
MATH 6307 First Midterm September 25, 2015

You can use your book and notes. No laptop or wireless devices allowed. Write
clearly and try to make your arguments as linear and simple as possible. The

complete solution of one exercise will be considered more that two half solutions.
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1. Consider the system of equation

dx

dt
= ay + (x2 − y2) (1)

dy

dt
= −ax− 2xy . (2)

(a) (10 points) Show that the function

H(x, y) =
a

2

(
x2 + y2

)
+

(
x2y − y3

3

)
is a first integral (conserved quantity).

Solution: To be a first integral we need that

∂xH(x, y)ẋ+ ∂yH(x, y)ẏ = 0

and we get

(ax+ 2xy)(ay + x2 − y2) + (ay + x2 − y2)(−ax− 2xy) = 0 .

Observe that

dx

dt
= ay + (x2 − y2) = ∂yH(x, y)

dy

dt
= −ax− 2xy = −∂xH(x, y)

so that the system is Hamiltonian.

(b) (20 points) Find all fixed point when a 6= 0.

Solution: From ẏ = 0 we get that either x = 0 or y = −a/2. Using x = 0
in ẋ = 0 we get either y = 0 or y = a as solution. For y = −a/2 we get
x = ±a

√
3/2. Thus there are four fixed points:

(x0, y0) = (0, 0) , (x1, y1) = (0, a) and (x2,±y2) =

(
±
√

3

2
a,−a

2

)
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(c) (20 points) For a 6= 0, derive the linearized system valid near each of the fixed point.
Discuss their linear stability. What can you say on their nonlionear stability? (Can
you apply the theorems in section 3.3 of the text book?)

Solution: For (x0, y0) the linerization is

dx

dt
= ay (3)

dy

dt
= −ax . (4)

that is a center.

For (x1, y1) the linerization is

dx

dt
= −a(y − a) (5)

d(y − a)

dt
= −3ax . (6)

Since the eigenvalue are λ± = ±
√

3|a| we have that this is a saddle.

Finally for (x2,±y2) we get

d

dt

(
x∓
√

3

2
a

)
= ±
√

3a

(
x∓
√

3

2
a

)
+ 2a

(
y − a

2

)
(7)

d

dt

(
y +

a

2

)
= ∓
√

3a
(
y − a

2

)
. (8)

and also in this case we get that the eigenvalue are λ± = ±
√

3|a| so also these
points are saddles.

For the nonlinear stability we cannot say anything for (0, 0) using the theorems
in section 3.3. The fact that the system is Hamiltonian and (0, 0) is a local
minimum for H tell has that (0, 0) is still a center for the nonlinear system.

In the case of (0, a) and
(
−a

2
,±
√

3
2
a
)

we can say that they remain locally saddles.

This means that, close to the fixed point, there is a stable and an unstable curve.
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2. Consider the system

dx

dt
= x− y + x2 − 2x3 − 2xy2 (9)

dy

dt
= x+ y + xy − 2y3 − 2x2y . (10)

To answer the following question you may consider passing in polar coordinates.

Solution: We first convert the system in polar coordinates. We have

rṙ = xẋ+ yẏ =x2 − xy + x3 − 2x4 − 2x2y2 + xy + y2 + xy2 − 2y4 − 2x2y2 = (11)

=r2 + r3(sin θ + cos θ)− 2r4 (12)

while clearly θ̇ = 1. Thus we have

dr

dt
= r + r2 cos θ − 2r3 (13)

dθ

dt
= 1. (14)

(a) (20 points) Show that (x, y) = (0, 0) is the unique fixed point for the system.

Solution: Clearly (x, y) = (0, 0) is a fixed point and the equation for θ̇ tell us
that there cann’t be any other fixed point.

(b) (20 points) Use the Poincarè-Bendixon Thoerem to show that the system admit at
least one periodic orbit.

Solution: Clearly (0, 0) is a negative attractor so that the set |(x, y)| > ε is
positively invariant for some small ε.

On the other hand, r + r2 cos θ − 2r3 ≤ r + r2 − 2r3 so that ṙ < 0 if r > 1.

We can now apply the Poincaré-Bendixon Theorem to the annulus ε < r < 1
and find a periodic ordbit.

Page 3 of 4



MATH 6307 First Midterm September 25, 2015

3. (20 points) Consider a system of the form

ẋ = f(x)

with x ∈ Rn, f continuous and differentiable for every x, and f(0) = 0, that is x = 0 is
a fixed point. Show that if x = 0 is negatively asymptotically stable, then it cannot be
positively stable.

Solution: Since x = 0 is negatively asymptotically stable we have that for x0 small
the solution x(t, x0) starting from x0 converge to 0 when t → −∞. Thus for every
δ there exists t(δ) > 0 such that |x(−t(δ), x0)| < δ. Calling x(δ) = x(−t(δ), x0) we
have that x(t(δ), x(δ)) = x0 that is if we choose ε < |x0| for every δ there exists x(δ)
with |x(t, x(δ))| > ε for some t.

Page 4 of 4


