = maxx∈R(P ), ‖x‖=1 xT PPx = xT x =

1
.̇. P has largest eigenvalue equal to 1. �

Moreover, in Exercise 2.3.26 we have used that any x ∈ R(P ) gives Px = x and
any x ∈ R(I − P ) gives Px = 0. Because of the spectral resolution relative to P ,
this means that P has as many eigenvalues equal to 1 as rank(P ), the rest being all
0’s.

The following corollary is now an immediate consequence of symmetry, spectral
theorem for symmetric matrices, and rank of an orthogonal projection onto a p-
dimensional subspace.

Corollary 2.3.27 After a change of coordinates, each orthogonal projection onto a

p-dimensional subspace can be written as P =

[
Ip 0
0 0

]

. �

Exercise 2.3.28 A = 1
n







1 1 · · · 1
1 1 · · · 1
· · · · · · · · · · · ·
1 1 · · · 1






. Clearly A is a projection (AT = A,

A2 = A) and has rank 1 and therefore A has one eigenvalue equal to 1 and (n− 1)
eigenvalues equal to 0.

If Q : QT AQ = Λ⇒ Λ =








1 0
0

. . .

0 0







⇒ A = q1q

T
1 (and q1 = 1√

n








1
1
...
1







). �
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2.3.2 Positive definiteness and congruence

An important class of Hermitian (symmetric) matrices are those which have all
positive eigenvalues.

Definition 2.3.29 A ∈ Cn×n (respectively, in Rn×n), A∗ = A (respectively, AT =
A), is called positive definite if 〈x, Ax〉 > 0, ∀x 6= 0.

• Similar definitions exist for nonnegative definite, negative definite, and nonpos-
itive definite matrices. Be aware that often nonnegative definite matrices are
called positive semi-definite, and nonpositive definite matrices are called nega-
tive semi-definite. Also, be aware that we only defined positive definite matrices
which are Hermitian. (One could define positive definite non-Hermitian matrices
as those matrices A for which 〈x, Ax〉 > 0, ∀x 6= 0; for example, the real matrix

A =

[
1 −1
1 1

]

would be positive definite).

Exercises 2.3.30

(1) (a) Show that if A, B are positive definite ⇒ A + B is too. (b) Show that if A
is positive definite, and α ∈ R, α > 0, then αA is also positive definite. [These
two properties say that the set of positive definite matrices is a cone.]

(2) Show that if A is positive definite and S is any invertible matrix ⇒ S∗AS is
positive definite. [This fact we will encounter again, it is a “congruence” relation.]
In particular, positive definiteness is preserved by unitary similarity.

(3) Show that A is positive definite ⇔ all its eigenvalues are positive.
As consequences of this fact, we have:
a) 〈x, Ax〉 ≥ λmin‖x‖2, ∀x.
b) A is invertible and A−1 is also positive definite.

Let us now verify some important properties of positive definite matrices.

Lemma 2.3.31 (Positive definite square root.) If A is positive definite, then
∃! B, positive definite, such that B2 = A.

Pf. (∃) Take U such that U∗AU = D, diagonal and positive definite: D =





d1 0
. . .

0 dn




, di > 0. Then, define the (diagonal and positive definite) matrix
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D1/2 =






d
1/2
1 0

. . .

0 d
1/2
n




, so that (D1/2)2 = D. Now take B = UD1/2U∗, which

is clearly positive definite and satisfies B2 = A. Next, let us show uniqueness. We
verify this, while also showing other things and introducing a useful technique.

Since B2 = A and B = UD1/2U∗ ⇒ AB = BA. Moreover, consider the following
data set:
{(λ1,

√
λ1), (λ2,

√
λ2), . . . , (λn,

√
λn)} and further the subset given by the distinct

points in this data set, call it (after possible relabeling) {(λ1,
√

λ1), (λ2,
√

λ2), . . . , (λp,
√

λp)}.
Now, let p(t) by the unique interpolatory polynomial of degree ≤ (p − 1) through
these points. Then, we have (see below for this computation)

p(D) = D1/2 ⇒ p(A) = p(UDU∗) = Up(D)U∗ = UD1/2U∗ = B ,

so that There is a polynomial p(t) such that p(A) = B.

Now, suppose that C is another positive definite square root of A: C2 = A ⇒
B = p(A) = p(C2) ⇒ CB = Cp(C2) = p(C2)C = BC ⇒ B and C commute and
being both Hermitian, then are simultaneously unitarily diagonalizable. That is:
∃V : V ∗BV = ΛB and V ∗CV = ΛC , but since C2 = B2 = A ⇒ Λ2

c = Λ2
B but

positive square root is unique and so ΛC = ΛB ⇒ B = C.
Finally, let us verify that p(D) = D1/2. The interpolatory polynomial in La-

grange form is

p(t) =
√

λ1L1(t)+· · ·+
√

λpLp(t) , where Li(t) =

∏p
j=1,j 6=i(t− λj)

∏p
j=1,j 6=i(λi − λj)

, i = 1, . . . , p

and thus
p(D) =

√

λ1L1(D) + · · ·+
√

λpLp(D) .

Now, examine the terms L1(D), . . . , Lp(D). We have

L1(D) =
1

∏p
j=2(λ1 − λj)

(D − λ2I) · · · (D − λpI) ,

and therefore a simple computation gives L1(D) = diag(In1 , 0n2, . . . , 0np
). Similarly

for L2(D), . . . , Lp(D), fom which p(D) =
√

D. �

Lemma 2.3.32 (Open cone.) Consider the set P = {A ∈ Cn×n : A∗ = A and A
is positive definite}. Then P is an open set in the set of all Hermitian matrices.
Similarly for real symmetric matrices.
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Pf. Let A = A∗ be positive definite and let λm = λmin(A) (> 0). Let B = B∗ be
such that ‖A− B‖ < λm. We claim that B is positive definite. (Notice that, then,
it will follow that P is open).

Let M = A− B. We know that for any x 6= 0:
{

‖Mx‖ < λm‖x‖
〈x, Ax〉 ≥ λm‖x‖2 .

Now, for any x 6= 0, we have:

0 ≤ |〈x, Mx〉| ≤ ‖x‖ · ‖Mx‖ < λm‖x‖2 ,

and also

〈x, Bx〉 = 〈x, (A−M)x〉 = 〈x, Ax〉 − 〈x, Mx〉 ≥ λm‖x‖2 − 〈x, Mx〉
> λm‖x‖2 − λm‖x‖2 = 0 .

Therefore, 〈x, Bx〉 > 0, ∀x 6= 0 and so B is positive definite. �

Lemma 2.3.33 (Boundary of Cone) The boundary elements of the set of positive-
definite matrices are the nonnegative definite matrices, which are not positive positive
definite.

Pf. We need to look at matrices which are limits of positive definite matrices:

B = lim
k→∞

Ak, Ak = A∗
k positive definite.

Now, ∀x 6= 0 : 〈x, Akx〉 > 0 .̇. limk→∞〈x, Akx〉 ≥ 0 .̇. 〈x, Bx〉 ≥ 0, ∀x ∈ Cn .̇.
B is nonnegative definite. But B cannot be positive definite, otherwise by Lemma
2.3.32 it could not be a boundary element. Next, we show that if B is a nonnegative
definite matrix, then it is on the boundary. But, for this, it is enough to take the
sequence of positive definite matrices given by Ak = B + 1

k
I. �

Lemmata 2.3.32 and 2.3.33 give us the geometrical description of the set of
positive definite matrices, to which we simply add that the vertex of the cone is the
origin (the 0-matrix).
• Several other useful characterizations of positive definite matrices exist as well.

We recall a few below.

Theorem 2.3.34 The following statements are equivalent:
0) A = A∗ is positive definite.
1) ∃C nonsingular, such that A = CC∗.
2) ∃! L, lower triangular with positive diagonal such that A = LL∗.
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Statement (1) in Theorem 2.3.34 is another instance of a congruence relation
(see below). Statement (2) gives the so-called Choleski factorization of A.

Exercises 2.3.35

(1) Show that if A is positive definite ⇒ it has a unique positive definite k-th root,
for any k ∈ Z.

(2) Prove Theorem 2.3.34.
(3) Show that if A = A∗ is nonnegative definite, then it is has a unique nonnegative

definite square root.
(4) [Signed Choleski] Show that A = A∗ is positive definite if and only if there exists

L, lower triangular and nonsingular, such that A = LL∗.
(5) Let A ∈ Cn×n be positive definite. How many Hermitian square roots of A are

there? How many Hermitian cubic roots? And Hermitian k-th roots (k = 4, . . . )?
Are there any non-Hermitian square roots (that is, matrices B such that B2 =
A)?

(6) Let A ∈ C2×2 be nonnegative definite. How many Hermitian square roots of A
are there? How many Hermitian and non-Hermitian square roots?

(7) [Harder]. Take any A ∈ C2×2, possibly not even Hermitian. Discuss when A
has a square root B, that is a matrix B ∈ C2×2 such that B2 = A, and discuss
uniqueness of B. Further, discuss when/if B is a polynomial of A.

• Another useful characterization of positive definiteness is in terms of the Gram-
matrix.

Definition 2.3.36 Given vectors v1, . . . , vp in Cn, the matrix G of entries Gij =
〈vj , vi〉 is called Gram-matrix (or Gramian) of the given vectors.

Observation 2.3.37 Since Gij = 〈vj , vi〉 = v∗
i vj = v̄T

i vj ⇒ Ḡji = (v̄T
j vi) = vT

j v̄i =
v̄T

i vj = Gij ⇒ G∗ = G. So, the Gramian is always Hermitian.

Theorem 2.3.38 For a Gram matrix G, the following hold.
1) G is nonnegative.
2) The vectors {v1, . . . , vn} are linearly independent ⇐⇒ G is positive definite.
3) Every positive definite matrix A ∈ Cn×n is the Gram matrix of n vectors in Cn.

Pf. For any vector x, we have

〈x, Gx〉 = x∗G∗x = x∗Gx =

n∑

i,j=1

Gij x̄ixj =

n∑

i,j=1

〈vj, vi〉x̄ixj



MATH 6112: ADVANCED LINEAR ALGEBRA 51

=
n∑

i,j=1

〈xjvj , xivi〉 =

〈
n∑

j=1

xjvj ,
n∑

i=1

xivi

〉

=

∥
∥
∥
∥
∥

n∑

i=1

xivi

∥
∥
∥
∥
∥

2

and so 1) and 2) follow at once.
To get 3), let B be such that B2 = A, B = B∗ ⇒ A = B∗B ⇒ Aij = 〈bj , bi〉 �

Exercises 2.3.39

(1) Suppose we have two set of vectors {v1, . . . , vn} and {w1, . . . , wn} in Cn giving
the same Gramian. What is the relation between the matrices V = [v1, . . . , vn]
and W = [w1, . . . , wn]? (Hint: You may want to first assume that the matrices
are invertible. Then, it may be simpler to do this exercise after section 2.4.2.)

(2) How does the Gramian of a set of orthogonal vectors look like? Of an orthonormal
set?

Remark 2.3.40 Gram matrices can be built over any inner product space. See
Examples below.

Example 2.3.41 [Hilbert matrix] Consider C([0, 1], R) with the usual inner product

(f, g) =
∫ 1

0
f(t)g(t)dt, and the Gram matrix of entries Gij = (fj, fi) . Now, take

fj = tj−1, so that (fj , fi) = Gij = 1
i+j−1

. This gives the famous Hilbert matrix,

which is therefore positive definite, since the functions {fk = tk−1} are linearly
independent. The Hilbert matrix is a standard example of a severely ill-conditioned
matrix for large n. The so-called condition number of G, ‖G‖‖G−1‖, gets large for
n large.

Example 2.3.42 [Hankel matrix] Given a positive function f , f(t) > 0 for t ∈
[0, 1], consider the algebraic moments

ak =

∫ 1

0

tkf(t)dt, k = 0, 1, 2, . . . .

To these, we associate the quadratic form

n∑

j,k=0

aj+kxjxk =
n∑

j,k=0

∫ 1

0

tj+kxjxkf(t)dt ,
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and the matrix A ∈ Rn+1,n+1 defined by (A)ij = ai+j. Obviously, A = AT and A is
positive definite because

xT Ax =

n∑

j,k=0

aj+kxjxk =

∫ 1

0

(
n∑

k=0

xkt
k

)2

f(x)dx .

Notice that the entries of A are functions only of i + j. Every time this fact holds,
we have a Hankel matrix.

Exercise 2.3.43 [Toeplitz matrix] Consider the trigonometric moments:

ak =

∫ 1

0

eiktf(t)dt, k = 0,±1,±2, . . . ,

and the associated quadratic form:
∑n

j,k=0 aj−kzj z̄k. Form the matrix A and verify
that its entries only depend on i− j. These are called Toeplitz matrices. Show that
if f > 0, then A is positive definite.

• Statement (1) of Theorem 2.3.34 told us that A = A∗ is positive definite ⇔ A =
CC∗ for an invertible matrix C. By looking at this as C−1AC−∗ = I, then we’d
have that A is congruent to the identity.

Definition 2.3.44 Given A = A∗ and S invertible, then B = SAS∗ is called con-
gruent to A. (Similarly in real case: B = SAST .)

Observe that congruence is an equivalence relation. Of course, congruence is not
the same as similarity (unless S is unitary), but it still allows for some simplifications
in many problems.

Remark 2.3.45 It is useful to think of similarity as a simplification of the “dy-
namics” of a problem. For example, consider the discrete dynamical system y(k+1) =
Ay(k). The change of variable v = V −1y gives v(k+1) = (V −1AV )v(k) and V should be
chosen so that V −1AV is simpler (say, in Jordan form). As the example below will
show, in some contexts, congruence arises naturally when we change the “internal”
variables of a system.

Example 2.3.46 Let f be a twice continuously differentiable function in some do-
main D of Rn, and consider the general 2nd order linear differential operator L:

Lf(x) =

n∑

i,j=1

aij(x)
∂2f(x)

∂xi∂xj
.
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To this operator, we associate the matrix A = (aij), where the entries aij are func-
tions of x ∈ D. Observe that A may not be symmetric, but since

n∑

i,j=1

aij(x)
∂2f

∂xi∂xj

=
n∑

i,j=1

[
1

2
aij(x)

∂2f

∂xi∂xj

+
1

2
aji(x)

∂2f

∂xj∂xi

]

=

n∑

i,j=1

1

2
(aij(x) + aji(x))

∂2f

∂xi∂xj
,

then L is impacted only by the symmetric part of A and so we may as well assume
that A is symmetric.

Now, suppose that we make a nonsingular change of variables from x to s =
(si)

n
i=1, with si = si(x1, . . . , xn). Nonsingularity implies that the Jacobian matrix

S =
(

∂si(x)
∂xj

)n

i,j=1
is nonsingular (and also that the change of variable is invert-

ible: x = x(s), at least locally). Under this change of variables (Exercise: Verify
(lengthy, but easy)), we get

Lf =

n∑

i,j=1

(
n∑

p,q=1

∂si

∂xp
apq

∂sj

∂xq

)

︸ ︷︷ ︸

bij(s)

∂2f

∂si∂sj
.

Thus, if we let B = (bij)
n
i,j=1, then B = SAST . Intuitively, we would expect that

physical laws described by the original differential equation will not be impacted by
this change of coordinates. �

Motivated by the above, we will now address the following questions:
(1) What are the invariants of congruence transformations?
(2) What kind of simplifications can we achieve by congruence?

The answers turn out to be surprisingly simple.

Definition 2.3.47 (Inertia) Let A = A∗ ∈ Cn×n (or A = AT ∈ Rn×n). We define
inertia of A, and write it i(A), to be the triplet i(A) = (n+(A), n−(A), n0(A)) where

n+(A) = # positive eigenvalues of A,
n−(A) = # negative eigenvalues of A,
n0(A) = # zero eigenvalues of A.

Further, we define inertia matrix of A the matrix I(A) =





In+(A)

−In−(A)

0n0(A)



.
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Remark 2.3.48 The pair (n+(A), n−(A)) is often called signature of A. But, be
aware that there is no consensus on this terminology.

Theorem 2.3.49 (Inertia Matrix) Let A = A∗ ∈ Cn×n (or A = AT ∈ Rn×n),
and let i(A) = (n+(A), n−(A), n0(A)) be its inertia. Then, A is congruent to its
own inertia matrix.

Pf. Let U be such that U∗AU = Λ where in Λ we first put all positive eigenvalues
then all the negative ones, then all the 0 ones. Accordingly, taking the positive
square root, define the positive definite matrix D:

D = diag
(√

λ1, . . . ,
√

λn+ ,
√

−λn1+1, . . . ,
√

−λn++n−, 1, . . . , 1
)

⇒ Λ = DI(A)D ⇒ A = (UD)I(A)(DU∗) .

Now, let S = UD. �

Theorem 2.3.50 (Sylvester law of inertia) Two symmetric (Hermitian) matri-
ces are congruent iff they have same inertia, and therefore the same inertia matrix.

Pf. (⇐) If i(B) = i(A) ⇒ I(B) = I(A), and therefore B = SBI(B)ST
B =

SBI(A)ST
B = SBS−1

A SAI(A)ST
A(ST

A)−1ST
B ⇒ B = (SBS−1

A )A(SBS−1
A )T

.̇. A and B are congruent.
(⇒) Let S invertible be such that A = SBST . Obviously, rank(A) = rank(B) and

(since A and B are symmetric) rank(A) = n − n0(A) = n − n0(B) = rank(B),
so that n+(A) + n−(A) = n+(B) + n−(B). Now we show that n+(A) = n+(B).
Note:

I(A) =





In+(A)

−In−(A)

0n0



 , I(B) =





In+(B)

−In+(B)

0n0





and since A = SAI(A)ST
A, B = SBI(B)ST

B ⇒ we have I(B) = T T I(A)T , with
T = ST

BST S−T
A invertible, and .̇.I(A) and I(B) are congruent.

So, we want to show that two congruent inertia matrices have the same inertia.
Suppose not. Then, without loss generality n+(A) < n+(B) and so n−(A) >

n−(B). Consider the subspace V =






v ∈ Rn : V =





0
v−
0





}n+(A)
}n−(A)
}n0






and notice that

dim(V ) = n−(A) and 〈v, I(A)v〉 < 0, ∀ v 6= 0, v ∈ V . Consider also the subspace
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W =






w ∈ Rn : w =





w+

0
w0





}n+(B)
}n−(B)
}n0






and notice that dim(W ) = n+(B) + n0 =

n − n−(B) = dim(TW ), since T is invertible. Moreover, 0 ≤ 〈w, I(B)w〉 =
〈w, T TI(A)Tw〉 = 〈Tw, I(A)Tw〉, ∀w ∈W .

Now: dim(V ) + dim(TW ) = n−(A) + n− n−(B) > n⇒ ∃x 6= 0, x ∈ V ∩ TW .
But then for this x we would have

〈x, I(A)x〉 < 0, (x ∈ V )

〈x, I(A)x〉 ≥ 0, (x ∈ TW )

which is a contradiction and therefore n+(A) = n+(B). �

Remark 2.3.51 In other words, under congruence, we have a partitioning of the set
of Hermitian (symmetric) matrices into equivalence classes, each having the same
inertia, and hence same inertia matrix

Exercise 2.3.52 Given the set H = {A ∈ Cn×n , A∗ = A}. How many equivalence
classes are there for H under congruence?

• An interesting question, also with physical motivation, is to decide if/when two
matrices can be simultaneously diagonalized by congruence. (Note: not neces-
sarily to the same inertia matrix.)
A typical result reads as follows (for a proof, and similar statements, see [4]):

“Let A = A∗, B = B∗ and A be nonsingular. Form C = A−1B. Then, there exists
invertible S such that SAS∗ and SBS∗ are both diagonal ⇔ C is diagonalizable
and has real eigenvalues.”

2.3.3 More inner products and projections

One natural way in which congruence transformations arise is when we work with
a non-Euclidean norm. The starting point is to realize that, whereas the identity
matrix defines the Euclidean metric, any other positive definite matrix can be used
to define a metric. In fact, any positive definite matrix can be used to define an
inner product and hence a metric.

Definition 2.3.53 (Positive definite inner product) Let G = G∗ ∈ Cn×n (or
G = GT ∈ Rn×n) be positive definite. The quantity

〈x, y〉G = y∗Gx
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is the inner product associated to G or just G-inner product.
The G-norm of a vector x ∈ Cn is given by ‖x‖G = (x∗Gx)1/2.

Observe that –letting G1/2 to be the unique positive definite square root of G–
the G-inner product can be appreciated to be a standard weighted inner product
〈x, y〉G = 〈G1/2x, G1/2y〉2. Since G1/2 is diagonalizable with a unitary transforma-
tion, and the diagonal is positive, in the appropriate system of coordinates, we are
just assigning positive weights to the different coordinates. G-norms are also called
ellipsoidal norms.

Example 2.3.54 Consider R3, and let G =





2.3104 1.2672 −0.3840
1.2672 3.0496 0.2880
−0.3840 0.2880 1.6499



. In fig-

ure 2.1 are visualizations of the sets {x ∈ R3 : ‖x‖22 = 1} (the standard unit
sphere) and {x ∈ R3 : ‖x‖2G = 1}. The latter is an ellipsoid, though both are unit
spheres in their respective metric. In the coordinate system of its principal axes, the
ellipsoid is simply x2

1 + 2x2
2 + 4x2

3 = 1.
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Figure 2.1: The unit sphere in the standard metric and in that induced by G.

It is a simple exercise to verify that the constructions we carried out with respect
to the standard inner product can be performed with respect to a G-inner product.
For example, the Cauchy-Schwartz inequality trivially generalizes:

|〈x, y〉G| ≤ ‖x‖G‖y‖G ,
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and as a consequence we can also talk of angles between vectors from

cos θ =
〈x, y〉G
‖x‖G‖y‖G

,

and have an immediate definition of G-orthogonality:

〈x, y〉G = 0 =⇒ x and y are G− orthogonal .

With this, we can define vectors to be G-orthonormal, and extend the Gram-Schmidt
process with respect to the G-inner product. Likewise, a matrix U ∈ Cn×n will be
called G-unitary if U∗GU = I. Schur’s theorem and the like also have a natural
extension to this new setting. As illustration, in the next result we look at the G-
unitary version of the spectral theorem for Hermitian matrices. You will recognize
in it a special congruence transformation.

Theorem 2.3.55 (G-unitary spectral theorem) Let A ∈ Cn×n, A∗ = A, and
let G ∈ Cn×n be positive definite. Then, there exist U ∈ Cn×n, G-unitary, such that
U∗AU = D and D is diagonal.

Pf. Let G1/2 be the unique positive definite square root of G, and define B =
G−1/2AG−1/2, which is Hermitian. Let V , unitary, be such that V ∗BV = D, diago-
nal. Now let U = G−1/2V , so that U∗GU = I and U∗AU = D. �

Remark 2.3.56 Notice that we do not get the eigenvalues of A from a result like
Theorem 2.3.55. All we can say is that the matrix D (which is real) has the same
inertia as A (in fact, it is trivial to get I(A) from D). Moreover, observe that the
matrix U in Theorem 2.3.55 is the product of a positive definite matrix and a unitary
one (this is a polar factorization, see Section 2.4).

Once we have Theorem 2.3.55, we can define projections as well, though it is not
obvious how to do it.

In the notation of Theorem 2.3.55, let U∗AU = D be a G-unitary diagonalization
of a Hermitian matrix A. Let d1, . . . , dp, be the distinct entries on the diagonal of

D, of multiplicity n1, . . . , np, respectively, and let u
(j)
k , j = 1, . . . , p, k = 1, . . . , nj,

be the columns of U corresponding to the values dj in D, j = 1, . . . , p. So, we have
the subspace decomposition of Cn:

Cn = U (1) ⊕ U (2) ⊕ · · · ⊕ U (p) ,

where U (j) = span
(
u

(j)
1 , . . . , u(j)

nj

)
, j = 1, . . . , p.

(2.3.2)
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Now, we claim that the following are orthogonal projections in the usual sense:

Pj =

nj∑

k=1

G1/2u
(j)
k (u

(j)
k )∗G1/2 , j = 1, . . . , p , (2.3.3)

where G1/2 is the unique positive definite square root of G. The verification that
these are orthogonal projections is simple.

• That P ∗
j = Pj is obvious, since G1/2 is positive definite.

• To show that PjPj = Pj is also a direct verification using that the matrix U
is G-unitary.

To define G-orthogonal projections onto a subspace V of dimension q (e.g., into
one of the U (j), j = 1, . . . , p, above), we resort to the following (and see Exercise
2.3.57-(3)). Let U ∈ Rn×n be a G-orthogonal matrix, partitioned as U = [V, W ],
where V ∈ Rn×q and the columns of V span V. Then, we define the G-orthogonal
projection onto V to be

P = V V T G . (2.3.4)

Note that P 2 = P , but P is not symmetric, at least not in the usual sense; this
is actually a deep fact, since in the end symmetry is an inner-product dependent
concept1. Also, note that in the case of V = U (j), for some j = 1, . . . , p, then we
have P = G−1/2PjG

1/2, with Pj as in (2.3.3).

Exercises 2.3.57

(1) Find the analogous formulas to the “resolution of the identity” and “spectral
resolution of A”, according to the projections in (2.3.3). Do it also for the G-
orthogonal projections given by (2.3.4), that is G−1/2PjG

1/2.
(2) Let P be a projection with respect to the G-norm. What are the eigenvalues of

the projection P? Can you define the complementary projection?
(3) Let V be a subspace of Cn, and let b ∈ Cn be given. Find a closed form expression

for the solution of the problem

min
x∈V
‖x− b‖G .

[In essence, this is the reason why we defined the G-projection as we did in
(2.3.4).]

1Think about this statement.
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(4) We are in R3. Let V be the line of direction





−1
0
1



, and let G =





4 0 0
0 9 0
0 0 25



.

(a) Find a G-orthogonal matrix whose first column spans V .

(b) Solve the problem minx∈V ‖x − b‖G, where b =





1
1
1



, and find the residual

‖x−b‖G with respect to the optimal solution you found. Compare this solution
to the standard least squares solution of this problem.

2.4 Polar form and the SVD

In this section, we introduce one of the most useful decomposition of a general
matrix, the Singular Value Decomposition (SVD). As a stepping stone, we will in-
troduce the polar form of a matrix. To appreciate the latter, it will be useful to
understand some important similarities between representations and transforma-
tions we are used to perform on complex numbers, and their matrix analogues. We
already encountered one of them, the decomposition of a matrix A ∈ Cn×n into Her-
mitian and anti-Hermitian parts, As = (A + A∗)/2 and Aa = (A − A∗)/2. Indeed,
this is the analog of the representation of a complex number as sum of its real and
imaginary parts:

z ∈ C , z = Re z + iImz ⇒ A ∈ Cn×n , A = As + Aa .

2.4.1 Polar Factorization

Let us begin with an example which extends to matrices an important transforma-
tion we do on complex numbers.

Exercise 2.4.1 (Möbius transform) Let z ∈ C, z = a + ib, a ≥ 0, and let

ζ = 1−z
1+z

= (1−a)−ib
(1+a)+ib

. Then, |ζ | ≤ 1. In other words, the mapping 1−z
1+z

takes the RHP

(right half plane) inside the unit disc. Moreover, it takes the imaginary axis onto
unit circle.

Solution. Rewrite ζ = (1−a2−b2)
(1+a)2+b2

− i 2b
(1+a)2+b2

. So, the claim is true if (1−a2− b2)2 +

4b2 ≤ ((1 + a)2 + b2)2, which boils down to having a + 2a2 + ab2 + a3 ≥ 0, which
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is true since a ≥ 0. To verify that it takes the imaginary axis onto unit circle is
equally simple:

a = 0⇒ ζ =
1− ib

1 + ib
⇒ ζ =

1

1 + b2
((1− b2)− 2ib)

and (1− b2)2 + 4b2 = (1 + b2)2). �

Exercise 2.4.2 Similarly to the previous exercise, let w = α + iβ with α > 0 be a
given complex number with positive real part, and consider the mapping z → ζ =
1−wz
1+w̄z

. Show that this maps the RHP into unit disk |ζ | < 1.

• The last exercise has an important analog for matrices.

Theorem 2.4.3 (Generalized Cayley transform)

a) Let w = α + iβ be a given complex number with α > 0, and let A ∈ Cn×n be
such that As is positive definite. Then the matrix B = (I −wA)(I + w̄A)−1 is
such that ‖B‖ < 1. Conversely, if ‖B‖ < 1, with B = (I − wA)(I + w̄A)−1,
then As is positive definite. Here, the norm is the 2-norm.

b) In the special case of w = 1 and all eigenvalues of As being 0, then B is
unitary2.

Pf. Let us prove (a). Observe that, since As = A∗
s is positive definite ⇒ Re(λ) > 0,

where λ is any eigenvalue of A. Since all eigenvalues of I + w̄A are of the form
1 + w̄λ, with λ eigenvalue of A, they are non-zero and I + w̄A is invertible. So,
B is well posed. Now, ∀x, let y = (I + w̄A)−1x → x = (I + w̄A)y ⇒ Bx =
(I − wA)(I + w̄A)−1x = (I − wA)y. We want ‖Bx‖2 < ‖x‖2, ∀x 6= 0. This is true
if and only if

‖(I − wA)y‖2 < ‖(I + w̄A)y‖2 ↔ y∗(I − wA)∗(I − wA)y

< y∗(I + w̄A)∗(I + w̄A)y ↔ y∗y − w̄y∗A∗y − wy∗Ay + |w|2y∗A∗Ay

< y∗y + wy∗A∗y + w̄y∗Ay + |w|2y∗A∗Ay ↔ 0

< w̄y∗(A∗ + A)y + wy∗(A + A∗)y ↔ 2y∗Asy(w + w̄) > 0

↔ 4αy∗Asy > 0↔ y∗Asy > 0

and therefore As is positive definite. Since all this chain of inequalities can be
reversed, we also get that if ‖B‖ < 1 then As is positive definite.

2In this case, B is called just the Cayley transform of A
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To prove (b), we observe that if w = 1 and all eigenvalues of As are 0, then (since
As = A∗

s) As = 0, and we must have that all eigenvalues of A are on the imaginary
axis and A = Aa. Once more B is well defined, since I + A is invertible.

Now we only need to verify that B∗B = I. We have B = (I − A)(I + A)−1 ⇒
B∗ = (I + A∗)−1(I − A)∗ = (I − A)−1(I + A). Moreover, B = (I − A)(I + A)−1 =
(I+A)−1(I−A) since the two factors commute: (I−A)(I+A)−1 = (I+A)−1(I−A)↔
(I + A)(I − A) = (I − A)(I + A) which is obvious. Therefore

B∗B = (I − A)−1(I + A)(I + A)−1(I −A) = I .

�

Remark 2.4.4 With Theorem 2.4.3, we can map matrices with eigenvalues in the
RHP into a matrix with eigenvalues in the unit disk. There is an immediate similar
construction (with B = (I + wA)(I − w̄A)−1) to map matrices with eigenvalues in
the LHP inside the unit disk.

Exercises 2.4.5

(1) If A = A∗ is nonnegative definite, where are the eigenvalues of B = (I −A)(I +
A)−1?

(2) We have seen that: If λ is an eigenvalue of A, and Av = λv, v∗v = 1⇒ v∗Asv =
Reλ. Find an example of a matrix A ∈ R2×2 whose eigenvalues have positive real
part, but such that As is not positive definite. (Hint: can the matrix be normal?)

• Next, we continue exploring another, deep, analogy between matrix factorizations
and complex numbers mappings and representations. The next result is the analog
of the representation of a complex number z in polar form: z = ρeiφ.

Theorem 2.4.6 (Polar Factorization) Let A ∈ Cn×m, n ≤ m. Then A admits
the factorization A = PU , where P ∈ Cn×n : P ∗ = P and is nonnegative definite,
and U ∈ Cn×m has orthonormal rows: UU∗ = In. If A is full rank (i.e., n), then
P is positive definite. In all cases, P is uniquely determined as P = (AA∗)1/2, the
unique nonnegative definite square root of AA∗, and U is uniquely determined if A
is full rank.

Pf. First, suppose A is full rank. Then, AA∗ is positive definite: 〈AA∗x, x〉 =
〈A∗x, A∗x〉 = ‖A∗x‖2 > 0, ∀x 6= 0. Then, ∃ ! positive definite square root P
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of AA∗, P = P ∗ : P 2 = (AA∗). Define U = P−1A ⇒ U∗ = A∗P−1 and so
UU∗ = P−1(AA∗)P−1 = P−1P 2P−1 = I .̇. U has orthonormal rows and A = PU .

If A is not full rank ⇒ AA∗ is only nonnegative definite. Still, it has a unique
nonnegative definite square root P : (AA∗)1/2 = P , P ∗ = P ∈ Cn×n. Let rank

of P be q (< n). Let V ∈ Cn×n unitary such that V ∗PV =

[
D 0
0 0

]
}q
}n− q

where

D is diagonal with positive entries, so D−1 exists. Let Û ∈ Cn×m be defined as

Û =

(
D−1 0

0 0

)

V ∗A. Observe

Û Û∗ =

(
D−1 0
0 0

)

V ∗(AA∗)V

(
D−1 0

0 0

)

=

(
Iq 0
0 0

)

.̇. first q rows of Û are orthonormal. Now, extend these to an orthonormal Ũ ∈ Cn×m

(extension is obviously not unique) in such a way that first q rows of Ũ are those of
Û . So: ŨŨ∗ = In.

Now, take U = V Ũ ∈ Cn×m and clearly UU∗ = In. Finally, let us verify that
with this U we get A = PU . But, to have A = PU is the same as

A =

(

V

(
D 0
0 0

)

V ∗
)

V Ũ ↔ V ∗A =

(
D 0
0 0

)

Ũ .

The first q rows of this relation are clearly satisfied, since the first q rows of Ũ are

those of Û and

(
D 0
0 0

)

Û = V ∗A. For the last (n − q) rows, we have to verify

v∗
j A = 0, since the last (n − q) rows of

(
D 0
0 0

)

Û are clearly 0. Recall that vj,

j = p + 1, . . . , n, are the eigenvectors of P relative to the eigenvalue 0. Therefore,
v∗

j AA∗vj = v∗
j P

2vj = 0 .̇. ‖A∗vj‖2 = 0⇒ A∗vj = 0, j = q + 1, . . . , n. �

Remarks 2.4.7

(1) If A ∈ Rn×m, n ≤ m, then Theorem 2.4.6 holds in the real field, unchanged.
(Of course, now P = P T and U is real with orthonormal rows: UUT = In).

(2) If A ∈ Cn×n (square case), then A = PU , U∗U = UU∗ = I that is, U is
unitary.

(3) Obviously, there is an analogous “polar factorization” for A ∈ Cm×n, m ≥
n : A = WR, W ∈ Cm×n : W ∗W = In (orthonormal columns) and R = R∗

nonnegative definite. [Just apply Theorem 2.4.6 to A∗.]
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(4) From above Remarks (2) and (3) we immediately get that a square matrix
A ∈ Cn×n can be factored as

A = PU = WR, U∗U = UU∗ = W ∗W = WW ∗ = I (U and W unitary)

and P ∗ = P , R∗ = R, both nonnegative definite (positive definite if A is full
rank). [These are often called right and left polar factorizations.]

Exercises 2.4.8 Below, σ(B) indicates the set of eigenvalues of a matrix B repeated

according to their multiplicity. E.g., σ

((
1 0
0 1

))

= {1, 1}.
(1) Let A ∈ Cn×n. Show that σ(AA∗) = σ(A∗A).
(2) Let A ∈ Cm×n, m ≥ n. Show that

σ(AA∗) = σ(A∗A) ∪ {0, . . . , 0}
︸ ︷︷ ︸

m−n

.

(3) Let A ∈ Cn×n and let A = PU , A = WR be its right and left polar factorizations.
Show:

a) If A is nonsingular, then U = W ;

b) If P = R⇔ A is normal.

[Hint: do this problem after the SVD below is introduced.]

(4) Show that if A ∈ Cn×n is normal, then its polar factors P and U commute.
[Hint: How many nonnegative definite square roots does a nonnegative definite
matrix have?]

As a consequence of Exercise 2.4.8-(4), observe that if PU = UP ⇒ AA∗ = A∗A.
In fact, A = PU ⇒ AA∗ = P 2 and A∗A = U∗PPU = U∗PUP = U∗UP 2 = P 2.
That is, we have found one more characterization of normality:

“A ∈ Cn×n is normal if and only if PU = UP , where A = PU is a polar
factorization of A.”
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2.4.2 The SVD: Singular Value Decomposition

An immediate consequence of the polar factorization is one of the most useful matrix
decompositions.

Theorem 2.4.9 (SVD) Given A ∈ Cm×n and assume m ≥ n. Then A may be
written as A = UΣV ∗, where U ∈ Cm×m unitary, V ∈ Cn×n unitary and Σ ∈ Rm×n

is “nonnegative diagonal,” of the form Σ =














σ1

. . .

σk

σk+1

. . .

σn

0 · · · 0 · · · 0














︸ ︷︷ ︸

n

}m− n

,

with σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = · · · = σn = 0.

Pf. Consider the polar form A = WR, where W ∈ Cm×n : W ∗W = In, and
R = R∗ = (A∗A)1/2 is nonnegative of rank k. Let V be a unitary matrix: V RV ∗ =
Λ = diag(λi, i = 1, . . . , n), where λ1 ≥ · · · ≥ λk > λk+1 = · · · = λn = 0. Therefore,
A = (WV ∗)ΛV = ÛΛV where Û ∈ Cm×n has orthonormal rows: Û∗Û = In.

Now, complete Û to an orthonormal basis for Cm: U ∈ Cm×m so that the first n

columns of U are those of Û , and complete Λ to Σ: Σ =

[
Λ
0

]

. �

Remarks 2.4.10
(1) The values σ1, . . . , σn are called singular values of A. Clearly, rank(A) = k, the

number of nonzero singular values.

Notice that since

{

AA∗ = UΣΣ∗U∗

A∗A = V Σ∗ΣV ∗ , then the σi’s are the positive square roots

of the eigenvalues of A∗A. The columns of the unitary factor U are called left
singular vectors of A (they are eigenvectors of the matrix AA∗). The columns of
the unitary factor V are called right singular vectors of A (they are eigenvectors
of A∗A).

(2) There is an immediate analogous result in real case: A = UΣV T , with U ∈ Rm×m

and V ∈ Rn×n orthogonal.
(3) The ordering of the singular values is the usual way the result is given. In

principle, we could order them differently: It is the set {σ1, . . . , σn} which is
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uniquely determined. [At times, also the restriction of σi ≥ 0 is lifted; in this
case, one obtains a so-called signed SVD.]

(4) Of course, there is no need to assume m ≥ n. If we have m < n, then we can
just apply the SVD to A∗.

(5) Notice that the SVD is a two-sided diagonalization by unitary matrices obtained
by effetively piecing together the unitary facgtors of the two nonnegative definite
matrices AA∗ and A∗A.

(6) From the above proof, obviously the unitary factors U and V are not unique. In
case k = n, and distinct singular values, then V is unique up to a diagonal phase
matrix (see Homework 2): V Φ, Φ = diag(eiφj , j = 1, . . . , n; φj ∈ R). If m > n,
of course U is not unique. But if m = n = k, and V is fixed, then U is unique:
U = AV Σ−1.

(7) In the same notation of Theorem 2.4.9, one can also rewrite the result relatively
to the so-called reduced SVD, which is obtained neglecting the last (m-n) rows of
Σ:

A = UΣV ∗ , U ∈ Cm×n : U∗U = In , Σ ∈ Rn×n , V ∈ Cn×n : V ∗V = I .

(8) If A = A∗, then σi = |λi| (the absolute values of the eigenvalues of A). Indeed,
from the Schur theorem we have, for a unitary U : A = UΛU∗ = U |Λ|SU∗ =
UΣV ∗, where V = US, and S = diag(±1), where we take the sign ±1 corre-
sponding to the positive/negative eigenvalues (and either one of ±1 relatively to
the 0 eigenvalues).

• An interesting consequence of the SVD is that near any given matrix there is one
with distinct singular values. Although we state and prove the theorem below for
the 2-norm, the result holds in any norm, since all norms are equivalent.

Theorem 2.4.11 Given A ∈ Cm×n, m ≥ n, whose singular values are not all
distinct. Then, ∀ε > 0, there exists Aε ∈ Cm×n such that all singular values of Aε

are distinct and ‖A−Aε‖2 < ε.

Pf. From A = UΣV ∗, let k be the rank of A, and write Σ =

[
S
0

]

. So, we have

that S = diag(σi), and σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = · · · = σn = 0. Let us first
assume that not all singular values are equal. Let d = minj: σj>σj+1

(σj − σj+1) and

let η: 0 < η ≤ d. Consider the matrix Ση =

[
Sη

0

]

, where Sη = diag(σk + η/k, k =

1, 2, . . . , n). Form Aη = UΣηV
∗, so that ‖A−Aη‖ = ‖Σ−Ση‖ = η; now take η < ε.

If all singular values are equal, then just take η = ε in the definition of Ση. �
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• There is also an interesting, and very useful, characterization of the SVD from an
enlarged Hermitian problem. We show it in the next exercise.

Exercise 2.4.12 Let A ∈ Cm×n, m ≥ n. Define M =

[
0 A
A∗ 0

]

∈ Cn+m,n+m.

Clearly M = M∗ and rank(M) ≤ 2n. Now, if A = UΣV ∗ is an SVD of A, and we

further partition U columnwise U = [U1 U2], where U1 ∈ Cm×n, and Σ =

[
S
0

]

, then

M =

[
0 U1SV ∗

V SU∗
1 0

]

. Now, observe that this can be also rewritten as

M =

[
U1/
√

2 −U1/
√

2 U2

V/
√

2 V/
√

2 0

]




S 0 0
0 −S 0
0 0 0









U∗
1 /
√

2 V ∗/
√

2

−U∗
1 /
√

2 V ∗/
√

2
U∗

2 0





and that the matrix

Z =

[
U1/
√

2 −U1/
√

2 U2

V/
√

2 V/
√

2 0

]

is unitary, ZZ∗ = In+m. In other words, the SVD of A gives a Schur form for
M with all positive eigenvalues λ1, . . . , λk first (ordered decreasingly), followed by
the negative eigenvalues (ordered increasingly), and then the 0 eigenvalues; further,
λj = σj, j = 1, . . . , k. Likewise, from a Schur form of M (with eigenvalues ordered
as above), we immediately get an SVD of A upon partitioning the unitary factor Z
of the Schur form of M as above. �

The equivalence of Exercise 2.4.12 suggests that results that we can prove for
Hermitian matrices should have a counterpart in results we can prove for the SVD.
This is essentially correct; however, since the SVD applied to rectangular matrices,
we need to carry out the details carefully –even when we have distinct singular
values– and need to take care of the part relative to the zero eigenvalues of AA∗.

A nice byproduct of the SVD is that it reveals a lot of structure about norms as
well as fundamental subspaces associated to A. We see some of these results below,
in the form of exercises.

Exercise 2.4.13 Use the SVD of a matrix A ∈ Cm×n to find orthonormal bases for
R(A), N (A), R(AT ), N (AT ) and to express orthogonal projection matrices onto
these subspaces.

Exercise 2.4.14 (2-norm) Show that ‖A‖2 = σ1 (largest singular value of A).
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Solution. The verification is immediate:

‖A‖22 = ‖UΣV ∗‖22 = λmax(V ΣT U∗UΣV ∗) = λmax(S
2) = σ2

1 .

[An alternative proof of the result rests on the fact that the 2-norm is invariant with
respect to unitary transformations on the right and left.] �

Exercise 2.4.15 (Frobenius norm) Show that ‖A‖F =
(∑rank(A)

i=1 σ2
i

)1/2
.

Solution. Again a straightforward computation:

‖A‖2F = tr(A∗A) = tr(V ΣT U∗UΣV ∗) = tr(ΣT Σ) ,

where we have used that the trace is similarity invariant. �
A consequence of the last two exercises is that

‖A‖2 ≤ ‖A‖F ≤
√

min(n, m)‖A‖2 .

The SVD also allows for writing the solution of the least squares problem in a
very compact way, as we do in the example below.

Example 2.4.16 Let us revisit the full rank least-squares problem: “Find x ∈ Rn

such that ‖Ax−b‖2 is minimized, when A ∈ Rm×n, m ≥ n, A full rank, and b ∈ Rm.”
Of course, we know that x = (AT A)−1AT b. Let us rewrite this in terms of the SVD

of A: A = UΣV T . Then, since Σ =

[
S
0

]

with S invertible, we can also write:

x = V
(
S−1, 0)UT b = V Σ+UT b ,

where we have set Σ+ =
(
S−1, 0). Observe that Σ+Σ = In. We call Σ+ a left-

inverse for Σ. Moreover, observe that for this Σ+ we also have the following four
properties:







Σ+ΣΣ+ = Σ+,

ΣΣ+Σ = Σ,

ΣΣ+ and Σ+Σ are Hermitian.

(2.4.1)

We also observe that if we had m < n, hence Σ = (S, 0), then defining Σ+ =

[
S−1

0

]

such Σ+ would satisfy properties (2.4.1); now Σ+ would be a right-inverse for Σ:
ΣΣ+ = In. �
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Let us generalize this last example. Consider A = UΣV ∗ (regardless of m ⋚ n).

Definition 2.4.17 (Pseudo-inverse) Let A = UΣV ∗ be an SVD of A ∈ Cm×n.
Let R ∈ Rm×n be the matrix obtained by replacing the positive singular values in Σ
by their reciprocal values. Finally, let Σ+ = RT . Then, Σ+ is called pseudo-inverse
of Σ.

Further, define A+ as A+ = V Σ+U∗. Then, A+ is called pseudo-inverse of A,
or also Moore-Penrose generalized inverse.

Exercises 2.4.18

(1) Verify that Σ+ just defined satisfies properties (2.4.1).

(2) Verify that A+ satisfies properties (2.4.1) (with A and A+ replacing Σ, Σ+

there).

(3) Verify that if A is full rank, and m ≥ n, then A+ = (AT A)−1AT . What is the
formula for m < n? What for m = n?

• The pseudo-inverse of A allows to write the solution of the best-approximation
problem in the rank deficient case in a very compact way.

Exercise 2.4.19 Show that regardless of whether or not A ∈ Rm×n is full rank, the
minimum-norm solution of the least squares problem, minx ‖Ax− b‖2, is x = A+b.

• Arguably, the SVD is the most practically useful tool to solve a number of
approximation problems. We are going to review some of them here below, in
the form of Examples.

Example 2.4.20 (Nearness to singularity) Given A ∈ Cn×n, invertible, we want
to find a matrix B of minimal 2-norm such that A + B is singular. [We could have
also used the F -norm.]

Solution. Observe that since A+B = A(I+A−1B)⇒ if ‖A−1B‖ < 1⇒ I+A−1B
would be invertible3, and so would be A + B .̇. 1 ≤ ‖A−1B‖ ≤ ‖A−1‖‖B‖ .̇. B must
satisfy ‖B‖ ≥ 1

‖A−1‖ . But 1
‖A−1‖ = 1

‖(UΣV T )−1‖ = 1
‖Σ−1‖ = 1

1/σn
= σn .̇. ‖B‖ ≥ σn.

3See Homework 2
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Now, take B = U








0
. . .

0
−σn








V ∗ = −σnunv
∗
n. Clearly B is of minimal norm

and A + B is singular. �

Remark 2.4.21 Observe that B in Example 2.4.20 is surely not unique if σn−1 =
σn. The minimal value of ‖B‖ is uniquely determined.

Exercise 2.4.24 below is very useful, somewhat easy to accept, but its verification
is lengthy and nontrivial. It will be broken down in several steps. The following
Lemma will be useful and it is of independent interest.

Lemma 2.4.22 (Eigenvalues of product) Let A, B ∈ Rm×n, m ≥ n. Consider
AT B ∈ Rn×n and BAT ∈ Rm×m. Then:

σ(BAT ) = σ(AT B) ∪ {0, . . . , 0}
︸ ︷︷ ︸

m−n

.

That is, the eigenvalues of BAT are the same as those of AT B –counting multiplicities–
plus an additional (m− n) zero eigenvalues.

Pf. One way to show it is the following. Consider the matrices in Rm+n,m+n:

M =

[
BAT 0
AT 0

]

and N =

[
0 0

AT AT B

]

. Observe that

M

[
I B
0 I

]

=

[
BAT BAT B
AT AT B

]

and

[
I B
0 I

]

N =

[
BAT BAT B
AT AT B

]

.

So,

M =

[
BAT 0
AT 0

]

=

[
I B
0 I

] [
0 0

AT AT B

] [
I −B
0 I

]

=

[
I B
0 I

]

N

[
I B
0 I

]−1

and so M and N are similar and σ(M) = σ(N). Given the block triangular structure
of M and N , we thus have

σ(M) = σ(BAT ) ∪ {0, . . . , 0}
︸ ︷︷ ︸

n

, σ(N) = σ(AT B) ∪ {0, . . . , 0}
︸ ︷︷ ︸

m

,

and the result follows. �
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Corollary 2.4.23 With notation as in Lemma 2.4.22, we have tr(AT B) = tr(BAT ).

Pf. This is because the trace of a matrix is the sum of its eigenvalues. �

Example 2.4.24 (Nearest rank k to A) Let A ∈ Rm×n, m ≥ n, and rank(A) ≥
k. We want Ak of rank k : ‖A−Ak‖F is minimized. [Here we are using the F -norm,
though the result holds also for the 2-norm, in fact for any orthogonally invariant
norm. Also, the same result –and much the same proof– holds for matrices having
complex valued entries. ]

Solution. Let A = UΣV T be a SVD of A. Then, take Σk =














σ1

. . .

σk

0
. . .

0
0














and let Ak = UΣkV
T . Obviously Ak has rank k and ‖A − Ak‖2F =

∑rank(A)
j=k+1 σ2

j . It
remains to show that for any matrix B ∈ Rm×n of rank k (and therefore for which
we have σk+1(B) = · · · = σn(B) = 0) we have

‖A− B‖F ≥ ‖Σ(A)− Σ(B)‖F
= ‖diag(σ1(A)− σ1(B), . . . , σk(A)− σk(B), σk+1(A), . . . , σm(A))‖F

(2.4.2)

and the result will follow. This last fact is actually rather involved, and we show it
in several steps.

1st step. 0 ≤ ‖A − B‖2F = tr((A − B)T (A − B)) = tr(AT A − AT B − BT A +
BT B) = tr(AT A) + tr(BT B) − tr(AT B + BT A). Now, tr(AT B) = tr(BT A) since
BT A = (AT B)T so they have same diagonal.

.̇. min
B∈Rm+n

rank(B)=k

‖A−B‖2F = tr(AT A)+tr(BT B)−2tr(AT B) =
∑n

j=1 σ2
j (A)+

∑n(or k)
j=1 σ2

j (B)−

2tr(AT B).
.̇. Now, we need to find B ∈ Rm×n, of rank k, to maximize the above expression.

Note: AT B ∈ Rn×n. Next, we solve this problem by keeping A fixed and letting B
be a matrix with given (but arbitrary) singular values σ1(B) ≥ · · · ≥ σk(B) > 0,
all other singular values being 0. In other words, we are letting B to be of the
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form B = UΣBV T , with U and V orthogonal of appropriate dimension, and
we are going to maximize (over the set of orthogonal matrices) the expression
tr(AT UΣBV T ). If we can show that –for any given k-tuple of singular values of
BD– we have tr(AT B) ≤∑n

i=1 σi(A)σi(B), then the result will follow.

2nd step. Now, maximizing Û and V̂ for tr(AT UΣBV T ) exist, since the orthogonal
matrices form compact sets, though they are possibly not unique. In any case, for
any orthogonal V ∈ Rn×n, we must have

tr
(
(AT ÛΣB)V̂

)
≥ tr

(
(AT ÛΣB)V

)
.

Take the SVD of AT ÛΣB: AT ÛΣB = QΣW T . Then,

tr
(
(AT ÛΣB)V

)
= tr(QΣW T V ) = tr(ΣZ) ,

where Z = W T V Q is orthogonal. So:

tr
(
(AT ÛΣB)V

)
≤

n∑

i=1

σizii ≤
n∑

i=1

σi ,

and so Z = I surely maximizes. This means that V̂ = WQT , and so (AT ÛΣB)V̂ =
QΣQT , and thus we can restrict our search for B such that BT A is symmetric and
nonnegative definite.

3rd step. In light of Lemma 2.4.22 and Corollary 2.4.23, we can thus restrict our
search to B ∈ Rm×n such that we maximize tr(BAT ). But, as in Step 2, this implies
that we can restrict our search to the case of BAT being symmetric and nonnegative
definite.

4th step. So, we are restricting our search to the case when both AT B and BAT

are nonnegative definite. In this case, we have:

Claim. tr(AT B) = tr(BAT ) =
∑n

i=1 σi(A)σπ(i)(B), where π(i) is a permutation of
{1, . . . , n} and the singular values of A and B are ordered.

Postponing (see Lemma 2.4.25 below) the proof of this claim, we can now con-
clude our argument.
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5th step. The observation is that the identity is a maximizing permutation in the
formula for tr(AT B). In fact, suppose π is not the identity. Then, there are indices,
i1, i2 : 1 ≤ i1 < i2 ≤ n for which σπ(i1)(B) ≤ σπ(i2)(B).

But then consider our sum, S =
∑n

i=1 σi(A)σπ(i)(B), and exchange the positions

of these two singular values obtaining Ŝ =
∑

i6=i1,i2
σi(A)σπ(i)(B)+σi1(A)σπ(i2)(B)+

σi2(A)σπ(i1)(B). Now Ŝ − S = σi1(A)σπ(i2)(B)− σi1(A)σπ(i2)(B) + σi2(A)σπ(i1)(B)−
σi2(A)σπ(i2)(B) =
(σi1(A)− σi2(A))
︸ ︷︷ ︸

≥0

(σπ(i2)(B)− σπ(i1)(B))
︸ ︷︷ ︸

≥0

≥ 0, and so since the singular values of B

(and of A) are ordered, the identity maximizes the sum.
.̇. max(tr(AT B)) =

∑n
i=1 σi(A)σi(B).

.̇. minrank(B)=k ‖A − B‖2F =
∑n

j=1 σ2
j (A) +

∑n
j=1 σ2

j (B) − 2
∑n

j=1 σj(A)σj(B) =
∑n

j=1(σj(A)− σj(B))2 which is what we wanted in (2.4.2). �
• Next, we are left to verify the Claim. We single this out as

Lemma 2.4.25 Let A, B ∈ Rm×n, m ≥ n, be such that AT B and BAT are sym-
metric and nonnegative definite. Then:

tr(AT B) = tr(BAT ) =
n∑

i=1

σi(A)σπ(i)(B) ,

where π is a permutation of the indices {1, . . . , n}.
Pf. First, we observe that the proof is simpler if A and B are both symmetric and
nonnegative definite (and so m = n). In this case, since AB = AT B = (AB)T =
BAT = BA, they would commute and thus can be simultaneously diagonalized by
an orthogonal matrix U : UT AT A = ΛA and UT BU = ΛB. Therefore, tr(AT B) =
tr(UT AT UUT BU) = tr(ΛAΛB) =

∑n
i=1 λi(A)λi(B). In this case, the set of singular

values of A, B concide with the set of their eigenvalues, of course. Note that we do
not know that the eigenvalues of A and B are ordered by U , but nevertheless can
surely conclude that

∑n
i=1 λi(A)λi(B) =

∑n
i=1 σi(A)σπ(i)(B), as desired.

So, the idea is to reduce ourselves to this case of A and B being symmetric.
We search for W ∈ Rn×m and V ∈ Rm×m, V T V = I (V orthogonal) and WW T =

In (W has orthonormal rows) such that defining

ÂT = W T AT V ∈ Rm×m, B̂ = V T BW ∈ Rm×m (2.4.3)

then we have
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a) ÂT B̂ = B̂ÂT and
b) Â, B̂ both symmetric nonnegative definite.

If we can do this, then

tr(AT B) = tr((AT BW )W T ) = tr(W T (AT BW )) = tr(W T AT V V T BW )

= tr(ÂT B̂) =

n∑

i=1

λi(Â)λi(B̂) =

n∑

i=1

σi(A)σπ(i)(B),

where the last equality is a consequence of the fact that ÂÂT = V T AWW TAT V =
V T AAT V and B̂B̂T = V T BWW TBT V = V T BBT V so that the set of singular
values of A, respectively of B, coincide with the set of eigenvalues of Â, respectively
of B̂, and we would be done. So, let us build W and V as in (2.4.3). We do this in
three steps.

(i) Since AT B and BAT are nonnegative definite, let orthogonal U and Z be such

that AT B = UΛUT and BAT = Z

[
Λ 0
0 0

]

ZT =
[
Z1 Z2

]
[
Λ 0
0 0

] [
ZT

1

ZT
2

]

=

Z1ΛZT
1 . Let Y = UZT

1 (⇒ Y ∈ Rm×m : Y Y T = In). Note Y T AT BY =
Y T UΛUT Y = Z1ΛZT

1 = BAT and BY Y T AT = BAT .̇. Y T AT and BY are in
Rm×m and commute and (W TAT )(BW ) and (BW )(W TAT ) are nonnegative
definite.

(ii) So, without loss of generality we can restrict to the case of A, B ∈ Rm×m :
AT B = BAT both nonnegative definite, though the single factors A and
B are not necessarily nonnegative definite. Let U : UT (AT B)U = Λ =
diag(λkIk, k = 1 : p), where Ik is of size mk and m1 + · · · + mp = m. No-

tice:

{

UT (AT B)BU = UT B(AT B)U = (UT BU)Λ

UT (AT B)AT U = UT AT (AT B)U = (UT AT U)Λ

but also

{

UT (AT B)BU = Λ(UT BU)

UT AT BAT U = Λ(UT AT U)
and so

{

(UT BU)Λ = Λ(UT BU)

(UT AT U)Λ = Λ(UT AT U)

and easily we must then have UT AT U = diag(AT
jj, j = 1 : p), and UT BU =

diag(Bjj, j = 1 : p).

.̇. We can directly consider A := UT AU and B := UT BU both block-diagonal
and thus AT

jjBjj = BjjA
T
jj = λjIj , j = 1, . . . , p.

(iii) So, without loss of generality, we have A, B : AT B = BAT = λI, λ ≥ 0. We
only need to show that we can modify A, B and take Â = ÂT and B̂ = B̂T
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both nonnegative definite. Now, take the polar form of AT : AT = PU and
let ÂT = AT UT = P which is symmetric nonnegative definite. Define B̂ =
UB ⇒ ÂT B̂ = AT B = λI = BAT = UBAT UT = B̂Â ⇒ PB̂ = λI. We have
two more cases to consider.

(iii-a) λ > 0 ⇒ A nonsingular and P is positive definite ⇒ B̂ = λP−1 is also
positive definite and we are done.

(iii-b) λ = 0 ⇒ AT B = BAT = 0. Still, take AT = PU (polar) and ÂT =
AT UT = P which is nonnegative definite. Let B̄ = UB, then clearly
ÂT B̄ = AT B = BAT = 0 = UBAT UT = B̄ÂT . So ÂT and B̄ com-
mute and ÂT = P is (symmetric) nonnegative definite. Let W orthog-
onal be such that W T PW = D = diag(djIj , j = 1 : r) and dj ≥ 0.
Then, from 0 = PB̄ = B̄P → D(W T B̄W ) = (W T B̄W )D ⇒ W T B̄W =
diag(B̄jj, i = 1 : r) .̇. djB̄jj = 0. If dj 6= 0 ⇒ B̄jj = 0. If dj = 0 ⇒ B̄jj

not necessarily 0; but, B̄jj = VjjPjj (polar factorization) so, we take

B̂jj = V T
jj B̄jj and the pair we take is djI · Vjj and V T

jj B̄jj. �

Exercises 2.4.26

(1) We have seen that given A, B ∈ Rm×n, m ≥ n, for the set of eigenvalues we have
σ(BAT ) = σ(AT B)∪ {0, . . . , 0}. Show that such a result is not true for singular
values.

(2) Let A ∈ Cn×n. Show that ‖A− U‖F ≥ ‖Σ(A)− I‖F for any unitary U and that
the inequality is sharp. [That is, for any given A, there is a unitary U such that
the equality sign holds in the above bound.] From this, you have that the distance
(in F -norm) from A to the compact set of unitary matrices is ‖Σ(A)− I‖F .

(3) [Wielandt-Hoffman] Show that if A, B are Hermitian in Cn×n, then

‖A− B‖2F ≥
n∑

i=1

(λi(A)− λi(B))2 , (2.4.4)

where the eigenvalues of A and B are ordered decreasingly.

In the next example, we look explicitly at an interesting problem which has
applications in statistics of data set: We try to “rotate” a matrix B (a data set)
as close as possible to another matrix A (a different data set). Note that in case
m = n and B = I, then we are seeking the closest unitary matrix to A. (See above
Exercise (2).)



MATH 6112: ADVANCED LINEAR ALGEBRA 75

Example 2.4.27 (Procrustes Problem) 4 This is a recurring problem where we
try to modify the data to match another set of data. The problem is the following.
“Given A, B ∈ Cm×n, we want to find U ∈ Cm×m unitary such that ‖A− UB‖F is
minimized. Also, we want to find the expression of the error.”

Solution.

‖A− UB‖2F = tr((A− UB)∗(A− UB)) = tr(A∗ − B∗U∗)(A− UB)

= tr(A∗A− B∗U∗A−A∗UB + B∗B)

= tr(A∗A) + tr(B∗B)− tr(A∗UB)− tr(B∗U∗A) .

Now, we have

tr(A∗UB) + tr(B∗U∗A) = tr(A∗UB) + tr((A∗UB)∗)

= 2Re tr(A∗UB)

and therefore we are seeking U unitary to maximize Re tr(A∗UB) = Re tr(UBA∗).
Let BA∗ = V ΣW ∗ be a SVD of BA∗. Then

Re tr(UBA∗) = Re tr(UV ΣW ∗)

= Re tr(WW ∗UV ΣW ∗) = Re tr(W ∗UV Σ) = Re tr(ZΣ)

where Z = W ∗UV is unitary, Z∗Z = ZZ∗ = Im. So, we need to maximize
Re
∑m

i=1 σi(BA∗)Zii which is obviously maximized if Zii = 1⇒ Z = I ⇒ W ∗UV =
I ⇒ U = WV ∗. Therefore, the best solution is U = WV ∗. Note, since BA∗ =
V ΣW ∗ = V ΣV ∗V W ∗ ⇒ AB∗ = (WV ∗)(V ΣV ∗) = QP ⇒ the optimal U is the left
unitary polar factor of AB∗.

The error is ‖A − UB‖2F = ‖A‖2F + ‖B‖2F − 2
∑m

i=1 σi(BA∗). In particular,
there is no error only if ‖A‖F = ‖B‖F

︸ ︷︷ ︸

surely necessary

=
∑m

i=1 σi(BA∗). In the special case of

B = I ⇒ ‖A− U‖2F =
∑n

i=1 σ2
i (A) + n− 2

∑n
i=1 σi(A) =

∑n
i=1(σi(A)− 1)2. �

2.5 Partial order and inequalities

Hermitian matrices allow for a natural partial order.

4A mythological Greek figure, who stretched/cut the visitors who could not “fit” into a bed he
provided for their rest.
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Definition 2.5.1 A, B ∈ Cn×n, or Rn×n, be Hermitian, respectively symmetric.
We say that A is greater than B and write A ≻ B if A − B is positive definite.
Similarly, we write A � B if A − B is nonnegative definite. Similarly for A ≺ B,
A � B. �

Exercises 2.5.2

(1) Show that this is only a partial order (that is, there exist A and B Hermitian
such that A 6� B nor A 6� B).

(2) Show that if A1 � B1 and A2 � B2 ⇒ A1 + A2 � B1 + B2.
(3) Show that A � I ⇔ all A’s eigenvalues are ≥ 1.
(4) Show that partial order is invariant under congruence. That is, if S is invertible,

A � B ⇔ S∗AS � S∗BS.
(5) Give an argument of why we may as well restrict partial order to nonnegative

matrices. [Of course, this is in principle only, in practice a given matrix may be
Hermitian without being definite.]

To investigate properties of the above partial order, the following results are
handy.

Lemma 2.5.3 If A, B ∈ Cn×n are Hermitian and there exist a real number α such
that αA + B is positive definite, then there exists S ∈ Cn×n, nonsingular, such that
S∗AS and S∗BS are both diagonal.

Pf. Let P = αA+B be positive definite. Since B = P −αA, we set up to show that
A and P are simultaneously diagonalizable by congruence. Since P = P ∗ is positive
definite ⇒ ∃C such that C∗PC = I (just take C = P−1/2). Now take C∗AC which
is Hermitian⇒ ∃U unitary, such that U∗(C∗AC)U = D (diagonal). Take S = CU ,
then U∗C∗PCU = I and U∗C∗ACU = D. �

Corollary 2.5.4 If A is positive definite and B is Hermitian, then ∃S : S∗AS = I
and S∗BS = D, diagonal. �

We are now ready to give a classical result about ordering of positive definite
matrices.

Theorem 2.5.5 A, B be Hermitian and positive definite. Then
(a) A ≻ B ⇔ ρ(A−1B) < 1. (Similarly, A � B ≻ 0⇔ ρ(A−1B) ≤ 1.)
(b) A ≻ B ⇔ B−1 ≻ A−1.
(c) If A � B ⇒ det A ≥ det B and tr(A) ≥ tr(B).
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Pf.

(a) By Corollary 2.5.4 we can assume that A = I and B = D = diag(di, i =
1, . . . , n), and we have to show that I ≻ D ⇔ ρ(D) < 1. But this is obvious.

(b) Again, by Corollary 2.5.4 we can assume that A = I and B = D = diag(di, i =
1, . . . , n), and we have to show that I ≻ D ⇔ D−1 ≻ I which is again obvious.

(c) Since A � B, then from part (a) ρ(A−1B) ≤ 1 and therefore σ(A−1B) ∈
(0, 1]. (For this last inference, we have used that A−1B has all positive eigen-
values, which follows from A−1B = A−1/2

(
A−1/2BA1/2

)
A−1/2). Therefore,

∏
λi(A

−1B) ≤ 1 and so det(A−1B) ≤ 1 from which det A−1 det B ≤ 1, or
det B ≤ det A. For the trace, from Corollary 2.5.4 we can write A = CC∗,
B = CDC∗ and 0 < di ≤ 1, i = 1, . . . , n. So tr(A) =

∑n
i,j=1 |cij |2, tr(B) =

tr(CDC∗) = tr(DCC∗) =
∑n

i,j=1 di|cij|2 ≤ tr A. �

• An interesting form of ordering is obtained for matrices depending on a real
variable.

Definition 2.5.6 Given A : R→ Cn×n, and let α be a real parameter. We say that
A(α) is a continuously differentiable function of α if its entries are, and we write
A ∈ C1(R, Cn×n). For the derivative, we write dA

dα
or also Ȧ(α).

Remark 2.5.7 Observe that if A(α) is Hermitian for all α, then so is Ȧ(α).

Lemma 2.5.8 (Monotone function) Suppose A ∈ C1(R, Cn×n) and Hermitian.
If Ȧ(α) is positive definite, then A is an increasing function; that is, A(s) ≺ A(t)
for s < t.

Pf. Let x ∈ Cn, x 6= 0. Take d
dα

(x, A(α)x) = (x, Ȧx) > 0. So, if we let the
function g(α) be defined as g(α) = (x, A(α)x), then g is increasing and therefore
(x, A(s)x) < (x, A(t)x), s < t, for any x 6= 0. �

As we saw, the positive definite partial order is kept under addition (see Exercise
2.5.2-(2)). Unfortunately, the situation for the product is not as favorable. In fact,
in general, product of Hermitian matrices may even fail to be Hermitian!

Exercise 2.5.9 Give an example of 2×2 matrices A and B, to show that the product
of two Hermitian matrices is not necessarily Hermitian. (Hint: take two symmetric
matrices).
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Because of the above Exercise, it makes sense to introduce the so-called “sym-
metrized product” of two Hermitian matrices A, B ∈ Cn×n:

S = AB + BA .

Clearly S = S∗ and (x, Sx) = (x, ABx) + (x, BAx) = (Ax, Bx) + (Bx, Ax). If
A, B ∈ Rn×n (symmetric) ⇒ (x, Sx) = 2(Ax, Bx).

Remark 2.5.10 Note that if A, B are positive definite, we cannot say that the
symmetrized product S is positive definite. In fact, A, B positive definite means
(x, Ax) > 0, (x, Bx) > 0, ∀x. So:

0 < x∗Ax = ‖x‖ · ‖Ax‖ cos α→ −π

2
< α <

π

2

0 < x∗Bx = ‖x‖ · ‖Bx‖ cos β → −π

2
< β <

π

2

However, we cannot say much about the angle between Ax and Bx.

Exercise 2.5.11 Give two positive definite matrices in R2×2 whose symmetrized
product is not positive definite.

In spite of the last Exercise, we have that if S and one of A or B are positive
definite, then the other matrix is as well.

Theorem 2.5.12 (On symmetrized product) Let A, B ∈ Cn×n be Hermitian
and such that A is positive definite and that S = AB + BA is also positive definite.
Then B is positive definite.

Pf. Take B(α) = αA + B, α ≥ 0. Consider

S(α) = AB(α) + B(α)A = AB + 2αA2 + BA

= S
︸︷︷︸

≻0

+2 αA2
︸︷︷︸

�0

⇒ S(α) ≻ 0, ∀α ≥ 0 .

Now, consider B(α). Since A is positive definite and B is Hermitian, then by
Corollary 2.5.4 there exists C nonsingular such that C∗AC = DA and C∗BC = DB,
both diagonal. Then, C∗B(α)C = αDA + DB .̇. for α sufficiently large, say α > α0,
we have that αDA+DB is positive definite and so is B(α). In particular, λ(B(α)) > 0
for α > α0, where λ(B(α)) denote any of the eigenvalues of B(α). Next, suppose
that B(α) is not positive definite for all α ≥ 0. Then, since B(α) is continuous
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and Hermitian, so are its eigenvalues5, which of course are real for all values of
α. Then there is a value α̂ ∈ [0, α0] such that B(α̂) has an eigenvalue equal to
0. Then, ∃ z 6= 0 such that B(α̂)z = 0. Take this z and consider z∗S(α̂)z =
z∗A B(α̂)z

︸ ︷︷ ︸

=0

+ z∗B(α)
︸ ︷︷ ︸

=0

Az = 0. But this contradicts that S(α) ≻ 0, ∀α ≥ 0. �

• There is an interesting consequence of Theorem 2.5.12 and Lemma 2.5.8.

Theorem 2.5.13 (Square root ordering) Let A, B be positive definite such that
A ≻ B. Then

√
A ≻

√
B, where we are taking the unique positive definite square

root.

Pf. Let A(α) = B + α(A − B) for α ≥ 0. Since A(α) is positive definite, we let
S(α) =

√

A(α), S2(α) = A(α), and S(α) is positive definite. Now, assume that
S(α) is differentiable in α (it is, see Chapter 4). Then

ṠS + SṠ = Ȧ.

But S ≻ 0 and Ȧ = A − B ≻ 0, then by Theorem 2.5.12 Ṡ ≻ 0 ⇒ S is increasing.
In particular S(0) ≺ S(1)⇒

√
B ≺

√
A. �

Remark 2.5.14 The above Theorem can be extended to all so-called monotone func-
tions of positive definite matrices; e.g., the negative inverse, −A−1, the exponential,
eA, and the principal branch of the logarithm, log(A), are all monotone. [See [7] for
a complete characterization of all monotone functions.]

Exercises 2.5.15

(1) Give an example of 0 ≺ B ≺ A for which it is not true that B2 ≺ A2.
(2) [Harder.] Show that if A(α) = B + α(A−B) with A ≻ B ≻ 0, α ≥ 0, then the

unique positive definite square root S(α) = (A(α))1/2 is differentiable in α.
(3) Show that if 0 ≺ B ≺ A ⇒ log(B) � log(A). Here, log(A), where A is positive

definite, can be defined from the Schur form of A. That is, if A = UΛU∗, where
U is unitary and the diagonal matrix Λ ≻ 0, then log(A) = U log(Λ)U∗. It
is important to note that log(A) is symmetric, and –as expected– elog(A) = A.
(Hint: To prove the stated result, you may want to assume that log(C(α)) is
differentiable in α if the positive definite function C(α) is.)

5They are roots of the characteristic polynomial, hence they depend continuously on the poly-
nomial coefficients, which in turn depend continuously on the entries of B(α).
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2.5.1 Determinantal Inequalities

One of the few equalities involving determinant is of course that det(AB) = det(A) det(B).
Also, for A � B � 0 we know that det(A) ≥ det B. But it is harder to give good
bounds on det(A) itself in terms of easily computed quantities, or on det(A + B) in
terms of det A and det B. This is our present goal.

Before presenting the celebrated Hadamard inequality, let us recall the arithmetic-
geometric mean inequality:

1

n

n∑

i=1

xi ≥
(

n∏

i=1

xi

)1/n

, xi ≥ 0 , i = 1, . . . , n . (2.5.1)

Exercises 2.5.16

(1) Show the arithmetic-geometric mean inequality (2.5.1) following these steps.

i) Take any convex function f , that is, f(αx + (1 − α)y) ≤ αf(x) + (1 −
α)f(y), α ∈ [0, 1] and x, y ∈ J (some interval of R+). By induction,
generalize this to

f

(
n∑

i=1

αixi

)

≤
n∑

i=1

αif(xi), n = 2, 3, . . .

where αi ≥ 0, i = 1 : n,
∑n

i=1 αi = 1 and x1, . . . , xn ∈ J .

ii) Now use f(x) = − log(x), J = (0,∞), and obtain a generalization of
(2.5.1).

iii) Finally, choose the αi’s appropriately.

(2) Show that there is equality in (2.5.1) iff all xi are equal. [Hint: x + 1 ≤ ex.]

Theorem 2.5.17 (Hadamard Inequality) Let A ∈ Cn×n be Hermitian and non-
negative definite. Then

det(A) ≤
n∏

i=1

aii . (2.5.2)

If A is positive definite, then we have equality iff A is diagonal.
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Pf. If 0 ∈ σ(A) ⇒ det A = 0 and since aii = eT
i Aei ≥ 0, there is nothing to prove.

So, assume A invertible and so A is positive definite (since 0 is not an eigenvalue).
Therefore, aii > 0. Now, take dj = 1√

ajj
, D = diag(dj, j = 1, . . . , n), and consider

DAD. Now: DAD is a positive definite matrix (congruence of positive definite) with
1’s on the diagonal, and since det DAD = (det D)2 det A, we have det DAD ≤ 1↔
det A ≤ ∏n

i=1 aii. So, without loss of generality we can assume that A is positive
definite and has all diagonal entries equal to 1. Obviously det A =

∏n
i=1 λi, where

λi > 0, i = 1, . . . , n. From (2.5.1), we obtain

n∏

i=1

λi ≤
(

1

n

n∑

i=1

λi

)n

=

(
1

n
tr(A)

)n

=

(
1

n
(1 + · · ·+ 1)

)n

= 1 ,

and so det A ≤ 1 is derived.
Finally, if det A = 1 then

∏n
i=1 λi = 1

n

∑n
i=1 λi that is there is equality in the

arithmetic-geometric mean inequality. But, this is possible (see Exercise 2.5.16-
(2)) only if all λi’s are equal and therefore all equal to 1. Then, A is Hermitian,
positive-definite, with all eigenvalues equal to 1, that is A = I. �

Corollary 2.5.18 (Hadamard) Let C be any matrix in Cn×n. Write C = [c1, . . . , cn]
(columnwise). Then | det C| ≤ ∏n

j=1 ‖cj‖. If C is nonsingular, we have equality iff
the columns of C are orthogonal. Here, ‖ · ‖ is the 2-norm.

Pf. If C is singular, there is nothing to prove. So, let C be invertible and consider
A = C∗C which is positive-definite .̇. det A ≤ ∏n

i=1 aii. But aii = c∗i ci = ‖ci‖2 and
det A = det C∗ det C

.̇. | det C|2 ≤
(
∏n

j=1 ‖cj‖
)2

. Finally, the columns of C are orthogonal precisely

when A is diagonal and in this case we have equality in Hadamard theorem. �

Remark 2.5.19 Note that – if C ∈ Rn×n – the above Corollary states that among
all parallelepipeds with edges of length ‖cj‖, the one of largest volume is rectangular.

• A final useful extension of Hadamard theorem is related to block partitioning of
positive definite matrices. First, we have this simple Lemma.

Lemma 2.5.20 Let A ∈ Cn×n be positive definite. Write A in partitioned form as
A = (Aij)

p
i,j=1 , where Aij ∈ Cni×nj , i, j = 1, . . . , p, and n1 + · · · + np = n. Then,

the diagonal blocks Aii are positive definite, i = 1, . . . , p.
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Pf. Since z∗Az > 0, for all nonzero vectors z, it suffices to take vectors z partitioned

conformally with A, as z =






z1
...
zp




, letting zi 6= 0, and zj = 0, j 6= i, for each

i = 1, . . . , p. �
The next result is really a block-extension of the Hadamard inequality (2.5.2).

Theorem 2.5.21 (Fischer) Let M =

(
n m

n{
︷︸︸︷

A
︷︸︸︷

B
m{ B∗ C

)

∈ Cm+n,m+n be positive

definite, with A ∈ Cn×n, B ∈ Cm+m. Then:

det M ≤ det A · det C . (2.5.3)

Pf. We consider a congruence with

(
I X
0 I

)

:

det M = det

(
I 0

X∗ I

)(
A B
B∗ C

)(
I X
0 I

)

= det

(
A B

X∗A1B
∗ X∗B + C

)(
I X
0 I

)

= det

(
A AX + B

X∗A + B∗ X∗AX + B∗X + X∗B + C

)

.

Now, thanks to the previous Lemma, A is positive definite and thus so is A−1. So,

we choose X = −A−1B and obtain det M = det

(
A 0
0 C −B∗A−1B

)

.̇. det M =

det A · det(C − B∗A−1B). Now we show that det(C − B∗A−1B) ≤ det C. To
achieve this, it is sufficient to show that C � C − B∗A−1B ≻ 0 (see Theorem
2.5.5-(c)). But C � C − B∗A−1B ↔ C − (C − B∗A−1B) � 0 ↔ B∗A−1B � 0.
The latter relation is clearly true, since for any z ∈ Cn, we have z∗B∗A−1Bz =
(Bz)∗A−1Bz ≥ 0. Finally, that C − B∗A−1B ≻ 0 is a consequence of the fact that

we did a congruence transformation of M to obtain

(
A 0
0 C −B∗A−1B

)

and thus

the sub-block C − B∗A−1B is positive definite. �

Exercises 2.5.22

(1) Deduce Hadamard inequality (2.5.2) from Fischer inequality (2.5.3).
(2) Prove Fischer inequality using the Choleski factorization of M .
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(3) Prove “Ostrowski” inequality: “Given A ∈ Cn×n, consider S = A+A∗

2
and assume

S is positive definite. Then det S ≤ | detA|.” [Hint: A = S+H , H = (A−A∗)/2.
So, show | det(I + S−1H)| ≥ 1.]

There are also important and useful determinantal inequalities for the sum of
positive-definite matrices.

Theorem 2.5.23 Let A, B ∈ Cn×n be positive definite. Then

det(αA + (1− α)B) ≥ (det A)α(det B)1−α , ∀α ∈ [0, 1].

Pf. det(αA+(1−α)B) = det[B(αB−1A+(1−α)I)]
C=B−1A

= det B ·det(αC+(1−α)I)
.̇. we need to show det(αC + (1− α)I) ≥ (det A)α(det B)−α = (det C)α. Now, let

λj be eigenvalues of C. So, we need to show

n∏

j=1

(αλj + (1− α)) ≥
n∏

j=1

λα
j .

Now, recall that λj > 0 because C = B−1A and A, B positive-definite (see
Problem 2 of Homework Set # 3). So, the result follows if

αx + (1− α) ≥ xα, ∀x > 0 and 0 ≤ α ≤ 1 .

But this is a simple calculation [do it!]. �
The last result we give is reminiscent of a similar inequality in real analysis.

Theorem 2.5.24 (Minkowski) Let A, B ∈ Cn×n be positive-definite. Then

(det(A + B))1/n ≥ (det A)1/n + (det B)1/n.

Pf. (det(A + B))1/n ≥ (det A)1/n + (det B)1/n if and only if
(det A−1/2)1/n(det(A+B))1/n(det A−1/2)1/n ≥ (det A−1/2)1/n[(det A)1/n+(det B)1/n](det A−1/2)1/n

that is if and only if (det(I + A−1/2BA−1/2))1/n ≥ det I + (det(A−1/2BA−1/2))1/n.
Observe that A−1/2BA−1/2 is positive definite and thus without loss of generality
we show (det(I + B))1/n ≥ 1 + (det B)1/n, where B is positive definite. But, letting
λj ’s be the eigenvalues of B, then this is the same as

(
n∏

j=1

(1 + λj)

)1/n

≥ 1 +
(∏

λj

)1/n

↔ 1 + (
∏

λj)
1/n

(
∏n

j=1(1 + λj)
)1/n

≤ 1 .
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But
1 + (

∏
λj)

1/n

(
∏n

j=1(1 + λj)
)1/n

=

(
∏ 1

1 + λj

)1/n

+

(
∏ λj

1 + λj

)1/n

and thanks to (2.5.1) this last quantity is lesser than or equal to

1

n

∑

j

1

1 + λj
+

1

n

∑

j

λj

1 + λj
=

1

n

∑

j

1 + λj

1 + λj
= 1 . �

Exercises 2.5.25
(1) Let A, B ∈ Cn×n be positive definite. Show: det(A + B) ≥ det A + det B.
(2) Let A be positive definite. Show that

det A = min

{
n∏

i=1

v∗
i Avi : {v1, . . . , vn} is orthonormal set

}

.

2.5.2 Variational characterization of the eigenvalues and more
inequalities

For a general matrix A ∈ Cn×n, it is hard to characterize the eigenvalues except as
roots of the characteristic polynomial. However, if A = A∗ they can be characterized
as solutions of optimization problems. Below, the norm is always the 2-norm.

So, let A = A∗ in what follows. For historical reasons, let eigenvalues (which are
real) be labeled as

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn = λmax .

Theorem 2.5.26 (Rayleigh-Ritz) We have

λmin = λ1 = min
x 6=0

x∗Ax

x∗x
= min

‖x‖=1
x∗Ax ,

λmax = λn = max
x 6=0

x∗Ax

x∗x
= max

‖x‖=1
x∗Ax .

Pf. Let U unitary be such that U∗AU = Λ = diag(λ1, . . . , λn). Let x ∈ Cn, then
x∗Ax = x∗UU∗AUU∗x = (U∗x)∗Λ(U∗x) = y∗Λy =

∑n
i=1 λi|yi|2 where we have

set y = U∗x. So, λmin

∑n
i=1 |yi|2 ≤ x∗Ax =

∑n
i=1 λi|yi|2 ≤ λmax

∑n
i=1 |yi|2. Since
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∑n
i=1 |yi|2 = y∗y = x∗x, then we get λ1x

∗x ≤ x∗Ax ≤ λnx
∗x. Observe that these

estimates are sharp: if take x = u1 ⇒ get λ1, take x = un ⇒ get λn. Finally if
x 6= 0⇒ λ1 ≤ x∗Ax

x∗x
≤ λn. But, since these are attained, then

λn = max
x 6=0

x∗Ax

x∗x
= max

‖x‖=1
x∗Ax ,

λ1 = min
x 6=0

x∗Ax

x∗x
= min

‖x‖=1
x∗Ax . �

Notation: The quantity x∗Ax
x∗x

is called Rayleigh quotient.

Remarks 2.5.27
(1) Since unit ball is compact (we are in finite dimension), then λ1 is min value of

x∗Ax as x ranges over unit sphere. (λn is max value of x∗Ax as x ranges over
unit sphere.)

(2) If x 6= 0 is any vector in Cn, then since λ1 ≤ x∗Ax
x∗x
≤ λn, by letting α = x∗Ax

x∗x
, then

A has at least one eigenvalue in [α,∞) and at least one eigenvalue in (−∞, α].

• What can we say about the other eigenvalues? The idea is to realize that the
extremal eigenvalues λ1 and λn have been obtained as solutions of unconstrained
minimazation/maximization problems. If we restrict our search to appropriate
subspaces, we will manage to characterize also non-extremal eigenvalues. The
next exercise gives the key insight.

Exercise 2.5.28 Let x ∈ Cn : x∗u1 = 0 and look for min
x 6=0

x⊥u1

x∗Ax
x∗x

= min
‖x‖=1
x⊥u1

x∗Ax. With

U : U∗AU = Λ, we have

x∗Ax =
y=U∗x

n∑

i=2

λi|yi|2 ≥ λ2

n∑

i=2

|yi|2 =
yi=0

λ2

n∑

i=1

|U∗x|2 = λ2(x
∗x)

.̇. min
‖x‖=1
x⊥u1

x∗Ax = λ2. In the same way, it is immediate to obtain max
‖x‖=1
x⊥un

x∗Ax = λn−1.

And more generally






min
x 6=0

x⊥u1,u2,...,uk−1

x∗Ax
x∗x

= λk, k = 2, 3, . . . , n

max
x 6=0

x⊥un,...,un−k+1

x∗Ax
x∗x

= λn−k, k = 1, 2, . . . , n− 1 .

�
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• Using this, we now show the celebrated

Theorem 2.5.29 (Courant-Fischer Mini-Max Theorem) Let A ∈ Cn×n, A =
A∗, with eigenvalues λ1 ≤ · · · ≤ λn, and let k : 1 ≤ k ≤ n. Then

min
w1,...,wn−k

max
x 6=0

x⊥w1,...,wn−k

x∗Ax

x∗x
= λk (min - max) ,

max
w1,...,wk−1

min
x 6=0

x⊥w1,...,wk−1

x∗Ax

x∗x
= λk (max -min) .

Pf. Take x 6= 0⇒ x∗Ax
x∗x

= x∗UΛU∗x
x∗UU∗x

= y∗Λy
y∗y

. Show (min-max)

sup
x 6=0

x⊥w1,...wn−k

x∗Ax

x∗x
= sup

y 6=0
y⊥U∗w1,...,U∗wn−k

y∗Λy

y∗y
= sup

‖y‖=1
y⊥U∗w1,...,U∗wn−k

n∑

i=1

λi|yi|2

≥ sup
‖y‖=1

y⊥U∗w1,...,U∗wn−k
y1=···=yk−1=0

n∑

i=1

λi|yi|2 = sup
Pn

j=k
|yj |

2=1

y⊥U∗w1,...,U∗wn−k

n∑

i=k

λi|yi|2 ≥ λk

.̇. supx⊥w1,...,wn−k

x∗Ax
x∗x
≥ λk. But, if we choose w1 = un, . . . , wn−k = uk+1, then

have equality, and therefore infw1,...,wn−k
sup x 6=0

x⊥w1,...,wn−k

x∗Ax
x∗x

= λk and since the

extremum is attained we can use min and max. To show (max-min) is similar:
use “inf” instead of “sup” to obtain

inf
x 6=0

x⊥w1,...wk−1

x∗Ax

x∗x
≤ inf

‖y‖=1
y⊥U∗w1,...,U∗wk−1

yn=···=yk+1=0

k∑

i=1

λi|yi|2 ≤ λk

then, choose w1 = u1, . . . , wk−1 = uk−1. �

Remark 2.5.30 The mini-max theorem can be also formulated in an equivalent
subspace notation. That is, with S denoting a subspace of Cn of the stated dimension,
one has:

min
dim(S)=k

max
x 6=0
x∈S

x∗Ax

x∗x
= λk ,

max
dim(S)=n−k+1

min
x 6=0
x∈S

x∗Ax

x∗x
= λk .
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• If A is not Hermitian, there is no nice mini-max theorem for the eigenvalues.
However, something can still be said.

Exercise 2.5.31 Let A ∈ Cn×n, not necessarily Hermitian. Show

min
‖x‖=1

|x∗Ax| ≤ |λi| ≤ max
‖x‖=1

|x∗Ax| .

[Observation: We cannot claim that these bounds are attained at eigenvectors, unlike

the case of A Hermitian. For example, if A =

[
1 1
0 1

]

and x =

[
1
0

]

⇒ λ1 = λ2 = 1,

x is the only eigenvector, and x∗Ax = 1. But if we take

x =

√
2

2

[
1
1

]

⇒ x∗Ax =

√
2

2
[1, 1]

√
2

2

[
2
1

]

=
3

2
> 1.] �

• Also, even if A is not Hermitian, a variational characterization can always be
given for the singular values.

Corollary 2.5.32 (min-max for singular values) A ∈ Cm×n, m ≥ n, σ1 ≥
· · · ≥ σn ≥ 0 be singular values, and let k: 1 ≤ k ≤ n. Then

min
w1,...,wk−1

max
x 6=0

x⊥w1,...,wk−1

‖Ax‖
‖x‖ = σk ,

max
w1,...,wn−k

min
x 6=0

x⊥w1,...,wn−k

‖Ax‖
‖x‖ = σk .

Pf. Since σ2
1 ≥ · · · ≥ σ2

n are the eigenvalues of A∗A, we only need to take care of
the “opposite” ordering of eigenvalues with respect to singular values and just apply
the mini-max theorem 2.5.29. �

Among the most important consequences of the min-max theorem 2.5.29 are
those results which allow us to give bounds on eigenvalues of sum of matrices, or of
bordered matrices. We see these next.

Theorem 2.5.33 (Weyl) Let A, B ∈ Cn×n be Hermitian. Let λ1(A + B) ≤ · · · ≤
λn(A+B) be the ordered eigenvalues of A+B and λ1(A) ≤ · · · ≤ λn(A) and λ1(B) ≤
· · · ≤ λn(B) be the ordered eigenvalues of A and B. Then, for any k = 1, . . . , n, we
have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B) .

.



MATH 6112: ADVANCED LINEAR ALGEBRA 88

Corollary 2.5.34 (Monotonicity) Let A, B ∈ Cn×n be Hermitian, with usual or-
dering of eigenvalues.

(1) If B � 0, then λk(A+B) ≥ λk(A), k = 1, . . . , n. (Eigenvalues cannot decrease
if we add a nonnegative definite matrix.)

(2) If A � B � 0, then λk(A) ≥ λk(B), k = 1, . . . , n. �

Exercise 2.5.35 Prove Theorem 2.5.33 and Corollary 2.5.34.

• In case B of Corollary 2.5.34 is of rank 1, then we get a very useful interlacing
result.
Note that if B ∈ Cn×n is Hermitian and of rank 1, then it is of the form B = ±zz∗.

Indeed, it is enough to take the Schur form of B : B = U








λ1

0
. . .

0








U∗ =

u1λ1u
∗
1 = ±u1|λ1|1/2|λ1|1/2u∗

1. In one case B � 0, in the other case 0 � B.

Theorem 2.5.36 (Interlacing Theorem) Let A be Hermitian and let B = zz∗

(z 6= 0). Then λ1(A) ≤ λ1(A + zz∗) ≤ λ2(A) ≤ λ2(A + zz∗) ≤ · · · ≤ λn(A) ≤
λn(A + zz∗).

Pf. Since B � 0, we only need to show that λk(A+zz∗) ≤ λk+1(A), k = 1, 2, . . . , n−
1. We know:

λk(A + zz∗) = max
w1,...,wk−1

min
x 6=0

x⊥w1,...,wk−1

x∗(A + zz∗)x

x∗x
≤ (search for min on a smaller set)

≤ max
w1,...,wk−1

min
x 6=0

x⊥w1,...,wk−1
x⊥z

x∗(A + zz∗)x

x∗x

= max
w1,...,wk−1

wk=z

min
x 6=0

x⊥w1,...,wk−1,wk

x∗Ax

x∗x
≤ (search for max on a larger set)

≤ max
w1,...,wk

min
x 6=0

x⊥w1,...wk

x∗Ax

x∗x
= λk+1(A) .

�
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Remark 2.5.37 Of course, there is an immediate analog for A− zz∗:

λ1(A− zz∗) ≤ λ1(A) ≤ · · · ≤ λn(A− zz∗) ≤ λn(A) .

(Just let A← A− zz∗ in Theorem 2.5.36.)

Exercise 2.5.38 Prove or disprove

λk(A + zz∗) ≤ λk+1(A− zz∗), k = 1, 2, . . . , n− 1.

• The next result gives a different type of interlacing, when we add a row/column
to a given matrix. It is very useful in so called updating techniques.

Theorem 2.5.39 (Bordered matrix interlacing) Let A ∈ Cn×n be Hermitian.

Let z ∈ Cn, b ∈ R, and form B ∈ Cn×1,n+1, Hermitian, as B =

[
A z
z∗ b

]

. With usual

ordering of the eigenvalues, λ1(A) ≤ · · · ≤ λn(A) and λ1(B) ≤ · · · ≤ λn+1(B), we
have λ1(B) ≤ λ1(A) ≤ λ2(B) ≤ λ2(A) ≤ · · · ≤ λn(B) ≤ λn(A) ≤ λn+1(B).

Pf. We will show that λk(B) ≤ λk(A) ≤ λk+1(B), for any k = 1, 2, . . . , n. From
mini-max theorem, we have

λk+1(B) = min
y1,...,yn+1−(k+1)∈Cn+1

max
x̂6=0,x̂∈Cn+1

x̂⊥y1,...,yn+1−(k+1)

x̂∗Bx̂

x̂∗x̂
≥ (max on a smaller set)

≥ min
y1,...,yn−k∈Cn+1

max
x̂ 6=0,x̂∈Cn+1

x̂⊥y1,...,yn−k
x̂⊥en+1

x̂∗Bx̂

x̂∗x̂
.

Now, let x̂ =

[
x
ξ

]

, x ∈ Cn and yi =

[
wi

ηi

]

, ηi ∈ C, wi ∈ Cn, i = 1, . . . , n − k. If

x̂ ⊥ y1, . . . , yn−k and x̂ ⊥ en+1 ⇒ ξ = 0 and x ⊥ w1, . . . , wn−k and the values of ηi

are immaterial. Further x̂∗Bx̂ = x∗Ax. Therefore:

λk+1(B) ≥ min
w1,...,wn−k∈Cn

max
x 6=0,x∈Cn

x⊥w1,...,wn−k

x∗Ax

x∗x
= λk(A) .

Similarly:

λk(B) = max
y1,...,yk−1∈Cn+1

min
x̂ 6=0,x̂∈Cn+1

x̂⊥y1,...,yk−1

x̂∗Bx̂

x̂∗x̂
≤ (min on a smaller set)
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≤ max
y1,...,yk−1

min
x̂ 6=0

x̂⊥y1,...,yk−1
x̂⊥en+1

x̂∗Bx̂

x̂∗x̂

= max
w1,...,wk−1∈Cn

min
x 6=0,x∈Cn

x⊥w1,...,wk−1

x∗Ax

x∗x
= λk(A) . �

The matrix B in Theorem 2.5.39 is called a “bordering” of A.

Example 2.5.40 Let A = [a] ∈ R, z ∈ C, b ∈ R ⇒ B =

[
a z
z̄ b

]

. We just said that

λ1(B) ≤ a ≤ λ2(B). Since eigenvalues of B satisfy (a − λ)(b − λ) − |z|2 = 0 →
λ1,2 = a+b

2
∓
√

(a−b)2+4|z|2
2

, we are saying simply that

a + b

2
−
√

(a− b)2 + 4|z|2
2

≤ a ≤ a + b

2
+

√

(a− b)2 + 4|z|2
2

. �

Remarks 2.5.41
(1) It is often useful to interpret Theorem 2.5.39 the other way around. That is,

when we remove the last row and column from given Hermitian matrix.
(2) It is also useful to observe that there is nothing special about the column and

row being the last one. We could have inserted (or deleted) any pair of row and
column with same index. (This is because we can use similarity by permutation.)
In Example 2.5.40, we are simply saying that λ1(B) ≤ b ≤ λ2(B).

Taking the last remark to its logical conclusion, we could also consider what
happens when we delete several rows and columns (with same index) from a given
Hermitian matrix. Obviously, we are left with a submatrix of A which is a prin-
cipal sub-matrix of A. Here, the word “principal” means precisely this: obtained
from deleting any number of rows and columns of same index. Naturally, every
row/column deletion leads to an interlacing of the eigenvalues, progressively coarser.

Exercise 2.5.42 Prove Theorem 2.5.43. [Hint: Make repeated application of the
interlacing property.]

Theorem 2.5.43 (Inclusion Principle) If Ap is a (p× p) principal submatrix of
A, for p = 1, . . . , n, for the usual ordering of the eigenvalues (λ1 ≤ λ2 ≤ · · · ) we
have

λk(A) ≤ λk(Ap) ≤ λk+n−p(A), 1 ≤ k ≤ p.
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An important consequence of the inclusion principle is the following result, which
is useful when we have information on the inner products u∗

i Auj with orthonormal
vectors, but no explicit knowledge of A nor of its eigenspace, as it is the case in
quantum mechanics.

Theorem 2.5.44 (Poincaré separation) Suppose A ∈ Cn×n is Hermitian and let
p : 1 ≤ p ≤ n. Let u1, . . . , up be given orthonormal vectors. Let B = [u∗

i Auj ] ∈ Cp×p.
Let λ1(A) ≤ · · · ≤ λn(A) and λ1(B) ≤ · · · ≤ λp(B) be the eigenvalues of A,
respectively B. Then:

λk(A) ≤ λk(B) ≤ λk+n−p(A), k = 1, 2, . . . , p.

Pf. Extend u1, . . . , up to an orthonormal basis for Cn : u1, . . . , up, up+1, . . . , un.
Form U = [u1, . . . , un] and take U∗AU which is unitarily similar to A. Now B is the
leading (p, p) principal submatrix of U∗AU and we can use the inclusion principle.
�

Exercises 2.5.45
(1) Let A ∈ Cm×n, m ≥ n with singular values σ1(A) ≥ · · · ≥ σn(A) ≥ 0. Let B be

matrix obtained deleting one column of A: B ∈ Cm×(n−1) and let σ1(B) ≥ · · · ≥
σn−1(B) ≥ 0 be its singular values. Show

σ1(A) ≥ σ1(B) ≥ σ2(A) ≥ · · · ≥ σn−1(B) ≥ σn(A).

(2) Let A, B ∈ Cm×n, m ≥ n, and let σi(A+B), σi(A), σi(B) be the ordered singular
values, σ1 ≥ · · · ≥ σn. Show

σi+j−1(A + B) ≤ σi(A) + σj(B), 1 ≤ i, j ≤ n, i + j ≤ n + 1.

(Hint: Use M =

[
0 A
A∗ 0

]

and Exercise (3) below.)

[Note that this result implies σk(A + B) ≤ min(σk(A) + σ1(B), σ1(A) + σk(B)),
k = 1 : n.]

(3) [Harder] Let A, B ∈ Cn×n, Hermitian, and let the eigenvalues of A, B, A+ B, be
arranged as usual: λ1 ≤ · · · ≤ λn. Show that

λi+j−n(A + B) ≤ λi(A) + λj(B), 1 ≤ i, j ≤ n, i + j ≥ n + 1 ,

and

λi+j−1(A + B) ≥ λi(A) + λj(B), 1 ≤ i, j ≤ n, i + j ≤ n + 1 .
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We conclude this section with a simple but useful result and a consequence of
Weyl theorem.

Theorem 2.5.46 Let A, B ∈ Cn×n be Hermitian and λ1(A) ≤ · · · ≤ λn(A), λ1(B) ≤
· · · ≤ λn(B) be their ordered eigenvalues. Then:

|λj(A)− λj(B)| ≤ ‖A−B‖, j = 1, 2, . . . , n.

Pf. Recall that if A � C ⇒ λi(A) ≥ λi(C), i = 1, 2, . . . , n. Now, let C =
B + ‖A− B‖ I, D = B − ‖A− B‖ I.

We claim that D � A � C. [Indeed, C − A � 0 ↔ (B − A) + ‖A − B‖ I � 0.
But this matrix has eigenvalues ≥ 0 since ‖A−B‖ = |λmax(A−B)|, so C −A � 0.
Similarly A−D � 0.]

Therefore, λj(B)− ‖A− B‖ ≤ λj(A) ≤ λj(B) + ‖A−B‖. �

Remark 2.5.47 The novelty in Theorem 2.5.46 is that the inequality holds for all
the ordered differences of the eigenvalues of A and B, not for the eigenvalues of their
difference. [The latter is a simple property of the norm.]

• Finally, let us recall Weyl’s theorem 2.5.33 ( A and B are Hermitian with eigen-
values ordered as usual):

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B) .

Therefore, we immediately get

αλk(A)+(1−α)λ1(B) ≤ λk(αA+(1−α)B) ≤ αλk(A)+(1−α)λn(B) , 0 ≤ α ≤ 1 .

In particular, using k = 1 and k = n, respectively, we get

λ1(αA + (1− α)B) ≥ αλ1(A) + (1− α)λ1(B) .

Wo, we have obtained that
“ The smallest eigenvalue is a concave function on the vector space of Hermitian

matrices.”
Similarly,

λn(αA + (1− α)B) ≤ αλn(A) + (1− α)λn(B) .

That is, we found that
“The largest eigenvalue is a convex function on the vector space of Hermitian

matrices.”
Somewhere in between the smallest and largest eigenvalue there is a change in

convexity.



Chapter 3

Positive (Nonnegative) Matrices:
Perron Frobenius Theory

To prepare these lectures, have used [4], [9] and [1].

3.1 Preliminaries

Here we consider matrices A ∈ Rm×n which have positive (or nonnegative) entries.
Be careful that these are quite different than positive (or nonnegative) definite ma-
trices. In fact, now matrices are not even required to be symmetric.
• We write A > 0, or A ≥ 0, if the entries aij > 0, or ≥ 0. Similarly, A > B if

A−B > 0 entrywise.
• If A ∈ Cm×n or Rm×n, we also often consider |A| = (|aij|) i=1,...,m

j=1,...,n
.

A number of very simple properties of nonnegative matrices are handy. For
example, these are useful (and perhaps not immediately obvious).

Exercises 3.1.1 Below, matrices are square as needed.

(a) |A| ≤ |B| ⇒ ‖A‖F ≤ ‖B‖F .

(b) |Am| ≤ |A|m.

(c) 0 ≤ A ≤ B, 0 ≤ C ≤ D ⇒ 0 ≤ AC ≤ BD. [Note: A, B can be in Rm×n and
C, D ∈ Rn×p].

(d) 0 ≤ A ≤ B ⇒ 0 ≤ Am ≤ Bm, m = 1, 2, . . . .

93
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(e) A > 0, x ≥ 0 but x 6= 0⇒ Ax > 0.

Our interest in positive/nonnegative matrices is given by the large number of
applications where they arise quite naturally. For example, in numerical analysis, in
Markov-chains, in Economics (Leontiev input-output models), in theory of games,
in dynamical systems.

The next two examples highlight the kind of questions we will try to answer.

Example 3.1.2 (Population Dynamics) Consider three (hypothetical) species that
reside in regions A, B, C. Every month, the entire population of each region splits
evenly in the two other regions. Initially, the population of each group is 400, 600,
800, respectively. We want to describe the population distribution after 1 month,

2 months, . . . , k months and as k → ∞. Let p(0) =





α(0)

β(0)

γ(0)



 be initial population:

p(0) =





400
600
800



 and p(k) =





α(k)

β(k)

γ(k)



 be the distribution after k months. We represent

this situation as p(1) = Ap(0) =





0 1/2 1/2
1/2 0 1/2
1/2 1/2 0



 p(0) =





700
600
500



. We observe that

A ≥ 0, A = AT , and
∑3

i=1 aij = 1 =
∑3

j=1 aij, a fact that will be referred as say-

ing that A is double stochastic. Next, p(2) = Ap(1) = A2p(0) =





550
600
650



. Note that

A2 = 1
4





2 1 1
1 2 1
1 1 2



 and we have A2 > 0. Inductively, we get p(k) = Ap(k−1) = Akp(0)

and Ak =





tk tk+1 tk+1

tk+1 tk tk+1

tk+1 tk+1 tk



; tj = 1
3

[

1 + (−1)j

2j−1

]

, j = k, k + 1 (the formulas for tk

are simple to verify by induction). Therefore, we have limk→∞ Ak = 1
3





1 1 1
1 1 1
1 1 1





and so limk→∞ p(k) =





600
600
600



 is the stationary distribution.
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Let us make a note of these facts: (a) A =





0 1/2 1/2
1/2 0 1/2
1/2 1/2 0



 ≥ 0. (b) For the

spectral radies, we have ρ(A) = 1 = λmax(A) with eigenvector e =





1
1
1



: Ae = e

(and note that e > 0). Here, since A = AT also AT e = e → eT A = eT , so that
e is both a left and right eigenvector of A. (c) Also, observe the very interesting

fact that limk→∞ Ak = 1
3





1 1 1
1 1 1
1 1 1



 = 1
3
eeT . In particular, if we normalize the

positive right and left eigenvectors x and y such that yTx = 1, then as k → ∞
Ak →= xyT (= yxT ). �

Example 3.1.3 (Random Walk) This is a model for a “Random Walk” of a par-
ticle in a finite 1-d lattice. There are n states, s1, . . . , sn, and a particle moves from
a state to an adjacent one with a certain probability. Namely, if the particle is
in state sk (k 6= 1, n), then it moves to the Right (i.e., to sk+1) with probabil-
ity pk : 0 < pk < 1, and to the Left (that is, to the state sk−1) with probability
qk = 1 − pk. If it is in state s1, it goes to the Right with probability 1. If it is in
state sn, it goes to the Left with probability 1.

We will model this situation with a transition from an initial probability distri-

bution to another. That is, if p(0) =






p
(0)
1
...

p
(0)
n




 is the initial probability distribution

(p
(0)
i ≥ 0,

∑n
i=1 p

(0)
i = 1) then we seek p(1) = Ap(0). To get A, we reason as fol-

lows. Suppose that the initial probability is concentrated all at the initial state s1:

p(0) =








1
0
...
0







, then p(1) =










0
1
0
...
0










and so Ap(0) = p(1) is the first column of A. Similarly,

by progressively taking the initial probability concentrated at the si’s, i = 2, . . . , n,



MATH 6112: ADVANCED LINEAR ALGEBRA 96

that is taking p(0) = ei, i = 1 : n, then we get all of A’s columns. This gives

A =














0 q2

1 0 q3 O

0 p2 0
. . .

... p3
. . .

. . .

qn−1

0 pn−2 0 1
0 O pn−1 0














Again, A ≥ 0. Now A 6= AT . Still:
∑n

i=1 aij = 1, ∀ j = 1, . . . , n: A is a column-
stochastic matrix. Again we observe that ρ(A) = 1. However, now it is not easy at
all to answer questions such as “What is the asymptotic probability distribution”? In
fact, “is there one”? In this example, these questions are harder, because –and this
is not obvious at all– Am 6> 0, ∀ m]; in fact, and even this is not obvious, ρ(A) = 1
is not attained just when λ = 1 is an eigenvalue of A. �

3.2 Perron-Frobenius theory

The understanding of the asymptotic behavior of positive (nonnegative) matrices
is the essence of Perron-Frobenius theory. Perron developed the theory for A > 0,
then Frobenius extended it to the case of A ≥ 0.

The simple observation is that if A ≥ 0 ⇒ Ak ≥ 0, for all k ⇒ iterates of a
positive vector remain positive; in other words, the positive orthant is invariant. We
expect the dominant behavior of an iteration process with A to depend on ρ(A).
So, to understand the eventual behavior of iterating with A will lead us to study
the spectral radius of A. And, it will be important to see if/when the right/left
eigenvectors associated to ρ(A) are in the positive orthant. These are the key tools
the theory. Indeed, the Perron-Frobenius theory will tell us that/when spectral
radius is also itself an eigenvalue and if/when is of multiplicity one. Moreover, it
will also give us information on the associated right and left eigenvectors and on the
limiting behavior of Ak.
• Let us recall formulas for the sup-norm (or ∞-norm) and 1-norm of matrices.

Here, we can take A ∈ Cm×n. Recall that (just as for any norm induced by
a vector norm) ‖A‖∞,1 = max‖x‖∞,1=1 ‖Ax‖∞,1, and that for vectors ‖x‖∞ =
maxi |xi| and ‖x‖1 =

∑

i |xi|. With this, we have:
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‖A‖∞ = max
1≤i≤m

n∑

j=1

|aij|

‖A‖1 = max
1≤j≤n

m∑

i=1

|aij | .
(3.2.1)

Exercise 3.2.1 Prove (3.2.1).

We are now ready to explore properties of the spectral radius of nonnegative
matrices.

Facts 3.2.2 All matrices below are in Rn×n.

(1) Let |A| ≤ B. Then, ρ(A) ≤ ρ(|A|) ≤ ρ(B).
Pf. Since A ≤ |A| ≤ B ⇒ Am ≤ |A|m ≤ Bm and thus ‖Am‖F ≤ ‖|A|m‖F ≤
‖Bm‖F ⇒ (‖Am‖1/m

F ) ≤ ‖|A|m‖1/m
F ≤ ‖Bm‖1/m

F . But we know that ρ(A) =
limm→∞ ‖Am‖1/m (we did this for 2-norm, but in fact result and proof is true
for any norm), and the claim follows. �

(2) If 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B).
Pf. Obvious from (1). �

(3) If A ≥ 0 and Ap is a p × p principal submatrix of A, then ρ(Ap) ≤ ρ(A). In
particular: aii ≤ ρ(A), i = 1, . . . , n.
Pf. Take B ∈ Rn×n being given by original A with rows/columns of 0’s
corresponding to the rows/columns of A we deleted to get Ap. Then 0 ≤
B ≤ A⇒ ρ(B) ≤ ρ(A). But B is similar via permutation to

[
Ap 0
0 0

]

and so

ρ(B) = ρ(Ap). �

(4) Let A ≥ 0. Then:

(a) If
∑n

j=1 aij is constant for all i = 1, . . . , n, then ρ(A) = ‖A‖∞.

(b) If
∑n

i=1 aij is constant for all j = 1, . . . , n, then ‖A‖1 = ρ(A).

Pf. We know that |λ| ≤ ‖A‖ for any norm. Now, if
∑

j aij is constant for
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all i = 1, . . . , n, then e =






1
...
1




 is an eigenvector: Ae =

(
∑

j aij

)

e ⇒ ρ(A) =

‖A‖∞ and past (a) follows. For part (b), use the 1-norm. �

(5) Let A ≥ 0. Then:

(a) mini

∑

j aij ≤ ρ(A) ≤ maxi

∑

j aij, and

(b) mini

∑

j aij ≤ ρ(A) ≤ maxj

∑

i aij.

Pf. Let us show (a). Since maxi

∑

j aij = ‖A‖∞, then ρ(A) ≤ maxi

∑

j aij

is obvious. To get the other bound, let c = mini

∑

j aij . Build B ≥ 0 such
that

∑

j bij = c, i = 1, . . . , n, as follows. If c = 0 ⇒ B = 0, if c 6= 0, let

bij = c
aij

P

j aij
. From this, we have A ≥ B ≥ 0 and ρ(B) = mini

∑

j aij ≤ ρ(A),

by (2) above. For part (b), use AT and part (a). �

(6) Let A ≥ 0. Let x ∈ Rn, x > 0. Then:

min
i

1

xi

n∑

j=1

aijxj ≤ ρ(A) ≤ max
i

1

xi

∑

j

aijxj .

Pf. Build D =








x1

x2 O
. . .

O xn








, so D is invertible and (D−1AD)ij =
aijxj

xi
.

Now the result follows from Fact (5) above. �

(7) If A ≥ 0, and there is a vector x ∈ Rn, x > 0, such that αx ≤ Ax ≤ βx for
some α, β ≥ 0, then α ≤ ρ(A) ≤ β. Further, if αx < Ax ⇒ α < ρ(A), and if
Ax < βx⇒ ρ(A) < β.
Pf. This follows from (6), because if αx ≤ Ax⇒ α ≤ mini

1
xi

∑

j aijxj . �

We are now ready to give Perron’s theorem, which deals with the case of A > 0.

Theorem 3.2.3 (Perron) Let A ∈ Rn×n, A > 0. Then:
(a) ρ(A) > 0;
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(b) ρ(A) is an eigenvalue of A and it is simple (i.e., it has algebraic multiplicity
one);

(c) ∃ x ∈ Rn, x > 0, such that Ax = ρ(A)x;
(d) |λ| < ρ(A), ∀ λ 6= ρ(A) eigenvalue of A (i.e., ρ(A) is the only eigenvalue of

largest modulus);

(e)
(

A
ρ(A)

)k

−→
k→∞

L, L = xyT , Ax = ρ(A)x, AT y = ρ(A)y, x > 0, y > 0, xT y = 1.

• The proof will be somewhat long. Before embarking on it, let us make a few
observations.

Remarks 3.2.4
(1) Parts (a)–(d) characterize the dominant eigenstructure of A. Part (e) is about

asymptotic behavior and it states that – after rescaling by ρ(A) – asymptotically
the problem is effectively that of a positive matrix of rank 1.

(2) The vectors x and y are called right, and left, Perron vectors. To be precise,
Perron vectors are typically normalized so that Σxi = Σyi = 1.

Proof of Theorem 3.2.3. Part (a) is obvious, from Fact 3.2.2-(5).
Let us show the first half of (b) and point (c). Suppose Ax = λx, x 6= 0 and

|λ| = ρ(A). Then |λ||x| = ρ(A)|x| = |λx| = |Ax| ≤ |A||x| = A|x| .̇. ρ(A)|x| ≤ A|x|.
Let y = A|x| − ρ(A)|x|, so that y ≥ 0. Notice that if y = 0, then since A|x| > 0
(since x 6= 0 and A > 0) ⇒ |x| = 1

ρ(A)
A|x| > 0. So, if y = 0 we get (c). Now, if

y 6= 0, then 0 < Ay = A(A|x| − ρ(A)|x|) z=A|x|>0
=

(A− ρ(A)I)A|x| = Az − ρ(A)z ⇒
Az > ρ(A)zFact 3.2.2−(7)

=⇒ ρ(A) > ρ(A) and so y = 0 and A|x| = ρ(A)|x| .̇. ρ(A) is an
eigenvalue of A with an eigenvector with positive entries and in fact we have seen
that if Ax = λx, |λ| = ρ(A) ⇒ |x| > 0, and so (c) and the first half of (b) are
proven.

We now move to show (d): that ρ(A) is the only eigenvalue of largest modulus.
First, we show that if Ax = λx, |λ| = ρ(A) ⇒ x = eiθ|x|, where |x| : A|x| =
ρ(A)|x|. Reason as follows. Suppose Ax = λx, x 6= 0 and |λ| = ρ(A) ⇒ |Ax| =
|λx| = ρ(A)|x|. But we know that A|x| = ρ(A)|x|, |x| > 0 ⇒ ρ(A)|xk| = |λxk| =∣
∣
∣
∑n

j=1 akjxj

∣
∣
∣ ≤

∑n
j=1 akj|xj | = ρ(A)|xk|, for all k = 1, 2, . . . , n. So, we must have

∣
∣
∣
∑n

j=1 akjxj

∣
∣
∣ =

∑n
j=1 akj|xj |. But each entry xj = ρje

iφj ⇒ akjxj = (akjρj)e
iφj and

since
∣
∣
∣
∑

j akjxj

∣
∣
∣ =

∑

j akj|xj | ⇒ all phases φj must be same, j = 1, . . . , n, call it θ.

Therefore, |x| = e−iθx > 0. So, we have shown that if Ax = λx, |λ| = ρ(A) ⇒ x =
eiθ|x|, where |x| : A|x| = ρ(A)|x|.
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Now, suppose λ eigenvalue of A, λ 6= ρ(A), Ax = λx, and suppose |λ| = ρ(A)⇒
Aw = λw and w = e−iθx > 0 ⇒ λ > 0 (since Aw > 0) ⇒ λ = ρ(A). So, we have
proved (d).

We now show that the geometric multiplicity of ρ(A) is 1. Let w, z such that
Aw = ρ(A)w and Az = ρ(A)z. Then, we know that there ∃ vectors p > 0, q > 0,
w = eiθ1p and z = eiθ2q, or p = e−iθ1w, q = e−iθ2z. Define α = min1≤i≤n qi/pi and
take the vector r = q−αp. Since each entry of r is rj = qj−(min1≤i≤n qi/pi) pj , then
r ≥ 0 and at least one entry of r is 0. Now, Ar = Aq − αAp = ρ(A)q − αρ(A)p =
ρ(A)r. Therefore, if r 6= 0 ⇒ we’d have r ≥ 0, A > 0, r 6= 0 ⇒ Ar > 0 ⇒ r > 0
which is a contradiction since one entry of r is 0. So, r = 0 ⇒ q = αp ⇒ w = cz,
and the geometric multiplicity of ρ(A) is 1.

So, there is a unique eigenvector (right Perron vector) associated to ρ(A), call
it x, and x > 0; we can normalize it so that

∑

i xi = 1. Of course, there is also a
unique left Perron vector z : AT z = ρ(A)z, z > 0, normalized so that

∑

i zi = 1.

Next, we show that if we let y = 1
xT z

z, and hence xT y = 1, then limk→∞

(
A

ρ(A)

)k

=

L, L = xyT . To prove this fact, we make the following observations.
(i) Lx = x, yTL = yT (this is obvious);
(ii) Lk = L, k = 1, 2, . . . , (this is also obvious);
(iii) AkL = LAk = ρ(A)kL, k = 1, 2, . . . ; [AkL = Ak−1Axyk = Ak−1ρ(A)xyk = · · · =

ρ(A)kL; similarly for LAk.]
(iv) (A − ρ(A)L)k = Ak − ρ(A)kL. [By induction. Obviously true for k = 1. Write

(A−ρ(A)L)k = (A−ρ(A)L)k−1(A−ρ(A)L) = (induction hypothesis) = (Ak−1−
ρ(A)k−1L)(A− ρ(A)L) = Ak − ρ(A)k−1LA− ρ(A)Ak−1L + ρ(A)kL2 = (use (ii)–
(iii)) = Ak − ρ(A)kL− ρ(A)kL + ρ(A)kL.]

(v) If λ 6= 0 is an eigenvalue of A− ρ(A)L⇒ λ is also an eigenvalue of A. [Suppose
λ 6= 0 is such that (A − ρ(A)L)v = λv ⇒ (LA − ρ(A)L2)v = λLv (iii)

⇒ (ρ(A)L −
ρ(A)L)v = λLv ⇒ Lv = 0⇒ (A− ρ(A)L)v = λv ↔ Av = λv.]

Therefore, to show that
(

A
ρ(A)

)k

−L −→
k→∞

0 is the same as to show that
(

A
ρ(A)
− L

)k

−→
k→∞

0,

and to show this is enough to show that ρ(A − ρ(A)L) < ρ(A) which is further
guaranteed (because of (v)) if ρ(A) is not an eigenvalue of A − ρ(A)L. By contra-
diction, suppose that ρ(A) is an eigenvalue of A − ρ(A)L. Then, there ∃ v 6= 0 :
(A− ρ(A)L)v = ρ(A)v. Then, since ρ(A) has geometric multiplicity 1 as eigenvalue
of A, v = αx (see proof of (v)), α 6= 0 ⇒ αAx − αρ(A)xyTx = 0 ⇒ αρ(A)v = 0
which is a contradiction. Thus, ρ(A) is not an eigenvalue of A − ρ(A)L and so

ρ(A − ρ(A)L) < ρ(A) .̇. ρ
(

A
ρ(A)
− L

)

< 1 and
(

A
ρ(A)
− L

)k

−→
k→∞

0, as desired. That
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is, (e) is proven.
Last thing left to show is the second part of (a): the algebraic multiplicity of

ρ(A) is 1, that is ρ(A) is a simple eigenvalue. Suppose it has multiplicity p ≥ 1.
Take the Schur form of A

ρ(A)
:

U∗AU

ρ(A)
=

[
R11 R12

0 R22

]

, R11 =








1 ∗ · · · ∗
. . .

. . .
...

0 1








, R22 =








λp+1/ρ(A) ∗ · · · ∗
. . .

. . .
...

λn/ρ(A)








.

Therefore,

U∗LU = lim
k→∞

U∗
(

A

ρ(A)

)k

U =












1 x · · ·x
. . .

0 1

x · · · x
...

...
x x
0 x · · ·x

. . .
...

0 0












=: B .

But rank(B) ≥ p while rank(U∗LU) = 1 .̇. we must have p = 1. �

Exercises 3.2.5

(1) If A > 0, describe all possible asymptotic behaviors of Am. [Characterize and
analyze the three possible cases.]

(2) Let A > 0 and let x > 0 be the right Perron vector. Verify that ρ(A) =
∑n

i,j=1 aijxj.

(3) Show that if A ∈ Rn×n > 0, n > 1, is invertible, then A−1 cannot be ≥ 0.
(4) [Harder] Suppose A(α), α ∈ R, are positive: A(α) > 0, ∀ α ∈ [a, b], and that A

depends smoothly on α (i.e., it is continuously differentiable in α). Show that
ρ(A(α)) also depends smoothly on α, and so do the right/left Perron vectors.
[Hint: first argue for continuous dependence.]

Probably, the most important aspect of Perron Theorem is that

lim
k→∞

(
A

ρ(A)

)k

= L = xyT (Ax = ρ(A)x, AT y = ρ(A)y, xT y = 1). (3.2.2)
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The importance of (3.2.2) of course is that it tells us that there is a projection taking
place: for k large, the rescaled matrix (A/ρ(A))k is well approximated by a rank
one positive matrix. Although a similar approximation property is true for other
matrices (e.g., symmetric matrices with one dominant eigenvalue associated to the
spectral radius), it is specifically for positive matrices that this property provides
the mathematical justification for search engines like Google.

Unfortunately, to obtain Perron Theorem, the assumption A > 0 was essential.
In particular, it gave us that ρ(A) is the only eigenvalue of max-modulus. What can
we still say if we only have A ≥ 0?

It is natural to think of perturbing A ≥ 0 into a positive matrix and then take
the limit as the perturbation goes to 0. By doing so, this is what we can say.

Theorem 3.2.6 If A ∈ Rn×n, A ≥ 0, then ρ(A) is an eigenvalue of A and there is
x ≥ 0, x 6= 0: Ax = ρ(A)x.

Pf. Take A(ε) : (A(ε))ij = aij + ε, for ε > 0. So A(ε) > 0 and ∃ x(ε) (Perron
vector): A(ε)x(ε) = ρ(A(ε))x(ε),

∑n
j=1 xj(ε) = 1, x(ε) > 0, ∀ ε > 0. Now, the set of

Perron vectors is inside a compact set (since
∑

j xj(ε) = 1, x(ε) > 0), and so there
exist a sequence {εk}, monotonically decreasing, limk→∞ εk = 0, such that x(εk)
converges as k →∞ to a vector x; further, since

∑

j xj = limx→∞
∑

j xj(εk) = 1⇒
x 6= 0 and x ≥ 0. Also, consider ρ(A(εk)). Observe that ρ(A(εk)) ≥ ρ(A(εk+1)) ≥
· · · ≥ ρ(A) (since A(εk) > A(εk+1), etc.) .̇. the sequence ρk = ρ(A(εk)) is non-
increasing .̇. ∃ limk→∞ ρk = ρ and ρ ≥ ρ(A). But Ax = limk→∞ A(εk)x(εk) =
limk→∞ ρ(A(εk))x(εk) = ρx, x 6= 0. So, ρ is an eigenvalue of A, but then ρ ≤
ρ(A) .̇. ρ = ρ(A). �

With the help of Theorem 3.2.6, we can now show that in important circum-
stances ρ(A) is a simple eigenvalue of A, thus also helping to clarify the behavior
we observed in Example 3.1.2.

Theorem 3.2.7 If A ≥ 0 and Ak > 0, for some k ≥ 1, then ρ(A) is a simple
eigenvalue of A.

Pf. The eigenvalues of Ak are λk
1, . . . , λ

k
n, where λ1, . . . , λn are the eigenvalues of A.

We know that ρ(A) is an eigenvalue of A (see Theorem 3.2.6), so (ρ(A))k = ρ(Ak) is
an eigenvalue of Ak. So, if ρ(A) was a multiple eigenvalue of A, then (ρ(A))k would
be a multiple eigenvalue of Ak, but this is not possible since Ak > 0 and by Perron
Theorem 3.2.3, ρ(Ak) is a simple eigenvalue of Ak. �
• Without additional assumptions on A ≥ 0, not much more can be said.
• To make some progress, we restrict consideration to irreducible matrices.
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Definition 3.2.8 An (n, n) matrix A is called reducible if there exists a permutation
P such that

PAP T =

(
r n− r

r{ A11 A12

n− r{ 0 A22

)

for some r ≥ 1.

If no such P exist, then A is called irreducible. �

Remark 3.2.9 The meaning of reducibility is the following. Suppose we have to
solve Ax = b and A is reducible. Then:

PAP T Px
︸︷︷︸

=y

= Pb
︸︷︷︸

=c

→
[
A11 A12

0 A22

] [
y1

y2

]

=

[
c1

c2

]

and the system size has reduced. �

• Obviously, if A > 0, then A is irreducible.
• There is a useful -and interesting- connection to a directed graph associated to

A.

Definition 3.2.10 Let A = (aij)
n
i,j=1 be given. Take n distinct points (vertices,

or nodes) in the plane: P1, P2, . . . , Pn. For i 6= j, connect Pi to Pj by a directed

arc
−→

PiPj iff aij 6= 0. The resulting collection of vertices and directed arcs form the
directed graph, Γ(A), associated to A.

Example 3.2.11

(a) The matrix of Example 3.1.2: A =





0 1/2 1/2
1/2 0 1/2
1/2 1/2 0



 has Γ(A) as in Figure 3.1.

(b) A =

[
0 1
1 0

]

and (c) A =

[
1 1
1 1

]

have the same Γ(A); see Figure 3.1.

(d) A =

[
2 0
1 3

]

has Γ(A) as in Figure 3.2.

(e) The matrix of Example 3.1.3: A =





0 q2 0
1 0 1
0 p2 0



, q2, p2 > 0, q2 + p2 = 1, has Γ(A)

as in Figure 3.2.
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1

2

3

1

2

Figure 3.1: Directed graphs associated to cases (a) and (b), (c).

1

2

1

2

3

Figure 3.2: Directed graphs associated to cases (d) and (e).

Definition 3.2.12 We say that the directed graph Γ(A) is strongly connected if
given any two ordered vertices, Pi, Pj (1 ≤ i, j ≤ n), there is a directed path from Pi

to Pj. �

Notice that there may be more than one directed path between two nodes. E.g.,

in Example (a) we can go from P1 to P2 as
−→

P1P2 or
−→

P1P3,
−→

P3P2.
In Definition 3.2.12, we did require i 6= j; but this is irrelevant, since (even

by allowing Pi = Pj) if Γ(A) is strongly connected we can surely come back to Pi

through a directed path.
The above Examples (a), (b), (c) and (e) give strongly connected graphs Γ(A),

example (d) does not. Also Example (e) with q2 = 0, 1, does not give a strongly
connected Γ(A).

• Our goal is to show that Γ(A) is strongly connected if and only if A is irreducible.
We will do this in three steps. (In the general case, (1) and (2) below hold if we
replace A with |A|).
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Facts 3.2.13 Let A ∈ Rn×n, A ≥ 0. Then, the following facts hold.

(1) There is a directed path of length m in Γ(A) from Pi to Pj iff (Am)ij > 0.
In particular, there is a directed path of length m from any Pi to any Pj iff
Am > 0.

Pf. By induction. For m = 1 is obvious. Now, let m = 2, then (A2)ij =
∑n

k=1 aikakj .̇. (A2)ij > 0 iff for at least one k both aik and akj are 6= 0, which
is true ⇔ there is a directed path of length 2 between Pi and Pj . In general:
(Aq+1)ij =

∑n
k=1(A

q)ikakj > 0 ⇔ for at least one k we have (Aq)ik and akj

both positive. By induction hypothesis this is true iff ∃ a path of length q
from Pi to Pk and a path of length 1 from Pk to Pj .̇. there is a path of length
q + 1 from Pi to Pj . �

(2) Γ(A) is strongly connected ⇔ (I + A)n−1 > 0.

Pf. (I +A)n−1 = I +
(

n−1
1

)
A+

(
n−1

2

)
A2 + · · ·+An−1 > 0 if and only if for each

(i, j) at least one of A, A2, . . . , An−1 has (i, j)-th entry > 0. Now use 3.2.13-(1)
above. �

(3) A is irreducible ⇔ (I + A)n−1 > 0.

Pf. (⇒) We show that ∀ x 6= 0, x ≥ 0⇒ (I+A)n−1x > 0. (The result will fol-
low since x is arbitrary; so, we can take x = e1, e2, . . . , en.) So, let x ≥ 0, x 6= 0,

be given, and consider the sequence

{

x(0) = x

x(k+1) = (I + A)x(k), k = 0, 1, . . . , n− 2.

Let ζ(x) denote the number of 0-components in x. We show that x(k+1)

has fewer 0-components than x(k). Obviously, since x(k+1) = x(k) + Ax(k) ⇒
ζ(x(k+1)) ≤ ζ(x(k)). Suppose ζ(x(k+1)) = ζ(x(k))⇒ they must be in same posi-

tion (since Ax(k) ≥ 0)⇒ ∃ permutation P : Px(k+1) =

(
α
0

)
}m
}n−m

, Px(n)

(
β
0

)
}m
}n−m

,

α > 0, β > 0. Then

(
α
0

)

=

(
β
0

)

+ PAP T

(
β
0

)

=

(
β
0

)

+

(
A11 A12

A21 A22

)(
β
0

)

⇒ 0 = 0 + A21β and since β > 0 ⇒ if A21 ≥ 0 → A21β > 0 .̇. A21 = 0 .̇.
A is reducible, which is a contradiction .̇. ζ(x(k+1)) < ζ(x(k)) .̇. ζ(x(n−1)) =
0 .̇. x(n−1) > 0, but x(n−1) = (I + A)n−1x(0) .̇. (I + A)n−1 > 0, since x(0) ≥ 0
was arbitrary.

(⇐) Suppose A is reducible ⇒ ∃ P such that PAP T =

(
A11 A12

0 A22

)

and so
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(since P TP = I)

(I + A)n−1 = P (I + PAP T )n−1P T = P

(
I + A11 A12

0 I + A22

)n−1

P T =

P

(
(I + A11)

n−1 ∗
0 (I + A22)

n−1

)

P T

.̇. (I + A)n−1 is reducible .̇. it cannot be that (I + A)n−1 > 0. �

Exercises 3.2.14

(1) Show that an irreducible matrix can have at most (n− 1) entries equal to 0 in
each row or column.

(2) Let A ≥ 0 be diagonally dominant: aii ≥
∑n

j=1 aij, for all i = 1, . . . , n. Show
that Re(λi) ≥ 0, for all eigenvalues of A.

(3) Show that for a general matrix A ∈ Rn×n we have ρ(I + A) ≤ 1 + ρ(A)
and give an example where strict inequality is achieved. Then, show that if
A ≥ 0⇒ ρ(I + A) = 1 + ρ(A).

• We are now ready for Frobenius result, which is an extension of Perron’s theorem
to the case of A ≥ 0.

Theorem 3.2.15 (Frobenius) Let A ∈ Rn×n, A ≥ 0, and irreducible. Then,
a) ρ(A) > 0 is an eigenvalue of A;
b) ∃ x > 0 : Ax = ρ(A)x;
c) ρ(A) is a simple eigenvalue of A.

Pf. From Theorem 3.2.6, we know that ρ(A) is an eigenvalue of A with eigenvector
x ≥ 0, x 6= 0. Further, since A is irreducible ⇒ ∑

j aij > 0, for all i = 1 : n.
Therefore, since mini

∑

j aij ≤ ρ(A) ≤ maxi

∑

j aij , then ρ(A) > 0.
Now, let x ≥ 0, x 6= 0 : Ax = ρ(A)x ⇒ (A + I)x = (ρ(A) + 1)x (we have used

Exercise 3.2.14-(3)). Then (A + I)n−1x = (ρ(A) + I)n−1x, but (A + I)n−1 > 0 ⇒
(A + I)n−1x > 0⇒ ρ(A)x > 0⇒ x > 0. Finally, if ρ(A) is a multiple eigenvalue of
A⇒ 1 + ρ(A) is a multiple eigenvalue of I + A, but (I + A)n−1 > 0, then ρ(A) + 1
must be a simple eigenvalue of A. �

Remark 3.2.16 The vector x > 0, when normalized as
∑n

i=1 xi = 1, is still called
the right Perron vector. Of course, since AT is irreducible if A is irreducible, then
there is also a left Perron vector y.
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So, if A ≥ 0 and irreducible, we have right/left Perron vectors x and z and we
can choose y = z/(xT z) so that xT y = 1 and let L = xyT . But, do we have that

limk→∞

(
A

ρ(A)

)k

= L? In general, no.

Example 3.2.17 A =

(
0 1
1 0

)

⇒ A ≥ 0 and irreducible, ρ(A) = 1 and it is a

simple eigenvalue. Perron vectors are x =
(
1/2
1/2

)
= z, and y =

(
1
1

)
. So, L = xyT =

1
2

(
1 1
1 1

)

. However, (Ak) 6−→
k→∞

L. Note that here A2 =

(
1 0
0 1

)

, A3 = A, etc., so

A does not converge. Also, note that ρ(A) is also obtained at the eigenvalue −1.
Nevertheless, there is a convergence “on average”, in the sense that the average of
two consecutive terms in the sequence is constant and equal to L/2; see Exercise
3.2.20-(3). Finally, observe that this Example is a special case of Example 3.1.3. �

In order to obtain that, for A ≥ 0, one has
(

A
ρ(A)

)k

→
k→∞

L, Frobenius realized

that this is true if A has only one eigenvalue of max-modulus, ρ(A) itself. He called
such matrices primitive.

Definition 3.2.18 (Frobenius, 1912) Consider a matrix A ≥ 0, irreducible. Let
p be the number of eigenvalues of A of modulus ρ(A). Then:
i) If p = 1, then A is called primitive;
ii) If p > 1, then A is called cyclic of order p. �

With this, the following is immediate.

Theorem 3.2.19 (Frobenius) If A ≥ 0 is primitive, then limk→∞

(
A

ρ(A)

)k

= L =

xyT with xT y = 1 and Ax = ρ(A)x, AT y = ρ(A)y, x > 0, y > 0. �

Exercises 3.2.20

(1) Prove Theorem 3.2.19.

(2) We know that when A ≥ 0, irreducible, we cannot claim that limk→∞(A/ρ(A))k

exists. However, give an example to show that there are matrices A ≥ 0,
irreducible, not primitive, for which the limit does exist.
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(3) Let A ≥ 0 be irreducible, and let x, y, be normalized Perron vectors associated
to ρ(A): xT y = 1, and let L = xyT . Show that

lim
k→∞

1

k

k∑

j=1

(
A/ρ(A)

)j
= L . (3.2.3)

The next obvious question is: Which matrices are primitive?

Remark 3.2.21 Clearly, if A > 0 ⇒ A is primitive. Indeed, since A > 0, then A
is irreducible. Moreover, Perron’s theorem tells us that ρ(A) is a simple eigenvalue
and it is the unique one of max-modulus.

Bust, beside positive matrices, what other matrices are primitive? In order
to give some useful criteria to check whether A ≥ 0 is primitive, the following
preliminary lemmata are useful.

Lemma 3.2.22 If A is primitive, then Am is primitive for all m ≥ 1.

Pf. Since ρ(A) is the only eigenvalue of max-modulus of A (and, since A is ir-
reducible, it is simple by Theorem 3.2.15), then (ρ(A))m is the only eigenvalue of
max-modulus of Am, and it is simple. Further, since obviously Am ≥ 0 for all m,
then we just need to show that Am is irreducible (we know that A is). Suppose Am

is reducible, for some m > 1. Then, ∃ permutation P such that PAmP T =

[
B C
0 D

]

.

Since Ax = ρ(A)x, with x > 0, then PAmP TPx = ρ(A)mPx
x̂=Px>0−→

[
B C
0 D

] [
x̂1

x̂2

]

=

ρ(A)m

[
x̂1

x̂2

]

, ⇒ Dx̂2 = ρ(A)mx̂2 .̇. ρ(A)m is an eigenvalue of D ≥ 0 with x̂2 > 0.

Now, we likewise have that AT ≥ 0 is irreducible, and so AT y = ρ(A)y, y > 0. Then

P (AT )mP T Py = ρ(A)mPy
ŷ=Py−→

[
BT 0
CT DT

] [
ŷ1

ŷ2

]

= ρ(A)m

[
ŷ1

ŷ2

]

⇒ BT ŷ1 = ρ(A)mŷ1

and ŷ1 > 0. Then, ρ(A)m is an eigenvalue of BT , hence of B. But then ρ(A)m is
eigenvalue of B and D .̇. it is not a simple eigenvalue of Am. Contradiction. �

Lemma 3.2.23 If A ≥ 0 is irreducible and aii > 0, i = 1, . . . , n, then An−1 > 0.

Pf. By Fact 3.2.13-(3), A ≥ 0 is irreducible ⇔ (I + A)n−1 > 0. Moreover, recall
that if A ≥ B ≥ 0 ⇒ Am ≥ Bm, for any positive integer m. So, we are going
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to build a B ≥ 0 such that A ≥ µ(I + B) with µ > 0 and B irreducible, so that
An−1 ≥ µn−1(I + B)n−1 > 0.

To build B reason as follows. Take A ≥ 0 and write

A = D







1 a12/a11 · · · a1n/a11

a21/a22 1 · · · a2n/a22

· · · · · · · · · · · ·
an1/ann · · · · · · 1







=: D(I + B) , D = D =






a11 O
. . .

O ann






⇒ A ≥ min
1≤i≤n

(aii)(I + B) =: µ(I + B) , µ = min
1≤i≤n

(aii) .

Now, just observe that B ≥ 0 and irreducible (if not ⇒ PBP T =

[
B11 B12

0 B22

]

⇒

P (I+BT )P T =

(
I + B11 B12

0 I + B22

)

and A would be reducible: PAP T = PDP TP (I+

B)P T ). �
We are now ready for the following result, which fully characterizes primitive

matrices, and completely clarifies Example 3.1.2.

Theorem 3.2.24 Let A ∈ Rn×n, A ≥ 0. Then Am > 0 for some m ≥ 1 ⇔ A is
primitive.

Pf. (⇒) Since Am > 0 ⇒ Am is primitive. If A was not primitive, then it would
have more than the eigenvalue ρ(A) of max-modulus, but then also Am would have
more than the eigenvalue (ρ(A))m of max-modulus, which is a contradiction.

(⇐) Since A is primitive, then by Lemma 3.2.22 Am is primitive (for all m ≥ 1),
in particular it is irreducible, as is A. Now, since A is irreducible, there is a path
in Γ(A) from P1 back to P1, say of length k1. But then (Ak1)1,1 > 0 and Ak1 is
primitive (power of a primitive matrix). Now, for Γ(Ak1) there is a path from P2

to P2, say of length k2. Then ((Ak1)k2)2,2 > 0 as well of course as ((Ak1)k2)1,1 > 0.
Continuing this way we get that Ak1k2...kn is primitive with positive diagonal entries
and so by Lemma 3.2.23 (Ak1...kn)n−1 > 0. �

It is interesting to obtain good bounds on the smallest integer γ(A) such that (if
A is primitive) Aγ(A) > 0. The value γ(A) is called index of primitivity of A. Good
bounds for γ(A) are useful, because in a practical situation we may have a matrix
A ≥ 0, but do not know if it is primitive. Suppose we start taking powers of A: Am,
m = 1, 2, . . . . Can we stop at some value m and declare that if Am 6> 0, then A is
not primitive?
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It is not hard to argue that γ(A) ≤ (n − 1)nn (i.e., that each ki in the proof of
Theorem 3.2.24 satisfies ki ≤ n). (Verify that!) Also, by Lemma 3.2.23, we know
that γ(A) ≤ (n − 1) if aii > 0, i = 1, . . . , n. The following result of Wielandt gives
the optimal upper bound (see [9]):

Let A ≥ 0. Then A is primitive ⇐⇒ Aγ(A) > 0, where

γ(A) ≤ (n− 1)2 + 1 . (3.2.4)

Exercise 3.2.25 Prove this statement or provide a counterexample: “If A and B
are primitive, then AB is primitive”.

3.2.1 Stochastic matrices

We conclude our discussion of nonnegative matrices with a few considerations on
stochastic matrices.

Example 3.2.26 Suppose A ≥ 0, A 6= 0, and it has a positive eigenvector x.
Then, we know that Ax = ρ(A)x. [Simply because if Ax = λx ⇒ λ ≥ 0 and
so λx ≤ Ax ≤ λx ⇒ ρ(A) = λ > 0; that λ > 0 is a consequence of Ax > 0.]

Now, take D =






x1 O
. . .

O xn




 ⇒ since Ax = ρ(A)x → ADe = ρ(A)De, where

e = (1, . . . , 1)T .̇. (D−1AD)e = ρ(A)e. But this means that each row of D−1AD
ρ(A)

has
nonnegative entries adding up to 1. In other words, each row of A is akin to a vector
of probabilities. �

Motivated by Example 3.2.26, the following definition is natural.

Definition 3.2.27 If A ≥ 0 is such that
∑n

j=1 aij = 1 for all i = 1, . . . , n. then
A is called (row) stochastic. If

∑n
i=1 aij = 1 for all j = 1, . . . , n, then A is called

(column) stochastic. If A is both row and column stochastic then it is called doubly
stochastic. �

Example 3.2.28
(1) A ≥ 0 is doubly stochastic iff Ae = e and AT e = e.
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(2) Any A ≥ 0, A 6= 0, with positive eigenvector x > 0 is such that A
ρ(A)

is similar to
a stochastic matrix.

(3) Permutations are always doubly stochastic.
(4) If U is unitary ⇒ the matrix A = |U |2 = (|uij|2)n

i,j=1 is doubly stochastic. (Ex-
amples (3) and (4) are called ortho-stochastic).

(5) Any A ≥ 0, irreducible, is similar to a stochastic matrix.

Exercises 3.2.29

(1) Verify the statements in Example 3.2.28.
(2) Show that if A ∈ R2×2, A ≥ 0, and doubly stochastic, then it is A = AT and

a11 = a22.
(3) Show that if A, B are stochastic (or doubly stochastic), then AB is too. That

is, the set of stochastic (doubly stochastic) matrices is a semigroup with respect
to matrix multiplication. By example, show that it is not a group. It is easy to
show that arithmetic mean of stochastic (or doubly stochastic) matrices is also
stochastic (doubly stochastic). Generalize this to the convex sum α1A1 + · · · +
αmAm, where αi ≥ 0,

∑m
i=1 αi = 1. [That is, they form a convex set.]

(4) Show that if A ≥ 0 is doubly stochastic and reducible ⇒ ∃ P : PAP T =
[
A11 0
0 A22

]

where A11 and A22 are doubly stochastic.

This next theorem is the celebrated Birkhoff-von Neumann theorem and fully
characterizes doubly stochastic matrices. The proof we give is from [3].

Theorem 3.2.30 (Birkhoff doubly stochastic) A ≥ 0 is doubly stochastic iff
there exist a finite value m such that A = α1P1 + · · · + αmPm, where αi ≥ 0,
∑m

i=1 αi = 1 and P1, . . . , Pm are permutation matrices. �

Pf. (⇐) This follows from Exercise 3.2.29-(3).
(⇒) We will show that the set of doubly stochastic matrices form a polytope

whose vertices correspond to permutation matrices, at which point we will use that
every polytope is the convex hull of its extreme points (its vertices).

As customary, through the natural identification of a matrix in Rn×n with a
vector in Rn2

obtained upon writing the columns of A one after the other, we can
think of the set of DS (doubly stochastic) matrices as points in Rn2

.
So, let A = (aij) be a DS matrix. The constraints of the system on the aij ’s are

aij ≥ 0, ∀i, j,
n∑

j=1

aij = 1, ∀i = 1, . . . , n, and

n∑

i=1

aij = 1, ∀j = 1, . . . , n.
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This defines a polyhedron Q which is actually a polytope since the linear constraints
imply that each 0 ≤ aij ≤ 1, and so Q is bounded. Now we show that every extreme
point of Q is integral (has integer entries), by showing that any nonintegral point of
Q is the center of some line segment inside Q. This will tell us that the vertices of
the polytpe are integral, and therefore are permutation matrices.

So, suppose that A is DS and not a permutation, that is the associated vector
x ∈ Q is not integral, and let 0 < xi1,j1 < 1. Since

∑n
j=1 xi1,j = 1, there must be

some j2: 0 < xi1,j2 < 1. Similarly, since
∑n

i=1 xi,j2 = 1, there must be some i2 such
that 0 < xi2,j2 < 1. This process can be iterated, and we will stop the first time some
index (i, j) is repeated. Consider the sequence just obtained, without repeating the
first (and final) point, and therefore the sequence must have even length (because
we alternated choosing row and column indices). Let µ = xi′,j′ be the smallest entry
in this sequence. Consider now the point y ∈ Rn2

associated to a matrix Y built
as follows: Y has a 1 in the same position as the first entry of the above sequence,
xi,j , then −1 corresponding to the second entry, then +1 corresponding to the third
entry, etc., all other entries of Y being 0. So, y is a vector with entries 1,−1 or 0, and
Y ’s rows/columns add to 1. Now take the two points x+ = x+µy and x− = x−µy.
By minimality of µ, x+ and x− are in Q, and therefore the associated matrices A+

and A− are DS. But, by construction, x = 1/2(x+ +x−) and thus A = 1/2(A++A−)
and obviously A 6= A+, A−, and so x (which is not integral) is not a vertex of Q,
and A is not an extreme point of the set of DS matrices. Therefore, every extreme
point of Q is integral, it corresponds to a permutation matrix and every DS matrix
is a convex combination of permutation matrices. �

Remark 3.2.31 The above proof is not constructive; constructive proofs can be
given and used to provide insight into the best general upper bound for m in Theorem
3.2.30. It is interesting (see references in [4]) that the best general upper bound for
m in Theorem 3.2.30 is (n− 1)2 + 1 (cfr. with γ(A) in (3.2.4)).

Exercise 3.2.32 Use Theorem 3.2.30 to show the Wielandt-Hoffmann inequality
(2.4.4).



Chapter 4

Matrices depending on parameters

The purpose of this chapter is two-fold: to discuss perturbation and smoothness
results for eigenvalues (and eigenvectors), and to give general smoothness results for
bases of key subspaces, such as the kernel of a matrix.

The default setting will be to have A ∈ Cn×n, unless otherwise stated. Also,
with σ(A) we indicate the set of eigenvalues of A (repeated by multiplicity).

First, we investigate variation of eigenvalues (and eigenvectors) on the entries
of the underlying matrix. We will discuss two types of results: (i) general bounds
when A is perturbed, (ii) what can we say when A depends smoothly on one or
more parameters.

Of course, we already encountered several perturbation results for eigenvalues,
chiefly for Hermitian matrices (e.g., see the results in Section 2.5.2, but also results
like (2.4.4)). What follows complement for general matrices these earlier results.

4.1 General Perturbation Results for Eigenvalues

and Eigenvectors

The first result is comforting and simple: “The eigenvalues depend continuously on
the entries of A”. More precisely, we have the following result.

Theorem 4.1.1 If {Ak} is a sequence of matrices converging to A, then σ(Ak)−→
k

σ(A).

That is, ∀ ε > 0, ∃ kε such that if k > kε, then all eigenvalues of Ak are contained
in disks of radius ε centered at the eigenvalues of A.

113
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Pf. This is simply because the roots of polynomials of (exact) degree n depend
continuously on the coefficients of the polynomials. So, we can use this fact for the
characteristic polynomials of Ak, whose coefficients approach (as k → ∞) those of
the characteristic polynomial of A, and the result follows. �

To obtain easily computable localization results (bounds) for the eigenvalues,
the following is a classical and useful result.

Theorem 4.1.2 (Gerschgorin Discs) Given A ∈ Cn×n, then all eigenvalues of
A are located in the union of n closed discs:

n⋃

i=1







z ∈ C : |z − aii| ≤
n∑

j=1
j 6=i

|aij |







=: G.

Furthermore, if the union of p of these discs form a connected region R, disjoint
from the remaining (n− p) discs, then in R there are p eigenvalues.

Pf. Suppose λ is an eigenvalue, so Ax = λx, x 6= 0. Let |xm| = max1≤i≤n |xi| ⇒
λxm =

∑n
j=1 amjxj ⇒ (λ− amm)xm =

∑n
j=1
j 6=m

amjxj ⇒ (λ− amm) =
∑

j 6=m amj
xj

xm
⇒

|λ− amm| ≤
∑

j 6=m |amj |. However, we do not know m, so can only conclude that λ
is in the union of these discs.

To show the second statement, we resort to a simple homotopy argument. Let
D = diag(aii, i = 1, . . . , n) and let B(t) = (1 − t)D + tA, 0 ≤ t ≤ 1. So, the
statement is surely true for B(0) = D. Now, notice that the diagonal entries of B(t)
are the same as those of A, so the center of the Gerschgorin discs of B(t) and A are
the same for all t ∈ [0, 1]. However, the radii of the discs for B(t) are tRi, where
Ri =

∑

j 6=i |aij | are the radii for the discs relative to A, and 0 ≤ t ≤ 1. So, if p
discs of A are disjoint from n− p discs of A, for sure also the corresponding p discs
of B(t) are disjoints from the corresponding (n − p) discs of B(t). Since discs are
closed, the distance between the unions of the two collections of discs for A is d > 0.
Next, let d(t) be the distance from any eigenvalue λ(t) of B(t) in the union of the
p-discs of B(t) from the remaining (n − p) discs. Since eigenvalues are continuous,
and so is d(t), then 0 < d ≤ d(t) for all t ∈ [0, 1], and in particular d(0) ≥ d. Now,
if λ(1) happened to be in the union of the (n− p) discs of A, then d(1) = 0, and so
at some value 0 < t0 < 1, we had to have d(t0) < d, which is a contradiction. �

Exercise 4.1.3 Formulate and prove a Gerschgorin theorem with discs |z − aii| ≤∑

j 6=i |aji|.
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With this, we can get our first perturbation result.

Theorem 4.1.4 Let A ∈ Cn×n be diagonalizable: V −1AV = Λ = diag(λi, i =
1, . . . , n). Let E ∈ Cn×n. For any eigenvalue µ of A + E, there is an eigenvalue λ
of A such that

|µ− λ| ≤ (‖V ‖∞ · ‖V −1‖∞)‖E‖∞.

Pf. A+E is similar to V −1(A+E)V = Λ+V −1EV , so we will show that |λ−µ| ≤
‖V −1EV ‖∞ (≤ ‖V −1‖∞ · ‖V ‖∞ · ‖E‖∞). Call F = V −1EV , so that V −1(A+E)V =
Λ +F . By Gerschgorin theorem 4.1.2, the eigenvalues of Λ +F are in union of discs
⋃n

i=1

{

|z − λi − Fii| ≤
∑n

j=1
j 6=i

|Fij |
}

. But each of these discs is contained in the discs

|z − λi| ≤
∑n

j=1 |Fij|. So, if µ ∈ σ(Λ + F ) then there is some λ ∈ σ(Λ) such that
|µ− λ| ≤ ‖F‖∞. �

Remarks 4.1.5
(1) ‖V ‖∞ · ‖V −1‖∞ is the condition number of V in the sup-norm. We write it as

cond∞(A) or simply cond(A) when the norm is clear from the context.
(2) If ‖E‖ is small, Theorem 4.1.4 is effectively a continuity result.

Actually, a result like Theorem 4.1.4 holds for any norm for which ‖AB‖ ≤
‖A‖ ·‖B‖ and for which ‖D‖ = max1≤i≤n |Dii| when D is diagonal. Let us call these
norms “diagonally consistent”. For such norms (e.g., the 2-norm or the 1-norm, but
not the F-norm) we have much the same result, but need a different proof.

Theorem 4.1.6 Let A ∈ Cn×n be diagonalizable: V −1AV = Λ = diag(λi, i =
1, . . . , n), and let E ∈ Cn×n. Let ‖ · ‖ be a diagonally consistent norm. Then, for
any eigenvalue µ of A + E, there is an eigenvalue λ of A such that

|µ− λ| ≤ ‖V −1EV ‖ ≤ cond(V )‖E‖ .

Pf. As before, we look at Λ + F , F = V −1EV . Let µ ∈ σ(Λ + F )⇒ µI − (Λ + F )
is singular. If µI − Λ is singular ⇒ µ is eigenvalue of Λ ⇒ obviously the result is
true. So, assume that µI − Λ is invertible.

Since µI − (Λ + F ) is singular ⇒ (µI − Λ)−1[µI − Λ − F ] = I − (µI − Λ)−1F
is singular. Then, ‖(µI − Λ)−1F‖ ≥ 1 (if ‖I − B‖ < 1 ⇒ B invertible; in fact,
B−1 =

∑∞
k=0(I −B)k). So:

1 ≤ ‖(µI − Λ)−1F‖ ≤ ‖(µI − Λ)−1‖ · ‖F‖ = max
n≤i≤n

|(µ− λi)
−1| · ‖F‖
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=
‖F‖

min1≤i≤n |µ− λi|
⇒ min

1≤i≤n
|λi − µ| ≤ ‖F‖.

�

The term ‖V −1‖ · ‖V ‖ = cond(V ) is unpleasant, since it can be large. Of
course, the best situation is when this is as small as possible. Now, observe that
since 1 = ‖I‖ = ‖V −1V ‖ ≤ ‖V −1‖ · ‖V ‖, then cond(V ) ≥ 1. So, the best situation
is when cond(V ) = 1, which is surely guaranteed (in the 2-norm) if V is unitary,
since then ‖V −1‖ = ‖V ‖ = 1.

Corollary 4.1.7 If A is normal, and µ is an eigenvalue of A + E, then ∃ λ eigen-
value of A: |λ− µ| ≤ ‖E‖2. A fortiori, also |λ− µ| ≤ ‖E‖F holds. �

• As a final result of the above type, we consider a so-called “a posteriori” estima-
tion problem. The problem is the following.

Exercise 4.1.8 Suppose A ∈ Cn×n is diagonalizable by V , and let ‖ · ‖ be a diag-
onally consistent norm. Suppose we have found an approximation to an eigenpair:
(λ̂, x̂), x̂ 6= 0 (approximation means that Ax̂ ≈ λ̂x̂, but λ̂ is not equal to any eigen-
value of A).

Question: How good an approximation is λ̂ to an exact eigenvalue of A?

Answer: In general, it depends on cond(V ). Let us see the details.
We form the residual: r = Ax̂ − λ̂x̂ (r is computable, and not 0). Thus, r =

V (Λ− λ̂I)V −1x̂→ x̂ = V (Λ− λ̂I)−1V −1r and so ‖x̂‖ ≤ ‖V (Λ− λ̂I)−1V −1‖ · ‖r‖ ≤
cond(V )‖r‖ 1

mini |λi−λ̂| and finally min1≤i≤n |λi − λ̂| ≤ ‖r‖
‖x̂‖cond(V). �

Example 4.1.9 In particular, from Exercise 4.1.8, if A is normal ⇒ cond2(V ) is
1 and if ‖r‖ is small then we can trust the approximate eigenvalue in the sense that
there is always an eigenvalue λ of A close to λ̂.

Nevertheless, not even in this normal case, there is an analogously simple result
for the eigenvectors.

For example, take Â =

(
1 0
0 1 + 2η

)

and E =

(
0 ε
ε 0

)

, η, ε > 0 and small,

and let A = Â + E. Now, for the eigenvalues of Â and A we have σ(Â) = {λ̂1 =
1, λ̂2 = 1 + 2η}, σ(A) = {λ1 = 1 + η − s, 1 + η + s}, s = (ε2 + η2)1/2, which
are indeed close to one another for any ratio of ε and η. Further, as (normalized)
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eigenvectors of Â we hae x̂1 =

[
1
0

]

and x̂2 =

[
0
1

]

, and for the residuals we have

r1,2 = Ax̂1,2 − λ̂1,2x̂1,2 which gives r1 =

(
0
ε

)

and r2 =

(
ε
0

)

, so that ‖r1,2‖2 = ε,

which is small, as expected. However, the true (normalized) eigenvectors of A are

1√
2s(s−η)

(
ε

η − s

)

and 1√
2s(s−η)

(
−η + s

ε

)

, whose limiting behavior depends on the

ratio of ε and η. �

Exercises 4.1.10

(1) Suppose λ, µ ∈ σ(A), λ 6= µ. Let v, w 6= 0 : Av = λv and A∗w = µ̄w (that is,
w is left eigenvector corresponding to µ). Show that v∗w = 0.

(2) Let A =

[
a 0
0 a

]

(a ∈ R), and E =

[
η ε
0 0

]

. We know that if µ ∈ σ(A + E),

then ∃ λ ∈ σ(A) : |λ − µ| ≤ ‖E‖2. Find ‖E‖2. Also, discuss the behavior of
the eigenvectors of A + E and contrast this to the eigenvectors of A for different
ratios of η and ε. [Hint: Different ratios means to consider different curves in
the (η, ε)-plane along which we go to the origin. E.g., ε = ηp, where p ∈ Z.]

4.2 Smoothness results

This next set of results is relative to the case of a matrix valued function A(t), t ∈ R
(could also have t in some interval, the half-line, etc.). Our interest in this case
is when A has some good smoothness properties (often, A is analytic in t) and we
want to know if/when/how the eigenvalues and eigenvectors have too. Henceforth,
we will write A ∈ Ck(R, Cn×n) when A is k-times continuously differentiable, as
appropriate.

4.2.1 Simple Eigenvalues

• The first results are concerned with the case of a simple eigenvalue. Recall that
a simple eigenvalue means that that it has algebraic multiplicity 1.
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Theorem 4.2.1 Let A ∈ Ck(R, Cn×n), k ≥ 1. Suppose that at a value t0, λ0 is a
simple eigenvalue of A(t0). Then, for |t − t0| sufficiently small, there is a unique
eigenvalue λ(t) of A(t) which is a Ck function of t and equal to λ0 at t0.

Pf. There are many ways to show this result. Here, we will use the implicit function
theorem (IFT).

Take the characteristic polynomial of A(t) = det(λI − A(t))
︸ ︷︷ ︸

p(λ,t)

= 0. Since λ0 is a

simple eigenvalue of A(t0), then

{

p(λ0, t0) = 0
∂
∂λ

p(λ, t0)
∣
∣
λ0
6= 0

.

But then the IFT guarantees that the equation p(λ, t) = 0 has a unique Ck

solution (a branch) λ(t) in a neighborhood of t0 such that λ(t0) = λ0. �

Remarks 4.2.2
(1) Theorem 4.2.1 says that -locally, near t0- there is a smooth eigenvalue parametriz-

able in t passing through λ0 at t0. If we view this as a curve, then it has a
well defined tangent, which we can also get from the IFT. Indeed, for |t − t0|
sufficiently smally, we have p(λ(t), t) = 0, and thus d

dt
p(λ(t), t) = 0, and so

∂
∂λ

p(λ, t) λ̇ + dλ
dt

p(λ, t) 1 = 0. Now, since ∂
∂λ

p(λ, t0)
∣
∣
λ=λ0

6= 0 ⇒ what we get

is that indeed there is a well defined tangent to the curve λ(t) at t0:
dλ
dt

∣
∣
t0

=

−
[

pt(λ,t)
pλ(λ,t)

]

(λ0,t0)
.

(2) Also, it is important to stress that -as long as ∂
∂λ

p(λ, t)
∣
∣
λ(t)
6= 0, then the above

argument can be continued and λ(t) continues to exist as a smooth function. In
other words, as long as the eigenvalue λ(t) remains simple, it is a globally Ck

function.

• Next, we see that –relatively to a simple eigenvalue– also the corresponding
eigenvector can be chosen smoothly.
We will give three different arguments for this result, each of which offers a

different insight, uses different tools, and has different strenghts and weaknesses. The
first argument is from [7], the second argument will give more explicit information
on the derivative, and the third argument is more original, and it will give some
extra information as well.

Simple Eigenvalue: Smooth Eigenvector, Part 1

• The following preliminary Lemmata are useful and of independent interest.
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Lemma 4.2.3 (On the derivative of det(A(t))) Let A ∈ C1(R, Cn×n), and write
A in partitioned form column-wise: A(t) = [a1(t), a2(t), . . . , an(t)], for all t ∈ R.
Then

d(det A(t))

dt
= det(ȧ1, a2, . . . , an) + det(a1, ȧ2, . . . , an) + · · ·+ det(a1, a2, . . . , ȧn) .

Pf. The key observation is that det(A) is a multilinear function in a1, a2, . . . , an,
that is, it is separately linear in each of the arguments a1, a2, . . . , an. Therefore, we
have

det A(t + h)− det A(t) = det(a1(t + h), . . . , an(t + h))− det(a1(t), . . . , an(t))

= det(a1(t + h)− a1(t), a2(t + h), . . . , an(t + h)) + det(a1(t), a2(t + h), . . . , an(t + h))

− det(a1(t), . . . , an(t)) = det(a1(t + h)− a1(t), a2(t + h), a3(t + h), . . . , an(t + h))

+ det(a1(t), a2(t + h)− a2(t), a3(t + h), . . . , an(t + h))

+ det(a1(t), a2(t), . . . , an(t + h))− det(a1(t), . . . , an(t)) = · · · =
det(a1(t + h)− a1(t), a2(t + h), . . . , an(t + h)) + det(a1(t), a2(t + h)− a2(t), . . . , an(t + h))

+ · · ·+ det(a1(t), a2(t), . . . an(t + h)− an(t)) + det(a1(t), . . . , an(t))− det(a1(t), . . . , an(t))

Now the result is obtained taking limh→0
det(A(t+h))−det(A(t)

h
. �

Lemma 4.2.4 Suppose A ∈ Cn×n has a simple eigenvalue λ̂. Then, at least one of
the principal minors of A− λ̂I is nonsingular.

Pf. Since λ̂ is simple, for the characteristic polynomial p(λ) we have p(λ̂) = 0
and d

dλ
p(λ)|λ̂ 6= 0. Let us compute d

dλ
p(λ)|λ̂. We have p(λ) = det(λI − A) = (λe1 −

a1, λe2−a2, . . . , λen−an). From Lemma 4.2.3, d
dλ

p(λ)|λ̂ = det(e1, λ̂e2−a2, . . . , λ̂en−
an)+ · · ·+det(λ̂e1−a1, . . . , en). Now, observe that det(e1, λ̂e2−a2, . . . , λ̂en−an) is
the determinant of the first principal minor of A− λ̂I, det(λ̂e1−a1, e2, . . . , λ̂en−an)
is the determinant of the 2nd principal minor of A− λ̂I, etc.. So, at least one of the
determinants of a principal minor of A− λ̂I is not zero. �

Exercise 4.2.5 Let A ∈ Ck(R, Cn×n) be invertible for all t, and let b ∈ Ck(R, Cn).
Then, the solution x of Ax = b is also in Ck(R, Cn).

We are now ready for the anticipated result.

Theorem 4.2.6 Let A ∈ Ck(R, Cn×n), k ≥ 1, and let λ0 be a simple eigenvalue of
A(t0). For |t − t0| sufficiently small, say t ∈ Iλ = (t0 − a, t0 + a), let λ(t) be the
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Ck eigenvalue going through λ0 at t0. Then, there is an associated eigenvector v(t),
also a Ck function of t, for t ∈ Iv ⊆ Iλ.

Pf. We have an eigenvalue λ(t) such that (A(t) − λ(t)I) has a 1-d null space for
t ∈ Iλ, and λ(t0) = λ0. Therefore, from Lemma 4.2.4, one of the principal minors of
λ0I −A(t0) is invertible, suppose it is the i-th minor, call it λ0In−1−Ai(t0). So, we
have (λ0I−A(t0))v0 = 0, v0 6= 0, and λ0In−1−Ai(t0) nonsingular. Now, observe that
the i-th component of v0 is nonzero, (v0)i 6= 0 (if not ⇒ (λ0I − A(t0))v0 = 0 with
v0 6= 0, but since (λ0In−1 − Ai(t0))v̂0 = 0 has the only solution v̂0 = 0, then v0 = 0,
where v̂0 is the result of removing the i-th component from v0). Therefore, (v0)i 6= 0
and so without loss of generality can take it to be 1. But then (λ0I − A(t0))v0 =
0→ (λ0In−1−Ai(t0))v̂0 = âi(t0), where âi(t0) is the i-th column of A with i-th entry
removed. Therefore, we can get v̂0 = (λ0In−1−Ai(t0))

−1âi(t0). However, the matrix
λ0In−1−Ai(t) must remain invertible for |t−t0| small, since it has no 0 eigenvalue at
t0, and the eigenvalues are continuous in t. So, for t in some interval Iv centered at
t0, we can define v(t) : v(t0) = v0, (v(t))i = 1, and v̂(t) = (λ(t)In−1−Ai(t))

−1âi(t).
From Exercise 4.2.5, v̂ is Ck, and so is v. �

There are a few shortcomings of the above proof. The first is that it is a local
result, ultimately because it relies on the implicit function theorem. The second
shortcoming is that it does not extend nicely, since it hinges on selecting a certain
principal minor. This is bothersome, because even if λ(t), the eigenvalue branch
through λ0 at t0, remains simple for all t, we cannot say that the i-th principal
minor remains invertible for all t, as the next example clarifies.

Example 4.2.7 Let A(t) =

(
sin t sin t
cos t cos t

)

, t ∈ (−π/4 + ε, 3π/4− ε), ε > 0 a given

small number. The eigenvalues are λ = 0, λ = sin t + cos t, both simple for all our
values of t. Consider λ = 0, so that we have two principal minors of A(t) − λI:
A1 = cos t and A2 = sin t, neither of which remains invertible ∀ t in our interval. �

One final general unpleasant aspect of the previous argument is that it does
not give nice formulas for the derivatives, λ̇ and v̇ at t0, since we have used the
characteristic polynomial. Also, unfortunately we still do not have much insight
into the variation of the eigenvector. This is because, as we will see, the behavior
of the eigenvector depends also on the complementary subspace to the eigenvector
v itself.
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Simple Eigenvalue: Smooth Eigenvector, Part 2

Below, we are going to derive an important, and beautiful, formula for the derivative
of the eigenvalue, and further show that there must be a smooth eigenvector, without
resorting to the principal minors of λ(t)I − A(t).

We want to find v(t), smooth, such that A(t)v(t) = λ(t)v(t), where λ(t) is a
simple eigenvalue of A(t), for all t ∈ R (or, at least, near t0). Note that –just as
there is a smooth (right) eigenvector v, for t near t0: Av = λv– there is also a smooth
left eigenvector w (again, at least near t0) such that w∗A = w∗λ, or A∗w = λ̄w.

Exercise 4.2.8 Let A ∈ Cn×n. Let v be a right eigenvector associated to a simple
eigenvalue λ ∈ σ(A) and let w be an associated left eigenvector. Show that v∗w 6= 0.

Now, reason as follows. Differentiate Av = λv ⇒ Ȧv + Av̇ = v̇λ + vλ̇. Let
w : w∗A = w∗λ ⇒ w∗Ȧv + v∗Av̇ = (w∗v̇)λ + (w∗v)λ̇, or w∗Ȧv = λ̇(w∗v). But (see

Exercise 4.2.8) w∗v 6= 0 and so λ̇ = w∗Ȧv
w∗v

which is a nice expression for λ̇, repeated
here for later reference and understood to be valid at least in an interval near t0:

λ̇ =
w∗Ȧv

w∗v
. (4.2.1)

With this, we can write (Ȧ− λ̇I)v +(A−λI)v̇ = 0, and we have found the equation
which must be satisfied by v̇:

(A− λI)v̇ = −(Ȧ− λ̇I)v . (4.2.2)

Of course, on the LHS we have a singular matrix, but notice that a solution exists
(and it will be smooth), since the kernel of (A − λI) remains 1-dimensional. In
fact, (A − λI)v̇ ∈ R(A − λI) = (N (A∗ − λ̄I))⊥ ∴ v̇ exists ⇔ z∗(Ȧ − λ̇I)v = 0,
∀ z ∈ N (A∗ − λ̄I); but (aside from normalization) there is only one such z, which

is w. So, a solution exists precisely when w∗(Ȧ− λ̇I)v = 0, that is when λ̇ = w∗Ȧv
w∗v

,
which is exactly how we chose it in (4.2.1).

This still leaves open the problem of how to constructively find an expression for
v̇, now that we know that it must be such that

{

λ̇ = (w∗Ȧv)/w∗v

(A− λI)v̇ = −(Ȧ− λ̇I)v .
(4.2.3)

The approach below is essentially in [8].
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One possibility is to impose the normalization condition

w(t0)
∗v(t) = constant, say w∗

0v(t) = 1 .

[Note that we are using the “reference” left eigenvector at t0, w(t0) ∴ this normal-
ization is guaranteed to be valid only locally.]

With this, we have w∗
0v̇ = 0 ⇒ w0w

∗
0v̇ = 0. So, the expression (A − λI)v̇ =

−(Ȧ− λ̇I)v can be rewritten as

(A− λI + w0w
∗
0)v̇ = −(Ȧ− λ̇I)v .

Let us evaluate the above expression at t0:

(A(t0)− λ0I + w0w
∗
0)v̇(t0) = (λ̇(t0)I − Ȧ(t0))v(t0),

and now we claim that the matrix G(t0) := (A(t0) − λ0I + w0w
∗
0) is nonsingular.

Let us verify this last fact.
Suppose there exists z 6= 0, such that (A0−λ0I+w0w

∗
0)z = 0. Then, (A−λI)z =

−(w∗
0z)w0 and thus w∗

0(A0 − λ0I)z = −(w∗
0z)w∗

0w0, from which we would get that
w∗

0z = 0. Therefore, (A0 − λ0I)z = 0 and z must then be a multiple of the right
eigenvector v0, and thus we would have w∗

0v0 = 0. But this is a contradiction, since
the inner product of right and left eigenvectors associated to a simple eigenvalue is
not 0 (see Exercise 4.2.8).

Therefore, the matrix G(t0) is invertible and we are ready to summarize the
above in the following theorem.

Theorem 4.2.9 Let A ∈ C1(R, Cn×n), let λ0 be a simple eigenvalue of A(t0), and
let v0, w0, be the right, left, associated eigenvectors. Let λ(t), v(t) and w(t) be the
smooth branches of eigenvalue and right/left eigenvectors passing through λ0, v0, w0.
Then, for the derivatives of the eigenvalue and eigenvector v at t0, we have:







v̇(t0) = G−1(t0)(λ̇(t0)I − Ȧ(t0))v(t0)

λ̇(t0) = w∗(t0)Ȧ(t0)v(t0)

w∗(t0)v(t0) = 1 ,

(4.2.4)

where G(t0) = A(t0)− λ0I + w0w
∗
0. �

Clearly, (4.2.4) provides an explicit (and nice) formula for the derivative -at t0-
of λ̇ and v̇. At this stage, the one drawback left is that we do not yet know how
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to properly continue v̇ in t, which we know must be possible as long as λ(t) stays
simple.

Nevertheless, the approach just taken is very useful and it can be further ex-
panded to obtain also higher derivatives (if A is sufficiently differentiable of course).
Let us see how things go for the 2nd derivative. Below, all derivatives are at t0.
From

(A− λI)v = 0→ (Ä− λ̈I)v + 2(Ȧ− λ̇I)v̇ + (A− λI)v̈ = 0 (4.2.5)

∴ (A−λI)v̈ ∈ R(A−λI) = (N (A∗−λ̄I))⊥ ∴ (4.2.5) has a solution iff z∗[(Ä−λ̈I)v+
2(Ȧ − λ̇I)v̇] = 0, ∀ z ∈ N (A∗ − λ̄I) which is however 1-dimensional, and spanned
by w. Thus, (4.2.5) has a solution iff w∗(A−λI)v̈ +w∗[(Ä− λ̈I)v +2(Ȧ− λ̇I)v̇] = 0
or λ̈w∗v = w∗Äv + 2w∗(Ȧ− λ̇I)v̇, and thus

λ̈ =
w∗Äv + 2w∗Ȧv̇ − 2λ̇w∗v̇

w∗v
at t = t0 . (4.2.6)

To get an expression for v̈, use -as before- w∗
0v = 1⇒ w∗

0v̈ = 0⇒ w0w
∗
0v̈ = 0. Then,

from (4.2.5), we get (A0 − λ0I + w0w
∗
0)v̈0 = −(Ä0 − λ̈0I)v0 − 2(Ȧ0 − λ̇0I)v̇0, or

v̈0 = G−1(t0)[(λ̈0I − Ä0)v0 + 2(λ̇0I − Ȧ0)v̇0] . (4.2.7)

In principle, we could continue these type of calculations and obtain an expansion
for λ(t) and v(t), which is valid near t0. These are “regular” Taylor-like expansions.
They are useful especially if A(t) is a simple function, for example linear, say A(t) =
A0 + tE, because in this case Ä = 0, Ȧ = E.

Exercises 4.2.10
(1) Show formulas similar to the ones we have derived for the case of A(t, s) ∈ Ck(R×

R, Cn×n). That is, assuming that P0 ≡ (t0, s0) is a point where A(t, s) has a sim-
ple eigenvalue λ0, derive expressions for ∂λ

∂t

∣
∣
P0

, ∂λ
∂s

∣
∣
P0

, as well as ∂2λ
∂t2

∣
∣
P0

, ∂2λ
∂t∂s

∣
∣
P0

,

and ∂2λ
∂s2

∣
∣
P0

.

(2) Find the expressions for ∂v
∂s

∣
∣
P0

as well as ∂2v
∂s∂t

∣
∣
P0

and ∂2v
∂t2

∣
∣
P0

, where v is the eigen-
vector associated to the simple eigenvalue.

Simple Eigenvalue: Smooth Eigenvector, Part 3

So, we know that if λ(t) is a simple eigenvalue for all t (or at least near t0), it stays
smooth and so does the associated eigenvector. Still, we are missing a constructive
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procedure which defines the derivative of the eigenvector, except locally, near a point
t0. Indeed, in one of our approaches to obtain the derivative of the eigenvector at
t0, we neeeded to assume a certain principal minor to be non-singular, and there
is no guarantee that the same prncipal minor remains nonsingular as we evolve the
simple eigenvalue in t; in the other approach, we used a normalization of the (right)
eigenvector v with respect to a fixed left eigenvector w0 at t0, and again there is no
guarantee that this normalization is valid except near t0. Then, the idea is to use
a moving normalization, which gets automatically updated in t. The difficulty in
doing so is that the evolution of an eigenvector now will depend on the (generalized)
eigenspace complementary to the one spanned by the eigenvector itself, in other
words we will need to bring into play the eigenspace complementary to v.

We now present an approach which resolves this need. The idea is to derive a
differential equation whose solution describes the evolution of the eigenvector. It is
similar in spirit to a constructive version of the IFT applied to the eigendecomposi-
tion of A.

So, we are being more ambitious, and seek a “similarity transformation” V (·)
such that A(t)V (t) = V (t)

[
λ(t) 0
0 B(t)

]

, with V being a smooth invertible function,

and λ 6∈ σ(B), ∀ t. We will derive differential equations for V , show that they are
well defined, and this will imply that V exists and is smooth.

Formally differentiating the relation AV = V

(
λ 0
0 B

)

we get ȦV + AV̇ =

V̇

(
λ 0
0 B

)

= V

(
λ̇ 0

0 Ḃ

)

from which we get V −1ȦV +V −1AV V −1V̇ = V −1V̇

(
λ 0
0 B

)

+
(

λ̇ 0

0 Ḃ

)

.

Now, let T = V −1V̇ and use V −1AV =

(
λ 0
0 B

)

(surely true at t = 0, for some

reference V (0)). From this, we get the rewriting

V −1ȦV +

(
λ 0
0 B

)

T = T

(
λ 0
0 B

)

+

(
λ̇ 0

0 Ḃ

)

.

Next, partition V −1ȦV and T as

(
λ 0
0 B

)

is; that is,

T =

(

1
︷︸︸︷

n−1
︷︸︸︷

1} T11 T12

n− 1} T21 T22

)

, etc. .



MATH 6112: ADVANCED LINEAR ALGEBRA 125

So, we get:
(

(V −1ȦV )11 (V −1ȦV )12

(V −1ȦV )21 (V −1ȦV )22

)

+

(
λT11 λT12

BT21 BT22

)

=

(
T11λ T12B
T21λ T22B

)

+

(
λ̇ 0

0 Ḃ

)

,

∴ λ̇ = (V −1ȦV )11 + λT11 − T11λ, and so

λ̇ = (V −1ȦV )11 . (4.2.8)

Observe that T11 is not uniquely determined. Also, observe that (4.2.8) was already
obtained in (4.2.4) (when we chose the normalization w∗v = 1).

Of course, we also have the relation Ḃ = (V −1ȦV )22 +BT22−T22B, and we note
that T22 also is not uniquely determined from this relation.

Finally, using the 0-structure of

(
λ̇ 0

0 Ḃ

)

, we get

{

0 = λT12 − T12B + (V −1ȦV )12

0 = BT21 − T21λ + (V −1ȦV )21

and since λ 6∈ σ(B), then smooth T12, T21 are uniquely determined as solutions of
this linear system.

Therefore, from the relation V −1V̇ = T , we can obtain the differential equation

for V : V̇ = V T , T =

(
T11 T12

T21 T22

)

with T12 and T21 uniquely determined as above

and T11, T22 not yet specified.
Indeed, we are free to choose T11 and T22, smooth, and have a differential equation

for V , well defined, and giving the desired block eigendecomposition for A. �

Example 4.2.11 Here we discuss some constructive choices for T11, T22. Recall

that T = V −1V̇ =

(
T11 T12

T21 T22

)

.

(a) T11 = 0, T22 = 0 ⇒ V̇ = V

(
0 T12

T21 0

)

and if V = (v, W ), then v̇ = WT21,

Ẇ = v1T12 making it clear that evolution of v(t) depends on its complementary
eigen-space.

(b)

{

v∗v = 1

W ∗W = In−1

. Then V ∗V =

(
v∗

W ∗

)

(v, W ) =

(
1 v∗W

W ∗v I

)

. Now

d

dt
(V ∗V ) =

(
0 d

dt
(v∗W )

d
dt

(W ∗v) 0

)

= V̇ ∗V + V ∗V̇
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= V̇ ∗V −∗V ∗V + V ∗V V −1V̇ = T ∗(V ∗V ) + (V ∗V )T

⇒
(

T ∗
11 T ∗

21

T ∗
12 T ∗

22

)(
1 v∗W

W ∗v I

)

+

(
1 v∗W

W ∗v I

)(
T11 T12

T21 T22

)

=

(
0 (v∗W )t

(W ∗v)t 0

)

∴

{

T ∗
11 + T ∗

21W
∗v + T11 + v∗WT21 = 0

T ∗
22 + T ∗

12v
∗W + W ∗vT12 + T22 = 0

⇒
{

T ∗
11 + T11 = −(v∗WT21 + T ∗

21W
∗v)

T ∗
22 + T22 = −(W ∗vT12 + T ∗

12v
∗W )

and so we can uniquely determine the Hermitian part of T11 and T22. For in-
stance, we can choose T11 and T22 to be Hermitian. �

The above construction can be nicely generalized to obtain

Theorem 4.2.12 Let A ∈ Ck(R, Cn×n) have eigenvalues which can be clustered in
p groups σ1, . . . , σp, which remain disjoint for all t. Then, there exist V ∈ Ck, in-

vertible, such that V −1AV =






D1 0
. . .

0 Dp




, where σ(Dj) = σj, ∀ t, j = 1, . . . , p.

�

Exercise 4.2.13 Prove Theorem 4.2.12, and discuss different normalizations for
V , as in Example 4.2.11.

Hermitian case: simple eigenvalues

Let us specialize the construction we just presented to the case of a function A ∈
Ck(R, Cn×n), which is Hermitian, A = A∗, ∀t, and with all eigenvalues simple. Now
we seek a complete Schur decomposition of A : U∗AU = Λ as smooth as A, with U
unitary: U∗U = I.

Remark 4.2.14 In this Hermitian case, left and right eigenvectors are of course
equal.

We proceed similarly to the general case.
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Let U0, Λ0 be the Schur factors of an initial decomposition at t0 : A(t0) = U0Λ0U
∗
0 .

Differentiate the relation AU = UΛ : ȦU + AU̇ = U̇Λ + UΛ̇, from which we get
U∗ȦU + (U∗AU)U∗U̇ = U∗U̇Λ + Λ̇. Now, let H = U∗U̇ , so that we have

Λ̇ = (U∗ȦU) + ΛH −HΛ ,

that is





λ̇1 0
. . .

0 λ̇n




 = (U∗ȦU) +






λ1

. . .

λn




H −H






λ1 0
. . .

0 λn




 . (4.2.9)

Now, since U∗U = I ⇒ U∗U̇ + U̇∗U = 0⇒ U∗U̇ = −U̇∗U ∴ H∗ = −H that is H is
skew-Hermitian.

So, using the 0-structure from the LHS of (4.2.9), we must have (for i 6= j)

0 = (U∗ȦU)ij + λiHij −Hijλj ⇒ Hij =
(U∗ȦU)ij

λj − λi
, i 6= j,

which is well defined, since λi 6= λj , and notice that Hji = −Hij since Ȧ is Hermitian.
This allows us to determine Hij , for i 6= j. The diagonal entries Hjj are not uniquely
determined and a simple normalization choice is to set them to 0. So doing, we get
the differential system defining a smooth Schur decomposition:

{

λ̇j = (U∗ȦU)jj = u∗
jȦuj, j = 1, . . . , n,

U̇ = UH, Hij =
(U∗ȦU)ij

λj−λi
i 6= j and Hjj = 0, j = 1 : n.

(4.2.10)

Remark 4.2.15 Recalling Exercise 2.2.5, we know that any other smooth Schur
decomposition must be of the type V (t) = U(t)Φ(t), where Φ(t) = diag(eiφj(t), j = 1 :
n) and φi are real valued smooth functions. This is exactly reflected in the freedom
we have in choosing the entries Hjj above.

4.2.2 Multiple eigenvalues

When we consider non-simple eigenvalues, things become considerably more compli-
cated. As a general rule of thumb, the eigenspace behaves more singularly than the
eigenvalues. This is true also in the Hermitian case, where there is also a distinct
difference between the cases of A being an analytic function versus a (arbitrarily)
smooth function. [Recall that a real analytic function is one which admits a conver-
gent power (Taylor) series at any point.]
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Example 4.2.16
(a) This is a classical example due to Rellich of a Hermitian function, arbitrarily

smooth but not analytic:

A(t) = e−1/t2
(

cos 2
t

sin 2
t

sin 2
t
− cos 2

t

)

, A(0) = 0.

Note that A ∈ C∞(R, R2×2) and A = AT , ∀ t. Since all derivatives vanish at
0, but A is not identically 0, the function is not analytic. The eigenvalues are
λ1,2(t) = ±e−1/t2 , t 6= 0 and λ1,2(0) = 0, so the eigenvalues coalesce at the origin.

Still, observe that λ1,2 ∈ C∞ as well. Now, the unit eigenvectors are

(
cos 1

t

sin 1
t

)

and

(
sin 1

t

− cos 1
t

)

for t 6= 0 and are in fact C∞ on any interval not containing

t = 0. However, they cannot be continued as continuous functions at t = 0.
Geometrically, the problem is that as t→ 0 each eigenvector points in any given
direction infinitely often! Finally, let us notice that the function A is surely
diagonalizable everywhere, just not continuously so.

(b) Even more dramatic is the situation in which the eigenspace changes dimension
discontinuously. A nontrivial example is the following one from Kato. Take

this (non-symmetric) function A(t) =





0 t 0
0 0 t
t 0 1



, t ∈ R. Obviously, A(t) =





0 0 0
0 0 0
0 0 1



+ t





0 1 0
0 0 1
1 0 1



 is an analytic function. The eigenvalues satisfy λ3−

λ2−t3 = 0, and we claim (see Exercise 4.2.17) that the characteristic polynomial
has 3 distinct roots, except when t = 0 or t3 = −4/27. Now, for t = 0, A(t) is
diagonalizable even if it has a double eigenvalue λ = 0, but for t = −1

3
3
√

4 the
matrix is not diagonalizable.

Exercise 4.2.17 Verify the claims made in Example 4.2.16-(b) above. That is, that
λ3 − λ2 − t3 = 0 has three distinct roots for t 6= 0, t 6= −1

3
3
√

4, and that A is not

diagonalizable at t = −1
3

3
√

4.

To see what differences exist with respect to a simple eigenvalue, let us examine
the situation of a double eigenvalue with one eigenvector only.
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First, consider this example:

A(t) =

(
0 1
t 0

)

=

(
0 1
0 0

)

+ t

(
0 0
1 0

)

, (4.2.11)

so A is obviously an analytic function of t ∈ R. The eigenvalues are ±
√

t and so
they are:

t < 0 , t = 0 , t > 0 ,
purely imaginary, double, both real.

At t = 0, we have one eigenvector only and λ(t) clearly is not differentiable at
t = 0. What kind of perturbation result can we get for λ? The key observation
is the following. From the characteristic polynomial λ2 − t = 0, we know that the
non-simple eigenvalue at t = 0 splits into two simple eigenvalues ±

√
t.

Therefore, generalizing this idea, we next consider a sufficiently smooth matrix
valued function A taking values in ∈ Rn×n with a double real eigenvalue λ0 at t = 0
and only one eigenvector. (If λ0 ∈ C, much the same contruction below still holds.)
We anticipate a local expansion of the eigenpair as (Newton–Puiseux series)

{

λ(t) = λ0 + t1/2λ1 + tλ2 + t3/2λ3 + · · ·
v(t) = v0 + t1/2v1 + tv2 + t3/2v3 + · · · .

[Note that these become complex valued around t = 0, even if λ0 ∈ R.]
Now, if A is sufficiently smooth, then A(t) = A0 + tA1 + t2A2 + · · · , where

A0 = A(0), A1 = Ȧ(0), . . . , and so from A(t)v(t) = v(t)λ(t), we get

(A0 + tA1 + · · · )(v0 + t1/2v1 + tv2 + t3/2v3 + · · · ) =

(v0 + t1/2v1 + tv2 + t3/2v3 + · · · )(λ0 + t1/2λ1 + tλ2 + · · · )
and equating same powers of t we get

A0v0 = λ0v0 (O(1))

A0v1 = λ0v1 + λ1v0 (O(t1/2)) (4.2.12)

A0v2 + A1v0 = λ0v2 + λ1v1 + λ2v0 (O(t))

. . . = . . .

To be able to solve this, we need to impose some normalization. The standard
construction goes through consideration of the associated Jordan “chains” of length
2 at t = 0 (i.e., relatively to λ0). We have a right Jordan chain:

A0V = V J0, V = [u0, u1]→
{

A0u0 = λ0u0

A0u1 = u0 + λ0u1

, J0 =

[
λ0 1
0 λ0

]

,
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(in the case of our previous example (4.2.11), λ0 = 0 and A0 is the Jordan block
(

0 1
0 0

)

), as well as a left Jordan chain AT
0 W = WJ0, or W T A0 = JT

0 W T , with

W = [w0, w1], which gives

{

wT
0 A0 = λ0w

T
0

wT
1 A0 = wT

0 + λ0w
T
1

.

Of course, the right Jordan chain is not unique. But, once it is fixed, we will
make the left Jordan chain unique according to the following normalization. The
standard normalization conditions are:

wT
0 u1 = 1, wT

1 u1 = 0 . (4.2.13)

Now, with these, we have

wT
0 A0u1 = wT

0 u0 + λ0w
T
0 u1 → λ0w

T
0 u1 = wT

0 u0 + λ0w
T
0 u1 → wT

0 u0 = 0 ,

and
wT

1 A0u1 = wT
1 u0 + λ0w

T
1 u1 → wT

1 A0u1 = wT
1 u0 ,

but also
wT

1 A0u1 = wT
0 u1 + λ0w

T
1 u1 → wT

1 A0u1 = wT
0 u1 ,

from which we get wT
1 u0 = 1. That is, the normalization (4.2.13) gives also

wT
0 u0 = 0, wT

1 u0 = 1 . (4.2.14)

Going back to (4.2.12), we will impose the standard choice wT
1 v(t) = 1, where w1

is the left generalized eigenvector associated to the double eigenvalue. Now, because
of (4.2.13) and (4.2.14), this gives (note that v0 = u0 in (4.2.13) and (4.2.14))

wT
1 v0 = 1 and wT

1 vi = 0, i = 1, 2, . . . .

With these, we can now solve (4.2.12). Obviously, we have λ0 = wT
1 A0v0. Also, we

formally get λ1 = wT
1 A0v1, though we do not have v1 yet. To get an expression for

v1, we compare

{

A0v1 = λ0v1 + λ1v0

A0u1 = λ0u1 + v0

⇒
{

(A0 − λ0 I)v1 = λ1v0

(A0 − λ0 I)u1 = v0

⇒ v1 = λ1u1.

Now we can use this expression in the third relation of (4.2.12):

(A0 − λ0 I)v2 = −A1v0 + λ1(λ1u1) + λ2v0 .

Obviously A0 − λ0 I is singular, but wT
0 (A0 − λ0 I)v2 = 0 ∴ we must have

wT
0 (λ2

1u1 + λ2v0 − A1v0) = 0→ λ2
1 = wT

0 A1v0 ,
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which will give us (in case wT
0 A1v0 6= 0) two values for the two branches of the

eigenvalue and from these two values, we will get the associated two branches v1 of
the (bifurcating) eigenvectors.

This process can be continued, though it is a bit tedious. The main message
we want to retain is that multiple eigenvalues typically lead to an expansion in
fractional powers.

Remark 4.2.18 We observe that the fact that there was only one eigenvector asso-
ciated to λ0 lead us to consider Jordan forms. But, the expansion of the eigenvalue
in fractional powers did not directly depend on having just one eigenvector. Ulti-
mately, this has to do with the behavior of roots of the characteristic polynomial: In
general, a double root at t = 0 will split into a pair of roots whose locally leading term
is ±t1/2. We also observe that if we had an eigenvalue with algebraic multiplicity
m and geometric multiplicity 1, we should expect a local expansion of the eigenvalue
and eigenvector in powers of t1/m.

Example 4.2.19 (Hermitian Analytic) Here we will see a very important fact,
whose explanation can be found in [6] in full details, though we will follow the more
informal explanation from [7]. The end result is to show that Eigenvalues of Hermi-
tian analytic functions are analytic.

So, take a function A ∈ Cω(R, Cn×n), which is Hermitian, A = A∗, ∀t. [Recall
that Cω means that A is real analytic.] So, we have A(t) =

∑∞
k=0 tkAk, where

A∗
k = Ak for all k. Since A is analytic, also the characteristic polynomial p(λ, t) will

have coefficients which are analytic functions of t.
So, if t = 0 (say) is a value where the eigenvalues are simple, then the roots of the

characteristic polynomial will also be analytic function of t. That is, the eigenvalues
will have an expansion like λ(t) =

∑∞
k=0 tkck. On the other hand, if –say at t = 0–

we have a multiple eigenvalue of algebraic multiplicity m, then that root of p will
have an algebraic singularity and will be expressable as a Newton-Puiseux series
around t = 0: λ(t) =

∑∞
k=0 tk/mbk.

But, for all t ∈ R, the eigenvalues of A(t) must be real since A is Hermitian,
and fractional powers of t become complex valued for t near 0. This means that in
the Newton–Puiseux series we can only have integer powers. That is, λ(t) is an
analytic function of t.

Now, if A is real valued, and symmetric, then a similar argument (since the
eigenvectors must remain real valued) tells us that the eigenvectors also admit a
regular epxansion in powers of t. For the general Hermitian case, in [6] the same
conclusion about the eigenvectors is also given, so that altogether one has:
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Theorem 4.2.20 An analytic Hermitian function admits an analytic eigendecom-
position: A(t)U(t) = U(t)Λ(t), for all t ∈ R, with U unitary and analytic and Λ
diagonal, and analytic. �

4.2.3 Multiple eigenvalues, several parameters: Hermitian
case

Here we consider the symmetric (Hermitian) eigenproblem when A depends on two
parameters.

To begin with, we need to realize that things can go very awry.

Example 4.2.21 Let (x, y) ∈ R2, and consider the function of two parameters A
below:

A(x, y) =

[
x y
y −x

]

.

Obviously, the function A is analytic in x and y (it is linear). However, the eigen-
values are ±

√

x2 + y2 which are not even differentiable at (0, 0). The problem is the
lack of global differentiability at the origin, where both eigenvalues are 0. We no-
tice that viewing A(x, y) as a function of one parameter (holding the other frozen),
renders analytic eigenvalues (see Example 4.2.19 and Theorem 4.2.20).

The above example notwithstanding, we now try to understand when/how a
double eigenvalue of a (smooth, even analytic) Hermitian function of two parameters
persist as a double eigenvalue.

So, we are given a symmetric matrix valued function A of two parameters (x, y)
such that at the point ξ0 ≡ (x0, y0) A has a double eigenvalue λ0. We will want to
understand when/how this eigenvalue persists –as double eigenvalue– along a curve
passing through ξ0. We will assume that A depends analytically on x and y.

Let u1, u2, be orthonormal eigenvectors associated to λ0 (for A0 ≡ A(ξ0)).
As we know, u1 and u2 are not unique. The degree of nonuniqueness is given

by all possibilities: [u1, u2]R, where R is a (2, 2) orthogonal matrix. However, for
a given pair [u1, u2], the left eigenvectors [v1, v2] of A0 such that vT

i uj = δij are
uniquely determined, and naturally are given by [u1, u2].

Take a planar curve γ(t) =

[
x(t)
y(t)

]

, depending analytically on t, such that γ(0) =

ξ0. Let d =

[
d1

d2

]

=
dγ

dt
|t=0. Consider the restriction of A to this curve, and call
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A(t), t ≥ 0, the analytic function of t giving this restriction. So, we can write (where
all matrices A1, Ax, Ay, . . . , are evaluated at t = 0, that is at ξ0):

A(t) = A0 + tA1 + · · · , A1 = Axd1 + Ayd2 , · · · , (4.2.15)

and all matrices are symmetric. Because of analyticity of A(t), we have (see Theorem
4.2.20) that the eigenvalues and eigenvectors of A are analytic function of t. In other
words, along the curve γ we have:

λ(t) = λ0 + tλ1 + · · · , u(t) = v0 + tv1 + · · · . (4.2.16)

Observe that v0 is the limit as t→ 0 of u(t) and it is not known ahead of time. All
we can say is that v0 will need to be a combination of u1 and u2.

From the eigenvalue relation Au = λu, using the expansions (4.2.15-4.2.16), and
equating equal powers of t, we must have:

A0v0 = λ0v0 =⇒ v0 = c1u1 + c2u2 ,

A0v1 + A1v0 = λ0v1 + λ1v0 .
(4.2.17)

Multiplying the second relation by uT
1 on the left, and using the eigenvalue relation

A0u1 = λ0u1 and the form of v0, we get

(uT
1 A1u1)c1 + (uT

1 A1u2)c2 = λ1c1 .

Similarly, multiplying the second relation in (4.2.17) by uT
2 on the left we get

(uT
2 A1u1)c1 + (uT

2 A1u2)c2 = λ1c2 .

Therefore, we must have

M

[
c1

c2

]

= λ1

[
c1

c2

]

, M =

[
uT

1 A1u1 uT
1 A1u2

uT
2 A1u1 uT

2 A1u2

]

. (4.2.18)

So, for λ0 to persist as double eigenvalue in some direction d, we must have that λ1

is a double eigenvalue of M for that d. Since M is symmetric, the requirement that
λ1 is a double eigenvalue of M means that M11 = M22 and M12 = 0. Recalling that
A1 = Axd1 + Ayd2, this translates into the requirement

{
(uT

1 Axu1)d1 + (uT
1 Ayu1)d2 = (uT

2 Axu2)d1 + (uT
2 Ayu2)d2

(uT
1 Axu2)d1 + (uT

1 Ayu2)d2 = 0
,
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which can be further rewritten as the system

N

[
d1

d2

]

= 0 , N =

[
(uT

1 Axu1)− (uT
2 Axu2) (uT

1 Ayu1)− (uT
2 Ayu2)

uT
1 Axu2 uT

1 Ayu2

]

. (4.2.19)

So, persistence as double eigenvalue requires non-trivial solutions of (4.2.19), that
is det(N) = 0. To further elucidate what this means, let

B =

[
uT

1 Axu1 uT
1 Axu2

uT
1 Axu2 uT

2 Axu2

]

, C =

[
uT

1 Ayu1 uT
1 Ayu2

uT
1 Ayu2 uT

2 Ayu2

]

,

so that N =

[
b11 − b22 c11 − c22

b12 c12

]

and so det(N) = 0 is the same as the requirement

b11c12 − b22c12 − b12c11 + b12c22 = 0. But this latter requirement is equivalent to the
requirement BC = CB, as it is easily verified.

• Conclusion. λ0 persists as a double eigenvalue –in some direction d =

[
d1

d2

]

– only

if BC = CB, with B = UT AxU , C = UT AyU , U = [u1, u2].
Some remarks are in order.

(a) We expect that, if N is singular, it is of rank 1, that is there is only one curve
along which the eigenvalue through λ0 stays double. If N has rank 0, then
the double eigenvalue would persist along any direction. This requires that
B = bI, C = cI.

(b) In case λ0 persists as a double eigenvalue, then λ1 is a double eigenvalue of M
in (4.2.18). Therefore, uT

1 A1u1 = uT
2 A1u2 and uT

1 A1u2 = 0, λ1 = uT
1 A1u1, and

[
c1

c2

]

is any unit vector. This means that –at first order at least– the limiting

value v0 of v(t) is not determined: any unit vector in the plane spanned by
u1, u2, would be a possible limit. This means that, once we fixed u1 and u2,
we will demand that v0 be the same as u1 or u2. This should be contrasted to
the case when λ0 does not persist as double eigenvalue. Then, there are two
distinct eigenvalues λ1 of M , and two independent associated eigenvectors:

Each of these would give a (unique, up to sign) pair of unit vectors

[
c1

c2

]

and

a well defined limit, in general distinct from u1 or u2. In other words, if the
double eigenvalue splits, then there are well defined eigenvectors paths. If the
eigenvalue stays double, any eigenvector path in the plane spanned by u1, u2,
could be retrieved.
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(c) It is worth pointing out that the above construction and conclusions are inde-
pendent of the choice of eigenvectors u1, u2, done at the beginning. In other
words, replacing U with UR, R any (2, 2) orthogonal matrix, does not change
anything.

Example 4.2.22 Consider the following function

A = λ0I + xB + yC , B =

[
3 2
2 1

]

, C =

[
2 1
1 1

]

.

At (0, 0) the eigenvalue λ0 is double. Here, BC = CB, and neither B or C is
diagonal. In this case (A is linear in x and y), we have an entire line along which the
eigenvalue remains double. It is a simple computation to verify that the direction d of

this line is d =

[
1
−2

]

. In the figure we show the two eigenvalues of A(x, y) computed

along the circle x = 1/2 cos(θ), y = 1/2 sin(θ), θ ∈ [0, 2π], clearly showing the double
eigenvalue at the two values where the line intersects the circle (θ : tan(θ) = −2).

0 1 2 3 4 5 6 7
−3

−2

−1

0

1

2

3
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Chapter 5

Homework Assignments

Homework 1 Problems.

(1) [20 points.] Given the block upper triangular matrix R ∈ Fn×n of the form

R =








R11 R12 · · · R1p

0 R22 · · · R2p
...

. . .
. . .

...
0 · · · 0 Rpp








,

where each block Rjj ∈ Fnj×nj is upper triangular, with constant diagonal given by
λj , j = 1, . . . , p, n1 + · · · + np = n, and λj 6= λk for j 6= k. Show that there exist
a similarity transformation matrix V ∈ Fn×n such that V −1RV = diag(Rjj, j =
1, . . . , p).

(2) [20 points.] Suppose that A ∈ Fn×n has Jordan form diag(Jnj
(λj), j = 1, . . . , k),

n1 + · · ·+ nk = n. Assume that the field F has characteristic 0.

(a) If A is nonsingular, show that A2 has Jordan form diag(Jnj
(λ2

j), j = 1, . . . , k).

(b) Is the result of part (a) true if A is singular? Justify your answer.

(c) Is the result of part (a) true for all powers Am, m ≥ 2? Justify your answer.

137
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(3) [20 points.] For parts (a) and (b), let R ∈ Fn×n be upper triangular.

(a) Show that the eigenvalues of R are the diagonal entries of R, and only these.

(b) Suppose that R = λI + N , where N is the strictly upper triangular part of R,
and λ 6= 0. Give an explicit formula for R−1.

(c) Now, let A ∈ Fn×n be nilpotent of index k: Ak = 0, but Ak−1 6= 0. Show that
I + A is invertible, and give a formula for (I + A)−1.

(4) [10 points.] Let T ∈ Hom(V, V ) where V is a vector space over F of dimension
n. Suppose λ1, . . . , λk ∈ F are distinct eigenvalues of T with associated eigenvectors
v1, . . . , vk. Show that v1, . . . , vk, are linearly independent.
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(5) [15 points.] Let T ∈ Hom(V, V ) as in problem (4) and consider its minimal
polynomial.

(a) Show that the minimal polynomial is unique.

(b) Show that T is invertible if and only if the constant term of the minimal
polynomial is not 0.

(6) [20 points.] Suppose A, B ∈ Fn×n are diagonalizable (via matrices in Fn×n).
Show that they can be simultaneously diagonalized, that is there is V ∈ Fn×n such
that V −1AV and V −1BV are both diagonal, if and only if AB = BA.

(7) [10 points.] Suppose that A ∈ Cn×n is such that A3 = I. What are the possible
Jordan forms of A?

(BONUS) [25 points.] (This problem is IMPORTANT).
Suppose that A, B ∈ Fn×n are two different matrix representation of the same

linear transformation T ∈ Hom(V, V ). Show that A and B are similar matrices.
That is, that there is an invertible matrix S ∈ Fn×n such that A = S−1BS.
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Homework 2 Problems.

(1) [10 points.] Let A ∈ Cn×n and let AT denote its transpose. Use the Jordan form
of A to show that A and AT are similar.

[Observation: This result, and technique of proof, remain true for A ∈ Fn×n.]

(2) [10 points.] Let A ∈ Cn×n. Let J be the Jordan form of A: J = diag(Jk(λk, 1), k =
n1, . . . , np), with n1 ≥ · · · ≥ np, n1 + · · ·+ np = n. Here, we have used the notation
Jk(λk, 1) for the standard Jordan blocks to signify that the eigenvalue is λk and the
super-diagonal is made of 1’s.

Now, let ε > 0 be a given (small) value. Show that J , and hence A, is similar to
the matrix Jε = diag(Jk(λk, ε), k = n1, . . . , np), that is the 1’s in the super-diagonal
entries have been replaced by ε’s.

(3) [10 points.] Let A ∈ Fn×n be invertible, and let B ∈ Fn×n be such that

‖A−B‖ < 1/‖A−1‖ .

Show that B is invertible. [Here, F = R or C and the norm is the 2-norm.]
[Observation: This very useful result also holds for an infinite dimensional ver-

sion.]

(4) [25 points.] [On Spectral Radius.] Let A ∈ Cn×n. Define the spectral radius of
A as the quantity

ρ(A) := max
1≤i≤n

|λi| ,

where λi’s are A’s eigenvalues. You have to show that:

ρ(A) = lim
k→∞
‖Ak‖1/k .

The norm is the usual 2-norm. (Hint: The construction of Exercise 2 is useful.)

(5) [10 points.] [On Pfaffian.] Let A ∈ Rn×n be anti-symmetric (AT = −A), and
suppose that n is an even number. You are asked to compute the determinant of A
in the special case of A tridiagonal. Your formula must be expressed in terms of the
entries of A.

[Observation: It is known –though we have not seen it– that every anti-symmetric

matrix is orthogonally similar to a tridiagonal one.]

(6) [20 points.] (This is about uniqueness of reduction to Schur form.) Do exercises
(1) and (2) p.23 of the notes I gave you.

(7) [15 points.] Do Exercise (1), bottom of p.30 of the notes.
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Homework 3 Problems.

Notation. In the exercises below, F = R or C, indifferently.

(1) [5 points each.] [A collection of counterexamples.] By giving counterexamples,
show that the following statements are generally false.

(a) Let Σ(A) denote the collection of singular values of a matrix A, and let B, C ∈
Fm×n, m ≥ n. Then: Σ(CBT ) = Σ(BT C) ∪ {0, . . . , 0}

︸ ︷︷ ︸

m−n

.

(b) The product of two Hermitian matrices in Fn×n is Hermitian.

(c) The symmetrized product of two positive definite matrices in Fn×n is positive.
[Hint: See Problem (2) below.]

(d) Let A and B be Hermitian and positive definite, and suppose 0 ≺ B ≺ A.
Then 0 ≺ B2 ≺ A2.

(2) [20 points.] Let A ∈ Fn×n be positive definite, and B ∈ Fn×n be Hermitian.
Show that AB is diagonalizable and it has all real eigenvalues, with the same number
of positive, negative and zero eigenvalues as B. In particular, conclude that if B is
positive definite, then AB is positive definite if and only if it is Hermitian.

(3) [25 points.] Let A, B ∈ Fn×n be Hermitian and positive definite and assume
that S = AB is also positive definite.

(i) Show that for the unique positive definite square roots of A, B, S, we have
√

S =
√

AB =
√

A
√

B .

(ii) Consider the positive definite matrix valued function P (t) = B + tA, t ≥ 0.
Show that the unique positive definite square root

√

P (t) is a smooth function
of t ≥ 0. [Recall that a matrix valued function is smooth if its entries are.]

(4) [20 points.] [Projections from SVD.] Use the SVD of a matrix A ∈ Rm×n to
find orthonormal bases for R(A), N (A), R(AT ), N (AT ) and to express orthogonal
projection matrices onto these subspaces.

(5) [15 points.] [On commutators.] Let A, B ∈ Fn×n. Define the commutator of
A, B as

[A, B] = AB − BA .
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It is easy to observe that if a matrix X is the commutator of two matrices A, B,
then tr(X) = 0. You need to show that:
“Any given matrix X whose diagonal entries are 0 can be represented as the com-
mutator of two matrices A, B.” [Hint: You are free to choose A and B.]
Bonus [10 points.] Show that a (2 × 2) matrix whose trace is 0 is similar to one

whose diagonal entries are 0. This result is actually true for (n × n) matrices, but
it is enough for you to do it for (2× 2) matrices.
[Note that by putting together this result, and the previous one, we have obtained
that: “A matrix X is the commutator of A, B, if and only if tr(X) = 0.”]
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Homework 4 Problems.

(1) [10 points each.]

(a) [Lecture notes, p. 56] Prove the AGM inequality:

1

n

n∑

i=1

xi ≥
(

n∏

i=1

xi

)1/n

, xi ≥ 0 . (5.0.1)

(b) Prove that there is equality in (5.0.1) if and only if all xi’s are equal.

(c) [Lecture notes, p. 59] Let A, B be positive definite. Show det(A + B) ≥
det(A) + det(B).

(2) [20 points.] Let A ∈ Cn×n be Hermitian, and B ∈ Cn×n be positive definite.
Consider the minization problem:

min
x 6=0

x∗Ax

x∗Bx
. (5.0.2)

(i) Show that there is a (nonzero) vector v ∈ Cn which gives the minimum value
in (5.0.2), call if µ. Show that the pair (v, µ) solves the equation Av = µBv.
[Generalized Eigenproblem.]

(ii) Show that the constrained minimization problem

min
x 6=0

x⊥Bv

x∗Ax

x∗Bx
,

where v is the vector from point (i), has a solution ν, with associated vector
w, which also solves the generalized eigenproblem: Aw = νBw.

(3) [15 points.] [Lecture notes, p. 65] Let A, B ∈ Cm×n, m ≥ n, and let σi(A + B),
σi(A), σi(B) be the ordered singular values: σ1 ≥ · · · ≥ σn. Show

σi+j−1(A + B) ≤ σi(A) + σj(B), 1 ≤ i, j ≤ n, i + j ≤ n + 1.
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(4) We have seen in class that if A ∈ Cn×n is such that its symmetric part is negative
definite,

A + A∗ ≺ 0 ,

then the eigenvalues of A have negative real part. You have to show the following
generalization.

(a) [15 points.] If B ∈ Cn×n is positive definite, and we have

BA + A∗B ≺ 0 ,

then the eigenvalues of A have negative real part.

This part (a) is only half of a beautiful Theorem of Lyapunov. The remaining
half states that

If A has eigenvalues with negative real part, then there exists a Hermitian,
positive definite matrix B, such that BA + A∗B ≺ 0.

(b) [20 points.] Assume that eAt converges to 0 (it does), take

B =

∫ ∞

0

eA∗teAtdt ,

and show that B is Hermitian positive definite and BA + A∗B ≺ 0. In other
words, you have proved Lyapunov theorem.

(c) [Bonus] [10 points.] Show that eAt converges to 0 as t→∞.
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Homework 5 Problems.

(1) Recall that for any square matrix, say A ∈ Cn×n, the matrix exponential is

given by eA =
∑∞

k=0
Ak

k!
.

(a) [10 points.] Give an explicit counterexample to show that –in general– eAeA∗ 6=
eA+A∗

.

(b) [5 points.] If A is a normal matrix, show that eAeA∗
= eA+A∗

.

(2) [20 points.] [Lecture notes, p. 84] Let A, E ∈ R2×2 of the form A =

[
a 0
0 a

]

and

E =

[
η ε
0 0

]

. We know that if µ ∈ σ(A + E), then ∃ λ ∈ σ(A) : |λ − µ| ≤ ‖E‖2.
Find ‖E‖2. Also, discuss the behavior of the eigenvectors of A + E and contrast
this to the eigenvectors of A for different ratios of η and ε.

(3) [15 points.] [Lecture notes, p. 80] Let A ∈ Rn×n, A ≥ 0. Show that if A is
doubly stochastic and reducible, then there exists a permutation matrix P such that

PAP T =

[
A11 0
0 A22

]

where A11 ∈ Rn1×n1 and A22 ∈ Rn2×n2, n1 ≥ 1, n2 ≥ 1, n1 + n2 = n, are doubly
stochastic.

(4) [15 points.] Let A ∈ Rn×n, A > 0, and A be (column) stochastic. Let x ∈ Rn,
x ≥ 0, and x 6= 0. Show that

lim
m→∞

Amx = cz ,

where c is some positive constant, and z is the eigenvector associated to the spectral
radius of A.
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(5) This is an exercise about a special class of matrices, the so–called symplectic
matrices, which are of key importance in Hamiltonian mechanics. These are matrices
of even size, defined as follows:
“A matrix S ∈ R2n×2n is called symplectic (or J-orthogonal) if

ST JS = J , where J =

[
0 In

−In 0

]

.

The matrix J is called symplectic identity and it is easy to see that it satisfies
JT = −J = J−1.”

Below, S ∈ R2n×2n is symplectic. The exercises are arranged in such a way that
you will need the previous one to solve the ones after it. If you cannot solve one of
them, you may still use the result to solve the exercises that come after it; however,
you cannot use the later results to show one of the preceeding ones.

(a) [5 points.] Show that S is invertible and S−1 is similar to S.

(b) [5 points.] Show that if λ is an eigenvalue of S, then also 1/λ is. (Note that
we could have λ = 1/λ).

(c) [10 points.] Let A ∈ Rn×n be symmetric. Show that the matrix S defined by
S = eJA is symplectic.
[Incidentally, matrices of the form JA with A symmetric are called Hamilto-

nian.]

(d) [10 points.] Show that if λ = −1 is an eigenvalue of S, then it cannot be a
simple eigenvalue of S.
[The result is true also relatively to the eigenvalue λ = 1, but it is enough for
you to show it for λ = −1. Moreover, it is also true that λ = ±1 cannot be
eigenvalues of odd algebraic multiplicity of S; you do not have to show this
last fact, though you can assume it for part (e).]

(e) [5 points.] Show that det(S) = 1.

(f) [Bonus. 10 points.] Show that if λ = −1 is an eigenvalue of S, then it cannot
be an eigenvalue of odd multiplicity of S.



Chapter 6

Exams

Math 6112. Fall 2010. Exam 1.
October 6, 2010.

Problems.

(1) Consider a matrix A ∈ Rn×n and its transpose AT . Let λ be a (real) simple
eigenvalue of A, hence also of AT . Let v be an eigenvector of A associated to λ and
let w be an eigenvector of AT associated to λ. Show that vT w 6= 0.
[Notation: The eigenvalue being simple means that it has algebraic multiplicity 1.]

(2) Let A ∈ C2×2 be a Hermitian positive definite matrix. Show that it admits
a unique factorization A = LL∗, where L is lower triangular with positive (real)
diagonal.

(3) Let A ∈ Cn×n and let p(z) be a polynomial. We know that if λ is an eigenvalue
of A, then p(λ) is an eigenvalue of p(A). You need to show that: “Every eigenvalue
of p(A) is of the form p(λ), where λ is an eigenvalue of A.”

(4) Show that a matrix A ∈ Cn×n is normal if and only if it satisfies A = A∗U ,
where U is unitary.
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(5) Let A ∈ Cn×n be Hermitian negative definite. Consider the matrix

B = (I + A)(I − A)−1 .

Show that B is well defined and determine where are the eigenvalues of B in the
complex plane.
[Hint: Use the Schur form of A to obtain a Schur form for B.]

(6) Let A ∈ Cm×n, m ≥ n. Show that the nonzero eigenvalues of AA∗ and of A∗A
are the same, counted with their multiplicities.
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Math 6112. Fall 2010. Exam 2.
November 29, 2010.

Problems.

(1) Let A, B ∈ Cn×n be Hermitian.

(a) (7 points) Let S ∈ Cn×n be invertible, Show that:

A � B ⇔ S∗AS � S∗BS .

(b) (3 points) Show that A � I ⇔ all A’s eigenvalues are ≥ 1.

(2) (10 points) Let A, B ∈ Cn×n be Hermitian. Show that if A � B ≻ 0, then all
eigenvalues of A−1B are in (0, 1].

(3) (10 points) Let A ∈ Rn×n, A > 0. Show that if Ax = λx, with x ∈ Rn, x > 0,
then λ = ρ(A).

(4) Let A ∈ Rn×n.

(a) (2 points) Show by example that we may have ρ(I + A) < 1 + ρ(A).

(b) (8 points) Show that if A ≥ 0⇒ ρ(I + A) = 1 + ρ(A).

(5) (10 points) Suppose λ, µ ∈ σ(A), λ 6= µ. Let v, w : Av = λv and A∗w = µ̄w
(that is, w is left eigenvector corresponding to µ). Show that v∗w = 0.

(6) (10 points) Let A ∈ Cn×n be Hermitian (n > 2). Prove that if B is a ((n− 2)×
(n − 2)) principal submatrix of A, and the eigenvalues of A and B are ordered in
increasing fashion, we have

λk(A) ≤ λk(B) ≤ λk+2(A), 1 ≤ k ≤ n− 1 .


