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Abstract. We consider a class of quasi-integrable Hamiltonian systems with

“one and a half degrees of freedom” and study how friction forces, analytically

depending on the perturbation parameter, can stabilize some particular periodic

orbits. As a general scenario most periodic orbits can, in absence of friction,

be continued under perturbation but disappear when the system becomes dissi-

pative: given a friction value only a finite, system-dependent, set among them

is left. Applications to Celestial Mechanics models of spin-orbit type are dis-

cussed in connection with resonance-locking between revolution and rotation

periods of satellites.

1. Introductionsec.1

Many planetary motions are approximately periodic: for example the revolution of planets around

the Sun, of satellites around planets or the rotation of planets and satellites around their axis.

In some cases the periods are linked by a very simple rational relation. A well known example is

provided by the large satellites of the major planets: in almost all cases rotation and revolution

periods are equal. A deviation from this rule is Mercury for which the rotation period is two thirds

of the revolution period (i.e. for Mercury there are 3 days in 2 years). The latter very interesting

phenomenon is not easy to explain from a Hamiltonian point of view: indeed in a Hamiltonian

system close to an integrable one essentially all periods corresponding to unperturbed orbits can

occur even in the perturbed systems, independently of the period.

To simplify one normally assumes that the energy contained in the revolution is much larger than

that contained in the rotation, leading to assume that the satellite moves on a fixed Keplerian orbit.

Several simple mathematical models describing such a situation are called spin-orbit models, see

for instance [10] and [5]. The models are periodically forced one degree of freedom Hamiltonian

systems, i.e. “one and a half degrees of freedom” systems.

We consider several quasi–integrable Hamiltonian systems with one and a half degrees of freedom;

in absence of friction the system will present a variety of motions among which, if the perturbation

is not too large, isolated periodic orbits remnants of “broken-down” resonant tori.1 In general for

1 That is periodic orbits that can be followed continuously as the perturbation parameter ε grows from 0 to (small)

positive values.
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every given period we expect an even number of such orbits, half of which are elliptic and half

hyperbolic. Introducing a small friction term in the equations of motion, some elliptic periodic

orbits of the considered models become asymptotically stable and acquire a non-empty basin of

attraction. It is an important fact that for a given positive friction only a few of them remain

stable or just existing: it seems likely that, in interesting cases (like the ones we consider here),

the union of the basins of attraction of the stable orbits is the full phase space up to a set of zero

volume. This seems confirmed by numerical simulations in similar cases; see [4].

One can imagine that the system is subjected to an initial friction that “eventually” becomes

negligible (but after a time scale larger than the characteristic periods of the system) because of a

change in the state of the system (e.g. from fluid to solid): then in the long time limit the system

will be found near one of the above mentioned stable periodic orbits.

We shall concentrate on three particular cases. The first is the pendulum with periodically driven

point of support. This system was numerically studied in [4]: here it will be considered for small

values of the parameters, in order to study it analytically by perturbation theory. The analytical

results that we find are indeed inspired by the quoted numerical analysis.

The second model is a special case of a gyroscopic motion, periodically forced. And the third

case is the above mentioned spin–orbit model, more closely related to Celestial Mechanics.

The latter model is classical and very simple: it assumes the equations of motion that would

be obeyed by an asymmetric rigid body constrained to rotate around an axis which moves on

a Keplerian elliptic orbit orthogonally to the orbit plane. In Appendix A4 we discuss several

theoretical questions pertaining the approximation by studying the equations that would describe

the motion of a rigid body with the center of mass moving on a Keplerian orbit but free to change

the orientation of the spin and symmetry axes. The point of our analysis has been to check in which

cases the equatios of motion are analytic in a proper system of coordinates so that neglecting higher

order correctons might be justfied by a suitable perturbation analysis (which we do not discuss,

see [3]).

In the first two cases, considered mainly for illustration purposes, we assume a mathematically

simple friction model imagined to be due to an external background. Then we extend the results

to friction forces which might be more reasonable for the spin-orbit model: friction is imagined as

due to tidal dissipation on a fluid planet whose orbital motion occurs on a fixed orbit.

Further numerical study, like the one performed in [4], of the basins of attraction of the periodic

orbits would be highly desirable in order to detect which periodic orbits are really the natural

candidates for attracting the majority of confined motions when at least two of them coexist.

The mechanism of capture into resonance arising in systems differing from integrable ones by a

small perturbation has been studied by several authors starting with the theory of capture into the

3:2 resonance of Mercury [10], [11]. The general mechanism is discussed and summarized in the

review article [15]. In the latter paper friction is considered either periodic or just not depending

on time. Here we regard the friction as not periodic in time and, ideally, abruptly changing order

of magnitude from a small value to a neglegible value: a situation that we consider possible in the

formation of a planet. At the beginning, when the planet can be considered in a fluid state the

dissipation (due to tidal effects on an ellipsoidic rotating fluid) is sensible (though small), while

after a suitably large (but astronomically not so large) time it becomes negligible: we call this time

the “solidification time”.

Therefore the problem is: which are the possible stable orbits at the solidification time? We know

from [10], [11], [15] that the system will settle into a periodic orbit with a probabilistic pattern.

However the orbit on which, randomly, the system will settle has to be among the ones that are

stable at the solidification epoch. Once the orbits are known a well developed theory [15] will even
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allow us to estimate the probability that a randomly chosen initial datum will be asymptotic to

a given periodic orbit (among the existing ones). We study here possible criteria to determine

periodic orbits and to select the (very few) ones that can compete in the random selection of the

“final” periodic orbit.

In the Celestial Mechanics cases our model is oversimplified, and more realistic pictures could

be devised [12]; nevertheless, because of its simplicity, it is suitable for analytical investigations

(as opposed to just numerical ones) on the relevance of friction in the early stages of evolution of

heavenly bodies and for the selection of structurally stable periodic motions. An important role is

plaid by the assumption on the size of the friction and on the actual existence of stable periodic

motions (which has to be checked). Moreover we interpret the extension studied in Appendix

A5, and supplementing the general analysis in [15], as checking that, at least at low orders in

perturbation theory, only few qualitative properties of friction determine which orbit survives.

2. Statement of the analytical resultssec.2

p.2.1 2.1. The models. Consider the equation

θ̈ + εG(θ, t) + γ(θ̇ − µ) = 0, (2.1)2.1

where θ ∈ T = 2π/Z, the function G(θ, t) is 2π-periodic and analytic in each variable and ε, γ ∈ R,

with γ > 0: we shall call ε the perturbation parameter and γ the friction constant; the parameter

µ will be either 0 or 1. The case µ = 0 will be called the background friction model, while µ = 1

will be called the tidal friction model.

For γ = 0 the equation (2.1) is a typical equation that arises in several (Celestial) Mechanics

problems; see [17], [14] and [13]. In this case we can derive (2.1) as the Hamilton equations of the

system described by the Hamiltonian

H(θ,Θ, t, T )
def
= ωΘ+

1

2
Θ2 + T + εg(θ, t), (2.2)2.2

where (θ,Θ) ∈ T × R and (t, T ) ∈ T × R are conjugated variables, ω ∈ R is a parameter, and

∂θg(θ, t) = G(θ, t).

For ε = 0 the system (2.2) admits the one parameter family of solutionsX(t) = (θ(t), t,Θ(t), T (t))

= (θ0 + ωt, t, 0, 0), with θ0 ∈ [0, 2π). If ω = p/q ∈ Q, with p, q relatively prime, each such solution

is periodic and it is convenient to use coordinates in which it appears particularly simple. For this

purpose the standard procedure is to define a (canonical) linear change of variables

(

α
β

)

= C
(

θ
t

)

,

(

A
B

)

=
(

CT
)−1

(

Θ
T

)

, (2.3)2.3

where

C =

(

m −n
−q p

)

, C−1 =

(

p n
q m

)

, (2.4)2.4

with (m,n) ∈ Z
2 such that mp− nq = det C = 1.

Then, by setting ω = (ω, 1), one has ω0 ≡ Cω = (1/q, 0), and the equations of motion become,

if for instance µ = 0,

{

α̇ = 1/q +m (mA− qB) ,
β̇ = −q (mA− qB) ,

{

Ȧ = −ε∂αf(α, β)− pγ (mA− qB)− p2γ/q,
Ḃ = −ε∂βf(α, β)− nγ (mA− qB)− npγ/q,

(2.5)2.6
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where f(α, β) = g(θ(α, β), t(α, β)). For γ = 0 the corresponding Hamiltonian is

H =
1

2
m2A2 +

1

2
q2B2 −mqAB +

A

q
+ εf(α, β), (2.6)2.7

and, for ε = 0, the one parameter family of periodic solutions X(t) considered above is transformed

into X0(t) = CX(t) = (α0+ t/q, β0, 0, 0), with qα0+mβ0 = 0: this makes clear the main feature of

the resonance (i.e. only one angle is really rotating while the motion of the other will be entirely

controlled by the perturbation).

p.2.2 2.2. Persistence of periodic solutions. If γ 6= 0 there can be no periodic solution close to X0(t) for

the system (2.5). Indeed due to the presence of a non-vanishing friction the energy of the system

decreases after every period (in fact, for instance in the case µ = 0 for the Hamiltonian H defined

in (2.2), equations (2.1) imply Ḣ = −γθ̇2). However, as usual in the study of forced system, we

shall call periodic a solution such that the (α, β) variables (or equivalently the (t, θ) variables) are

periodic in time. And instead of (2.5) or the corresponding one for the case µ = 1 we consider the

(equivalent) system
{

α̈ = −mε (m∂αf − q∂βf)− γα̇− nγ + µmγ,

β̈ = qε (m∂αf − q∂βf)− γβ̇ + pγ − µqγ,
(2.7)2.8

where µ = 0, 1, and look for the existence of a periodic solution merging as ε, γ → 0 with the

motion t→ (α0 + t/q, β0) (obtained by looking at the angle variables of X0(t)) when ε, γ 6= 0.

It will be convenient to write

f(α, β) =
∑

ν∈Z
eiναfν(β), (2.8)2.9

where, for all ν ∈ Z, the coefficient fν(β) is a 2π-periodic function of β.

The form of (2.7) shows that if γ > 0 and ε = 0 there is no periodic solution close to the

unperturbed one. We nevertheless expect a periodic solution to exist as ε, γ vary within a set of

parameters values containing a cone of the form C−ε < γ < C+ε. For this reason we shall fix

γ = Cε, with C a parameter to be varied. We could also consider, more generally, that γ is an

analytic function of ε (divisible by ε), and the discussion to which the rest of the paper is devoted

could be extended to cover such a case; however we prefer do not overwhelm the analysis with

unessential technical intricacies that wider generality would inevitably generate, see Appendix A5.

From a physical viewpoint one should imagine that, in concrete examples, the friction parameter

γ is fixed to some value, then we could write it as γ = Cε which, for given ε, fixes C to some

numerical value and one should then check that the value of C fulfills the conditions that we shall

find.

We shall look for a solution which is analytic in ε for ε small enough. This means that we shall

write

α(t) = α0 + ω0t+ a(α0 + ω0t, β0; ε), β(t) = β0 + b(α0 + ω0t, β0; ε), ω0 =
1

q
, (2.9)2.10

where a(ψ, β; ε) and b(ψ, β; ε) will be expanded as

a(ψ, β; ε) =

∞
∑

k=1

εk
∑

ν∈Z
eiνψa(k)ν (β), b(ψ, β; ε) =

∞
∑

k=1

εk
∑

ν∈Z
eiνψb(k)ν (β). (2.10)2.11

If solutions of the form (2.9) exist then t ≡ qα(t) +mβ(t), so that one must have qα0 +mβ0 = 0,

hence α0 has to be fixed as α0 = −mβ0/q, while b(α0, β0; ε) will be suitably fixed and a(α0, β0; ε)
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will be so chosen to obtain qa(α0, β0; ε) + mb(α0, β0; ε) = 0. We shall prove in Section 3 the

following result.

p.2.3 2.3. Theorem. Fix ω = p/q and fix C so that

min
β∈[0,2π]

∂βf0(β) < C
p− µq

q2
< max

β∈[0,2π]
∂βf0(β). (2.11)2.12

If there exists β0 such that

∂βf0(β0) =
p− µq

q2
C, ∂2βf0(β0) 6= 0, (2.12)2.13

then for ε small enough there is a periodic solution of the equations of motion of the form (2.9).

p.2.4 2.4. Remarks. (1) The condition (2.12) can be satisfied only if the function f0(β) is not identically

constant. For instance, if

g(θ, t) = − (1 + cos t) cos θ, (2.13)2.14

one has

f(α, β) = − cos (pα+ nβ)− 1

2
[cos ((p+ q)α+ (n+m)β) + cos ((p− q)α+ (n−m)β)] , (2.14)2.15

so that f0(β) ≡ 0 except for p = q = 1 (that is ω = 1). On the other hand, if g is an analytic

function, the condition that the function f0(β) is not identically constant is generic.

(2) If the stationary points of the function ∂βf0(β) correspond only to either maxima or minima,

then as the value of C increases, the two conditions (2.12) fail to be satisfied simultaneously.

(3) In the above discussion the dependence on C of the solutions is not explicitly indicated. However

the proof in Section 3 implies that the solutions (2.9) are analytic in C near any C satisfying (2.12).

We can therefore reformulate our theorem by stating that the solutions (2.9) are analytic in ε and

γ in the intersection of a neighborhood of the origin with the cone C−ε < γ < C+ε, where C− and

C+ are determined by (2.11).

(4) It is important to realize that the above theorem does not provide a one parameter family of

solutions: since only a finite number of values for β0 will, in general, be allowed by (2.12) we can

say that (in general) only a finite number among the free solutions, i.e. the solutions existing when

ε = 0, can be continued to ε > 0.

p.2.5 2.5. Extensions. I. The case in which ∂βf0(β) vanishes identically is excluded from the above

analysis: such a case can be dealt with by setting γ = Cε2. In the case µ = 0, for instance, we

have the following result (also proved in Section 3).

p.2.6 2.6. Theorem. Let µ = 0. Fix ω = p/q such that ∂βf0(β) ≡ 0, and, setting D = (ω0∂ψ)
2, define2

F
(2)
0 (β) = −

[

1

2
m2∂αf(β)D

−2∂αf(β) +

+
1

2
q2∂βf(β)D

−2∂βf(β)−mq∂αf(β)D
−2∂βf(β)

]

0

.

(2.15)2.16

Fix C such that

min
β∈[0,2π]

F
(2)
0 (β) < C

p

q2
< max

β∈[0,2π]
F

(2)
0 (β). (2.16)2.17

2 Given a function F (α, β) we denote by [F (β)]ν its νth Fourier coefficient with respect to α.
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If there exists β0 such that

F (2)(β0) =
p

q2
C, ∂βF

(2)(β0) 6= 0, (2.17)2.18

then for ε small enough there is a periodic solution of the equations of motion of the form (2.9).

p.2.7 2.7. Remarks. (1) The condition (2.16) is a second order condition, as the analysis of Section 3.2

will show, while condition (2.11) of theorem 2.3 was a first order condition.

(2) Condition (2.15) is generic even if we restrict the analysis to trigonometric polynomials g; in

particular, for g given by (2.13), the condition (2.16) is satisfied for C 6= 0.

p.2.8 2.8. Extensions. II. We can also consider the case γ = Cε2 when the function f0(β) is not

identically constant. In such a case the following result holds: again we consider only the case

µ = 0 for simplicity.

p.2.9 2.9. Theorem. Let µ = 0. Fix ω = p/q and fix β0 such that one has

∂βf0(β0) = 0, ∂2βf0(β0) 6= 0. (2.18)2.19

If γ = Cε2 then for ε small enough there is a periodic solution of the equations of motion of the

form (2.9) provided that one has |C| < C0 for some positive constant C0.

p.2.10 2.10. Remark. More generally we can set γ = Cεn, with n ≥ 2, and a result like theorem 2.9

holds. The new solution is really different from the one in theorem (2.3) as it will be seen from

the fact that they differ already to first order in ε: this means that there are several families

of periodic orbits which merge continuously as ε → 0 with the unperturbed orbit. In physical

situations the parameters ε and γ are fixed: then for γ small enough one can have distinct periodic

orbits corresponding to several values of n. However the smallness condition that we find on ε

becomes more and more stringent as n increases.

p.2.11 2.11. Contents. In Section 3 we briefly discuss the proofs of the theorems stated above referring to

Appendix A1 for the more technical aspects; we stress that in the present case the analysis appears

much easier because of the absence of small divisors (as we are interested in periodic rather than

in quasi-periodic solutions).

The periodic orbits appear in pairs of stable and unstable orbits: this is a consequence of

Poincaré –Birkhoff’s theorem [1]. In Appendix A2 we briefly study the stability of the periodic

solutions by performing a low orders analysis.

In Section 4, we consider a very simple form for the friction term with µ = 0 and study some

elementary applications: the periodically driven pendulum and a spin-orbit model for a rigid body

both in a background friction case. Finally in Section 5 we shall realize that, also by considering

a tidal friction case (and possibly a more general form for the friction term), the scenario remains

essentially unchanged. In particular we discuss some qualitative properties of systems relevant in

Celestial Mechanics: the systems satellite-planet (like Moon-Earth) and the systems planet-star

(like Mercury-Sun).

p.2.12 2.12. Conclusions. The general conclusions that we can draw about the resonance-locking in the

spin-orbit problem are the following. In absence of friction each family of periodic orbits present

in the unperturbed system also occurs, in general, after perturbation in the sense that at least one

of the unperturbed orbits can be continued at ε > 0, independently of the value of the period if ε

is small enough (how small depends on the unperturbed orbit considered, hence in particular on
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its period). This is a general property of Hamiltonian systems (well known: for a derivation with

the methods used here see [9]).

If the friction is different from zero only a finite number of periodic orbits can be continued in ε

up to a prefixed value ε0. If the friction constant is large enough (but still not too large, see (2.11))

then either there is only one periodic orbit or a few of them which are accessible by continuing at

ε > 0 some unperturbed ones.

We imagine that, in the history of the planetary system, friction decreased slowly: we first realize

that the resonance 1:1 is stable since the beginning. As friction decreased while the planet was

spinning down toward the 1:1 resonance, one after the other, other resonances3 became stable but

in most cases (basically all except the case Mercury-Sun) the 1:1 was the only one to exist for a

long time, long enough that the system could essentially fall so close to the resonance to become

unaffected by the new possibilities open by the evolution into stability of the other resonances.

This means that the motions were already well inside the basin of attraction of the 1:1 resonance

before any other stable periodic orbit could exist: this could explain why the resonance 1:1 is

almost always the dominant one. In the Mercury-Sun case as well as in all other cases considered

the resonance 3:2 is the first to become stable as the friction decreases and therefore it is the most

likely one, after the 1:1 resonance, to stabilize some nearby trajectory, a case that seems to have

happened in the system Mercury-Sun which is locked in a resonance 3:2. We shall also find that

the capture into the resonance 3:2 is more likely to occur in the case of Mercury-Sun rather than

in the other cases: Mercury-Sun is the case in which such a resonance seems to appear earlier

by far, essentially because of the larger value of the eccentricity. In particular this yields that

Mercury-Sun is essentially the only case in which such a phenomenon could be really expected to

happen, as in fact it happened.

A more precise discussion should include an estimate of the friction and of the time scales involved

together with an analysis of the sizes of the basins of attraction of the different periodic orbits as

functions of the friction. This goes beyond the scope of the present paper.

3. Proof of the theoremssec.3

p.3.1 3.1. Proof of theorem 2.3. The analysis follows the classical perturbation theory pattern for

analytic perturbations: we first check that the problem is soluble to all orders of pertubation

theory so that a power series solution can be defined up to convergence analysis and subsequently

convergence is checked for small enough perturbaton parameter values. Convergence is a rather

standard check once the expansion coefficients have been shown to exist and be algorithmically

computable. In this section we derive the power series and the uneventful convergence check is in

Appendix A1.

For γ = Cε, inserting (2.10) into the equations of motion (2.7) gives, for k = 1,

(iω0ν)
2
a(1)ν = −m (imνfν − q∂βfν)− C

m(p− µq)

q
δν,0,

(iω0ν)
2
b(1)ν = q (imνfν − q∂βfν) + (p− µq)Cδν,0,

(3.1)3.1

and, for k ≥ 2,

(iω0ν)
2 a(k)ν = −m [m∂αf − q∂βf ]

(k−1)
ν − C (iω0ν) a

(k−1)
ν ,

(iω0ν)
2
b(k)ν = q [m∂αf − q∂βf ]

(k−1)
ν − C (iω0ν) b

(k−1)
ν ,

(3.2)3.2

3 As we shall see the onset of stability can be related, or at least bounded, in terms of the size of q if the period is

T = 2πq/p. The higher q, at p/q = ω roughly constant, the smaller the value of the viscosity below which the orbit

exists and is stable.
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where, given any function F admitting a formal series

F (ψ; ε) =
∞
∑

k=1

εk
∑

ν∈Z
eiνψF (k)

ν , (3.3)3.3

[F ]
(k)
ν denotes the coefficient with Taylor label k and Fourier label ν; see footnote 2.

The above equations can be solved for ν 6= 0 provided that, for ν = 0, one has, for k = 1,

0 = mq∂βf0(β0)− C
m(p− µq)

q
, 0 = −q2∂βf0(β0) + (p− µq)C, (3.4)3.4

and, to order k ≥ 2,

0 = −m [m∂αf − q∂βf ]
(k−1)
0 , 0 = q [m∂αf − q∂βf ]

(k−1)
0 . (3.5)3.5

The two equations (3.4) correspond to the single equation

∂βf0(β0) = C
p− µq

q2
, (3.6)3.6

as it is immediate to check. Also the two equations (3.5) reduce to one equation,

[m∂αf − q∂βf ]
(k−1)
0 = 0, (3.7)3.7

which can be solved by suitably fixing the sequence {b(k)0 }k∈N: the sequence {a(k)0 }k∈N is, finally,

determined by imposing the validity of the exact relation α(0)q + β(0)m ≡ 0, see Appendix A1.

More precisely [m∂αf − q∂βf ]
(k)
0 can be made equal to zero for all k by a suitable choice of the

sequence {b(k)0 }k∈N: this can be easily done if ∂2βf0(β0) 6= 0. To prove such a property we can write

in (3.7)

[m∂αf − q∂βf ]
(k−1)
0 = −q∂2βf0(β0) b

(k−1)
0 + all the other terms , (3.8)3.8

where ∂2βf0(β0) 6= 0 by hypothesis (see the second relation in (2.12)), and use the tree expansion

envisaged in [9] and briefly recalled in Appendix A1, to which we defer for details: here we confine

ourselves that the final bound on the radius of convergence gives

ε0 = min

{

ω0

|C| ,
ω2
0

B1
,
|∂2βf0(β0)|

B′
1

}

, ω0 =
1

q
(3.9)3.9

for some positive constants B1 and B′
1.

Note that (3.6) admits a solution for C 6= 0 only if the function f0(β) is not identically vanishing,

and C is chosen as in (2.11). Therefore theorem 2.3 is proved.

p.3.2 3.2. Proof of theorem 2.6. Suppose now that one has ∂βf0(β) ≡ 0 and γ = Cε2. In such a case

equations (3.1) and (3.2) have to be modified into

(iω0ν)
2
a(1)ν = −m (imνfν − q∂βfν) , (iω0ν)

2
b(1)ν = q (imνfν − q∂βfν) , (3.10)3.10

for k = 1, and

(iω0ν)
2 a(k)ν = −m [m∂αf − q∂βf ]

(k−1)
ν − C (iω0ν) a

(k−2)
ν − C

mp

q
δν,0δk,2,

(iω0ν)
2
b(k)ν = q [m∂αf − q∂βf ]

(k−1)
ν − C (iω0ν) b

(k−2)
ν + pCδν,0δk,2,

(3.11)3.11
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for k ≥ 2.

The equations (3.10) are trivially solvable as ∂βf0(β) ≡ 0 by hypothesis, while the equations

(3.10) and (3.11) can be solved for ν 6= 0 provided that, for ν = 0, one has, for k = 2,

0 = −m [m∂αf − q∂βf ]
(1)
0 − C

mp

q
, 0 = q [m∂αf − q∂βf ]

(1)
0 + pC. (3.12)3.12

while for k ≥ 3 equations (3.5) are satisfied.

The identity [∂αf ]
(1)
0 ≡ 0 still holds, so that (3.12) gives

[∂βf ]
(1)
0 =

p

q2
C. (3.13)3.13

By developing in (3.13)

[∂βf ]
(1) = ∂βαf a

(1) + ∂ββf b
(1), (3.14)3.14

and by using the expressions of a(1) and b(1) obtained by solving the first order equations (3.10),

i.e.

a(1) = −mD−2 [m∂αf − q∂βf ] , b(1) = q D−2 [m∂αf − q∂βf ] , (3.15)3.15

where D is the operator D = (ω0∂ψ), one finds that

[∂βf ]
(2)

= −m2∂αβfD
−2∂αf − q2∂ββfD

−2∂βf +mq
(

∂βαfD
−2∂βf + ∂ββfD

−2∂αf
)

= −∂β
(

1

2
m2∂αfD

−2∂αf +
1

2
q2∂βfD

−2∂βf −mq∂αfD
−2∂βf

)

,
(3.16)3.16

and the r.h.s. is a gradient with respect to β of a function F (2)(α, β): and we check that

F
(2)
0 (β) = −

[

1

2
m2∂αfD

−2∂αf +
1

2
q2∂βfD

−2∂βf −mq∂αfD
−2∂βf

]

0

= −
∑

ν1+ν2=0

(

1

2
m2 (iν1) fν1(β) (iω0ν2)

−2
(iν2) fν2(β)

+
1

2
q2∂βfν1(β) (iω0ν2)

−2
∂βfν2(β)−mq (iν1) fν1(β) (iω0ν2)

−2
∂βfν2(β)

)

,

(3.17)3.17

as in (2.15). So that

[∂βf ]
(2)
0 = ∂βF

(2)
0 (β). (3.18)3.18

If we choose C as in (2.16) and fix β0 as in (2.17), then (3.12) can be solved, while all the

equations (3.5) with k ≥ 3 can be solved through a suitable choice of the sequence {b(k)0 }k∈N. It

remains to check the convergence of the series in ε: we refer to Appendix A1 for details, see also

[9]. The bound, derived in Appendix A1, on the radius of convergence reads as

ε0 = min

{

√

ω0

|C| ,
ω2
0

B2
,
|∂2βf0(β0)|

B′
1

}

(3.19)3.19

for some positive constants B2 and B′
2.

p.3.3 3.3. Proof of theorem 2.9. We can combine the results of the two above theorems. The condition

on β0 follows from a first order analysis, by taking into account that the equations to be used in
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such a case are (3.10): hence the value of β0 is the same as in absence of friction. Then equations

(3.12) give a condition on b
(1)
0 which reads as

b
(1)
0 = −

(

∂2βf0(β0)
)−1

G
(2)
0 ,

G
(2)
0 =

p

q2
C + other terms ,

(3.20)3.20

so that the condition on the radius of convergence becomes

ε0 = min

{

q2

p|C| ,
ω2
0

B3
,
|∂2βf0(β0)|

B′
3

}

(3.21)3.21

for some positive constants B3 and B′
3.

p.3.4 3.4. Remark. (1) The constants Bj , B
′
j can be explicitly computed, see Appendix A1 for details.

(2) Note that with respect to [9] there are no small divisors, and all propagators 1/(ω0ν) can be

bounded by 1/ω0 (for ν 6= 0).

4. Simple examples with background frictionsec.4

p.4.1 4.1. Pendulum with friction and forcing. Consider the case (2.13) with p = q = 1 (so that n = 1

and m = 2 in (2.4)), and choose ε > 0 and C > 0. Then from (2.14) we obtain

∂βf0(β) = −1

2
∂β cosβ =

1

2
sinβ, (4.1)4.1

so that the first of (2.12) gives

β0 = arcsin 2C, (4.2)4.2

provided 2C < 1. This means that the periodic solution X(t) has α0 = −2β0, hence θ0 = −β0 =

− arcsin 2C. Note that (4.2) corresponds to two solutions β1 ∈ (0, π/2) and β2 = π − β1.

If c
def
= cos arcsin 2C a (tedious) computation (see (A2.14)) gives for the Lyapunov multipliers

(also known as Floquet multipliers) describing the stability of the orbit the values

λ± = 1±
√
2επ2c+

(

−Cπ + π2c
)

ε+O(ε3/2) and

c > 0 for β0 = β1, λ± = 1± a1
√
ε+O(ε), a1 ≡

√
2π2c > 0,

c < 0 for β0 = β1, λ± = 1± ia2
√
ε+O(ε), a2 ≡

√

−2π2c > 0

(4.3)4.5

Therefore we can conclude that, to first order,one of the two periodic solutions is stable and the

oher unstable, in agreement with the cited Poincaré–Birkhoff’s theorem.

It would be interesting to study (at least numerically) the basins of attractions of the stable

periodic solutions: the numerical analysis in [4] suggests that, for values of the parameters not too

large (as it is certainly the case in the perturbative regime), the union of the basins of attractions

of all periodic orbits fills the whole phase space. Then a comparative study of the basins should

determine which periodic solutions attract most of trajectories.

We have also investigated numerically what happens when the friction decreases in time, slowly

with respect to the characteristic periods of the system, e.g. with an exponential decay law γ =

Cεe−κt, with κ small: the periodic orbits which are stable in correspondence of the value of the

initial friction continue to exist and all trajectories appear to be attracted by such orbits if κ is
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small enough (with respect to the time needed by the attractor to be reached, i.e. a time of the

order of the inverse of the Lyapunov coefficients of the stable orbits thus singled out).

p.4.2 4.2. Periodically forced gyroscope with background friction. Consider the equation (2.1) with

g(θ, t) =
∑

j∈N
aj cos(2θ − jt), (4.4)4.6

which can represent the precession of a gyroscope subjected to a periodic torque.

For instance the gyroscope could be moving on an ellipse of eccentricity e and it could be subjected

to a gravitational attraction from a mass located in the ellipse focus. For concreteness one can

consider the g(θ, t) arising in a spin–orbit planetary model: this is interesting because it gives us

the possibility of introducing a well known model (see equation (2) in [10]) which may have some

relevance in Astronomy and that we shall study in Section 5 under the presence of tidal friction.

The model has been used (without friction) in [5] to study the stability of librations in the cases

of a few celestial systems. It will illustrate the mechanism of resonance selection which depends in

a delicate way on the relative size of the coefficients aj (which depend on the eccentricity e of the

orbit of the planet, see (5.1)). There are 10 such coefficients

The construction of the model is reproduced in Appendices A3 and A4, see (A4.23), and gives

for the function g(θ, t) the expression (5.1) in next Section, from which the coefficients can be

obtained once the value of the eccentricity is known. The coefficients have been computed, in our

numerical tests, via an algebraic manipulator from the data of a few celestial bodies by assigning

appropriate values to the eccentricity e.

We shall use data that arise in the following six cases: Moon-Earth, Mercury-Sun, Io-Jupiter,

Enceladus-Saturn, Dione-saturn and Rhea-Saturn. We stress, however, that the following has no

pretention of being a study in Celestial Mechanics because the background friction does not seem

to be a sensible model for the capture into resonance of the systems considered.

For ω = p/q one can write f(α, β) =
∑7
j=−3,j 6=0 aj cos ((2p− jq)α+ (2n− jm)β) , so that

f0(β) = aj0 cos ((2n− j0m)β) , 2p− j0q = 0, (4.5)4.7

which gives the values listed in table 4.1.

j0 p q n m f0(β)

1 1 2 1 3 a1 cosβ
2 1 1 1 2 a2 cos 2β
3 3 2 1 1 a3 cosβ
4 2 1 1 1 a4 cos 2β
5 5 2 2 1 a5 cosβ
6 3 1 2 1 a6 cos 2β
7 7 2 3 1 a7 cosβ

Table 4.1. Values of p, q, n,m and the corresponding f0(β)
for different resonances j0 : 2, i.e. p/q = j0/2, with j0 =
1, . . . , 7 in (4.5).

Therefore (2.12) fixes β0 so that

β0 =
1

δ
arcsin

(

− p

q2
C

aj0

1

δ

)

, δ =

{

1, j0 = 1, 3, 5, 7,
2, j0 = 2, 4, 6,

(4.6)4.8
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provided that one has
∣

∣

∣

∣

p

q2
C

aj0

1

δ

∣

∣

∣

∣

< 1. (4.7)4.9

We define Cj0 to be the positive value of C for which one has equality in (4.7) and call this quantity

the existence threshold for the resonance corresponding to j0.

j0 1 2 3 4 5 6 7
p/q 1/2 1/1 3/2 2/1 5/2 3/1 7/2

M-E q2|aj0 |δ/p 0.05488 0.99247 0.12725 0.01272 0.00116 0.00010 0.00001
M-S q2|aj0 |δ/p 0.20553 0.89475 0.43787 0.16398 0.05574 0.02024 0.00640
I-G q2|aj0 |δ/p 0.00410 0.99996 0.00957 0.00007 0.00000 0.00000 0.00000
E-S q2|aj0 |δ/p 0.00450 0.99995 0.01050 0.00009 0.00000 0.00000 0.00000
D-S q2|aj0 |δ/p 0.00220 0.99999 0.00513 0.00002 0.00000 0.00000 0.00000
R-S q2|aj0 |δ/p 0.00100 1.00000 0.00233 0.00000 0.00000 0.00000 0.00000

Table 4.2. Values of Cj0 which characterize the appearance of periodic orbits with periods

p/q for the cases Moon-Earth (M-E), Mercury-Sun (M-S), Io-Jupiter (I-J), Enceladus-
Saturn (E-S), Dione-Saturn (D-S) and Rhea-Saturn (R-S).

Thus we see that for C large, i.e. at least for C > Cj0 in our (not optimal) estimates, there is no

periodic orbit close to an unperturbed one, while for values of C just below C2 only the periodic

orbit with frequency ω = 1 exists. Another periodic orbit (with frequency 3/2) appears when C

falls below the value C3. In the case of Mercury-Sun one has C3 ≈ C2/2, while in all other cases

one has at best C3 ≈ C2/8. This should be in agreement with the fact that Mercury-Sun is the only

case in which at the end the system was captured into the resonance 3:2; however for a physical

interpretation of the results we defer to next Section.

In all cases, in concrete applications, one should check that the values of ε of interest are less

than the value of the radius of convergence of the perturbative series (relative to each orbit). Here

we have not fixed the value of ε because the present analysis is an illustration rather than an

application: hence we are free to take ε very small, as small as necessary to insure convergence of

the series that define the resonant orbits. We shall discuss this matter, i.e. how to fix ε, in the

context of Celestial Mechanics applications when the friction is tidal.

p.4.3 4.3. Lyapunov coefficients of the periodic orbits As far as the stability of the periodic solutions

are concerned, one has α0 = −mβ0/q + O(ε), hence θ0 = −β0/q + O(ε), with β0 given by (4.6).

As in deriving (4.3) a trivial computation (but still more tedious than the previous one) gives, for

the cases Moon-Earth (with j0 = 2) and for Mercury-Sun (with j0 = 3) or for Mercury-Sun with

j0 = 2, respectively

λ± = 1± 8.85229
√

ε cos 2β0 + (−Cπ + 39.18154 cos2β0) ε+O(ε3/2),

λ± = 1± 14.35847
√

ε cosβ0 + (−2Cπ + 103.08289 cosβ0) ε+O(ε3/2),

λ± = 1± 8.40999
√

ε cos 2β0 + (−Cπ + 35.36398 cos2β0) ε+O(ε3/2),

(4.8)4.10

where the stable periodic orbits are those with cos δβ0 < 0.

5. Spin-orbit interaction with tidal frictionsec.5

p.5.1 5.1. Application to the spin-orbit model. In a system satellite-planet (or planet-Sun) there can be

several types of friction: the friction between satellite layers of different composition, say one liquid
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and one solid (core-mantle friction), or the friction due to the tides (tidal friction). There could

be also other sources of friction which we do not consider (especially those which could modify the

revolution motion of the planet that, as we are implicitly using that it occurs on a fixed orbit).

One can expect that such phenomena produce a friction term of the form γθ̇ r(θ, θ̇, t) + γ′, with
γ, γ′ ∈ R, and r a 2π–periodic function (in θ and t) analytic and positive, to be added to the

forcing term G(θ, t) = ∂θg(θ, t), where, [5] and appendix A4, A5

g(θ, t) =
(1

4
e− 1

32
e3 +

5

768
e5
)

cos(2θ − t) +
(1

2
− 5

4
e2 +

13

32
e4
)

cos(2θ − 2t)

+
(

− 7

4
e+

123

32
e3 − 489

256
e5
)

cos(2θ − 3t) +
(17

4
e2 − 115

12
e4
)

cos(2θ − 4t)

+
(

− 845

96
e3 +

32525

1536
e5
)

cos(2θ − 5t) (5.1)5.1

+
(533

32
e4
)

cos(2θ − 6t) +
(

− 228347

7680
e5
)

cos(2θ − 7t)

+
(

− 1

96
e3 − 11

1536
e5
)

cos(2θ + t) +
( 1

48
e4
)

cos(2θ + 2t) +
(

− 81

2560
e5
)

cos(2θ + 3t).

Here the parameter e is the eccentricity of the orbit, and g(θ, t), as given by (5.1), is the θ-dependent

part of the power expansion in e of ω2(λT )ω
−2
T cos2(θ−λT ) (see Appendices A3 and A4 for details

and notations). The perturbative parameter ε is related to the asymmetry δ2 = (Iy− Ix)/Iz of the

equatorial moments of inertia, which we suppose to be due to the tidal equatorial bulge of height

h, so that δ2 = 2h/R, while C is related to the viscosity of the fluid magma forming the planet:

ε
def
= δ2 =

3

2

2h

R
, C

def
=

1

3

Rη

Mω
. (5.2)5.2

The above model can be derived from the theory of rigid motions as explained (for completeness)

in Appendix A4.

Here we consider the case in which the friction is fixed as in (2.1), with µ = 1, and fix γ = Cε.

The choice reflects that one expects friction to be due to tidal phenomena and to be minimized in

a resonance 1:1; see Section 5.2 for further comments. Then the equations of motion become

θ̈ + εG(θ, t) + Cε
(

θ̇ − 1
)

= 0, (5.3)5.3

with G(θ, t) = ∂θg(θ, t) given by (5.1). See table 5.1 for the values of ε and γ.

Planet γ = Cε ε C

Moon 1.00e− 02 3.38e− 05 (2.96e+ 02)
Mercury 6.06e− 04 2.03e− 06 (2.99e+ 02)

Io 1.26e− 01 7.66e− 03 (1.64e+ 01)
Encelado 6.51e+ 01 3.49e− 02 (1.86e+ 03)
Dione 5.33e+ 00 7.98e− 03 (6.68e+ 02)
Rea 2.31e+ 00 3.38e− 03 (6.85e+ 02)

Table 5.1 Values γ, ε,C for the various cases according to the model developed in
Appendix A3,A4 and in Section 5.2; they are the values adopted in this paper.

We change variables in a way suitable to study one of the seven resonances (corresponding to

the seven terms in (5.1): this step is the same as the corresponding one performed in the case of

the gyroscope in Section 4. The resonances will be labeled in the same way by j0 = 1, 2 . . .7. The

coefficients aj are the same; see table 4.1.
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By recalling (2.12) we see that one has to fix β0 so that

β0 =
1

δ
arcsin

(

−p− q

q2
C

aj0

1

δ

)

, provided

∣

∣

∣

∣

p− q

q2
C

aj0

1

δ

∣

∣

∣

∣

< 1 (5.4)5.4

with δ = 1 if j0 = 1, 3, 5, 7 and δ = 2 if j0 = 2, 4, 6. As a consequence the table 4.3 is replaced by

table 5.2.

j0 1 2 3 4 5 6 7
p/q 1/2 1/1 3/2 2/1 5/2 3/1 7/2

M-E
q2|aj0 |δ
p−q 0.05488 ∞ 0.38176 0.02545 0.00193 0.00015 0.00001

M-S
q2|aj0 |δ
p−q 0.20551 ∞ 1.30786 0.32796 0.09290 0.03036 0.00896

I-G
q2|aj0 |δ
p−q 0.00410 ∞ 0.02870 0.00014 0.00000 0.00000 0.00000

E-S
q2|aj0 |δ
p−q 0.00450 ∞ 0.03150 0.00017 0.00000 0.00000 0.00000

D-S
q2|aj0 |δ
p−q 0.00220 ∞ 0.01540 0.00004 0.00000 0.00000 0.00000

R-S
q2|aj0 |δ
p−q 0.00100 ∞ 0.00700 0.00001 0.00000 0.00000 0.00000

Table 5.2. Estimated values Cj0 of C below which attractive periodic orbits with

periods p/q exist, for the cases Moon-Earth (M-E), Mercury-Sun (M-S), Io-Jupiter (I-
J), Enceladus-Saturn (E-S), Dione-Saturn (D-S) and Rhea-Saturn (R-S). The entries
0.00000 mean that the first nonzero digit is beyond the ones written.

Evaluating the thresholds for the various cases we can estimate the various constants and we

get that the radius of convergence of the series defining the periodic orbit starts being positive for

C < Cj0 and rapidly tends to a limit as C → 0. If C < Cj0/2, say, the radius of convergence has a

size εj0 that should be compared with the actual value of ε in the case of each planet. The results

of our estimates is reported in table 5.3.

j0 1 3 4 5 6 7
p/q 1/2 3/2 2/1 5/2 3/1 7/2

Moon 1.23e+ 00 1.28e+ 01 3.05e+ 01 1.94e− 01 3.63e− 01 1.99e− 03
Mercury 8.52e+ 01 7.18e+ 02 7.28e+ 03 1.73e+ 02 1.35e+ 03 2.78e+ 01

Io 4.02e− 04 4.22e− 03 7.50e− 04 3.57e− 07 4.94e− 08 2.03e− 11
Encelado 9.68e− 05 1.02e− 03 1.98e− 04 1.04e− 07 1.57e− 08 7.08e− 12
Dione 2.07e− 04 2.18e− 03 2.08e− 04 5.30e− 08 3.94e− 09 8.66e− 13
Rea 2.23e− 04 2.34e− 03 1.01e− 04 1.18e− 08 3.97e− 10 3.97e− 14

Table 5.3. Values εj0/ε (for C = Cj0/2). If the value is > 1 the theory can be

applied to the resonance corresponding to j0. The values of ε are from Table 5.1.

A rough estimate of εj0 easily follows from the proof in Appendix A1 and it gives a growth of

the convergence radius as C → 0 proportional to

|ε| < const

√

1− |p− q|
q2

C

|aj0 |
, p 6= q. (5.5)5.5

Table 5.3 is based on a more detailed estimate following the proof details in Appendix A1.

The interest of table 5.3 is that it shows that aside from the cases of Io, Enceladus, Dione, Rhea

the resonance 3:2 falls in the domain of convergence of our theory. In the case of the latter four
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heavenly bodies the interesting resonance 3:2 (as well as all others) is outside the convergence

radius as estimated in Appendix A1, see (A1.15). The estimates, however, might be improvable

beyond our crude results derived in Appendix A1, although it seems unlikely that the cases of the

four satellites could be covered. However attempting an improvement would not be really useful

because the time scale for the attraction by the 1:1 resonance turns out to be too short for all

heavenly bodies except for Mercury, see below.

The main difference with respect to the case studied in Section 4 is that the periodic orbit

with frequency 1 exists for all values of C; besides that we can immediately realize that no real

qualitative change is produced with respect to the results obtained in the previous section.

p.5.7 5.2. A physical friction model. A detailed discussion would require assuming a more realistic

model for the satellite structure and relying on some theory of evolution of the planetary system;

see for instance [19] for an introduction on the subject.

Suppose that friction is essentially due to tidal effects on an entirely fluid “fast” rotating planet

(i.e. with rotation speed ω at least a few times larger than the revolution speed) evolving toward

a solid body with neglegible tidal effects. A model for tidal friction can be derived by assuming

a tide on a fluid planet which creates a bulge lagging behind the radius vector from the center of

attraction S to the planet by an angle τ . In this way the planet looses its equatorial symmetry

and its smallest axis of inertia points in a direction at an angle τ with respect to the line joining

the planet center to the attraction center S.

This means that in a frame fixed with the planet the axes of inertia rotate at speed λ̇T and the

equations of motion of the body are affected, to first order, by the presence of a torque which in

the comoving frame is 2δ2 sin τ(θ̇ − ωT ), where δ2 = (Ix − Iy)/Iz = (a2 − b2)/(a2 + b2) = 2h/R,

if h is the tide height and R the planet radius (because we suppose a = R − h, b = R + h), see

Appendix A4. Furthermore the phase shift τ will be taken simply τ = γ0 (θ̇ − 1) i.e. proportional

to |θ̇−ωT | of the order of ωT = 1 (in our dimensionless units) or smaller. Also the rotation velocity

ωD should enter in the dimensional analysis but we assume it to be of the order of ωT because we

are studying simple resonances.

The constant γ0 has to be a dimensionless constant formed with the following physical quantities:

the viscosity η of the magmatic fluid constituting the planet, the planet radius R, the tide height

h and the angular velocity ωT . Simplest is to take γ0 = ηh/MωT . Defining ε, C as in (5.2) we

obtain the equations (5.3) and the coefficients can be computed from the tidal excursion h.

The tidal excursion (as long as the planet is fluid, see [8], problem 1.4.10) is of the order of

R(R/ρ)3(M0/M), if R is the radius of the planet, ρ is the distance between planet and central

body, and M0 is the mass of the latter. In the early history of the solar system one can assume

that the viscosity is very large: larger than that of magma, which can exceed that of water (which

equals 10−2 C.G.S units) by a factor up to ∼ 1012 and smaller than that of the Earth mantle (of

about ∼ 1022 times the water viscosity); see for instance [16] and [18].

By assuming for η a value 10−15 C.G.S. units and inserting the values of R,M,ω, ρ,M0 of the

various systems considered so far (see for instance [2]), we find that the order of γ0 at the beginning

of the life of the celestial body (in units of the inverse of the revolution period) can be quite different

depending on the body and it can be essentially negligible in some cases (for instance it is around

6 10−4 for Mercury, and negligible for the Moon and the other satellites). This means that the

characteristic time for the approach to the 1:1 resonance is quite fast for Mercury (a halving time

for the spin of about 103 years) and much faster for the Moon, see table 5.1. Halving the value

of η does not affect the values of Cj0 but it doubles the time of the spin down: hence the actual

value of η is quite important.

At the same time the value of γ = Cε has to decrease, in the case of Mercury, by a factor of
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about ∼ 102 before the value of C reaches the treshold of stability of the first non-trivial resonance

(i.e. 3:2) and of the order of 4 times more to reach the stability treshold for the (next) resonance

1:2 (compare column C in table 5.1 and columns 3 and 4 in table 5.2).

In the case of the Moon the value of γ has to decrease by a factor ∼ 103 for the stability of

the 3:2 resonance and 15 times more for the (next) 2:1 (again compare column C in table 5.1 and

columns 3 and 4 in table 5.2).

The cooling, i.e. the moment when the viscosity can be regarded as much smaller because the

body solidifies, should take quite likely the same time in both cases. Hence there is the possibility

envisaged in the introduction that the planet will spin down while cooling and that its solidification,

when the friction becomes comparatively rapidly neglegible, occurs when the spin is still greater

than 3:2 so that the planet can be captured by the 3:2 resonance which has become stable. The

cases of Mercury and of the Moon seem best suited for the appearance of the stable 3:2 resonance

because it has the lowest treshold (provided the solidification time is of the order of 104 revolutions

of Mercury, i.e. ∼ ·103 years, or ∼ 102 revolutions of the Moon), see table 5.1): this seems to make

Mercury the only case in which 3:2 can become a stable resonance (as the Moon would collapse on

the 1:1 resonance in time much shorter because γ is quite large, a time of order of 102 lunar years,

i.e. ∼ 102 months or ∼ 8 years).

The choice of the value of η = 1015 C.G.S. units affects the results but qualitatively it has the

only effect of changing the time scales by a common factor. Unfortunately without a detailed

model for the formation of rocky planets and the evolution of the dynamic viscosity the above

seems all one can say at the moment.

Acknowledgments. We are indebted to Alessandra Celletti for useful discussions and explana-

tions about the spin-orbit model.
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Appendix A1. Tree expansion and technical details of the proofsapp.A1

p.A1.1 A1.1. Trees. We prefer to follow the tree formalism introduced in [9]: other approaches based on

the implicit functions theorem could also be applied, if preferred. A tree θ is defined as a partially

ordered set of points, connected by lines. The lines are oriented toward the root, which is the

leftmost point; the line entering the root is called the root line. If a line ℓ connects two points v1
and v2 and is oriented from v2 to v1 we say that v2 ≺ v1 and we shall write v′1 = v2 and ℓ = ℓv2 ;

we shall say also that ℓ exits from v2 and enters v1.

root

ℓ0

v0

v1

v2

v3
v4

v5

v6

v7

v8

v9

v10

v11

v12

Fig. A1.1. A tree θ with 9 nodes and 4 leaves: the latter ones are graphically
represented as bullets. The length of the lines should be the same but it is
drawn of arbitrary size.

Besides the root, there will be two kinds of points: the nodes and the leaves. The leaves can only

be endpoints, i.e. they have no lines entering them, but an endpoint can be either a node or a leaf.

The lines exiting from the leaves play a very different rôle with respect to the lines exiting from

the nodes, as we shall see below. We shall denote by v0 the last (i.e. leftmost) node of the tree,

and by ℓ0 the root line; for future convenience we shall write v′0 = r but r will not be considered

a node. See figure A1.1 for an example of tree.

We shall denote by V (θ) the set of nodes, by L(θ) the set of leaves and by Λ(θ) the set of lines.

Fixed any line ℓv ∈ Λ(θ), we shall say that the subset of θ containing ℓv as well as all nodes

w � v and all lines connecting them is a subtree of θ with root v′: of course a subtree is a tree.

Given a tree, with each node v we associate a mode label νv ∈ Z, and to each leaf v a leaf label

κv ∈ N. The quantity

k = |V (θ)|+
∑

v∈L(θ)
κv (A1.1)A1.1

is called the order of the tree θ. With any line ℓ exiting from a node v we associate a label γℓ
assuming the symbolic values α, β and a momentum label νℓ ∈ Z, which is defined as

νℓ ≡ νℓv =
∑

w∈V (θ)
w�v

νw, (A1.2)A1.2

while with any line ℓ exiting from a leaf v we associate only the label γℓ = β.

We can associate with each node also some labels depending on the entering lines and on the

exiting one: the branching labels rv and sv, denoting how many lines ℓ having the label γℓ = α
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and, respectively, γℓ = β enter v, the label ηv, defined as

ηv =

{

1, if γℓv = β ,
0, if γℓv = α ,

(A1.3)A1.3

and the label jv assuming the values 1, 2, 3. The label jv indicates which of the three terms in

(3.1) is selected.

Then with each node v we associate a node factor

Fv =(−δηv,αm+ δηv ,βq) (δjv ,1miνv − δjv ,2q∂β)
1

rv!

1

sv!
(iνv)

rv∂svβ fνv (β0)

− Cδjv ,3

[

δηv ,α

(

δrv,1δsv ,0 −
mp

q
δrv ,0δsv,0

)

+ δηv ,β (δrv ,0δsv,1 + pδrv,0δsv ,0)

]

,

(A1.4)A1.4

which is a tensor of rank rv+ sv+1, while with each leaf v we associate a leaf factor (to be defined

recursively, see below)

Lv = b
(κv)
0 , (A1.5)A1.5

which is a tensor of rank 1 (i.e. a constant); to each line ℓ ≡ ℓv exiting from a node v we associate

a propagator

Gℓ ≡ (δjv ,1 + δjv ,2)
1

(iω0νℓ)2
+ δjv ,3

1

iω0νℓ
, (A1.6)A1.6

while no divisor is associated with the lines exiting from the leaves. For consistence we can define

Gℓ ≡ 1, (A1.7)A1.7

for lines exiting from leaves, so that a propagator Gℓ is in fact associated with each line.

Call Θk,ν,γ the set of all trees of order k with νℓ0 = ν and γℓ0 = γ, if ℓ0 is the root line, and

define the application Val : Θk,ν,γ → R, as

Val(θ) =
(

∏

v∈V (θ)

Fv

)(

∏

v∈L(θ)
Lv

)(

∏

ℓ∈Λ(θ)

Gℓ

)

, (A1.8)A1.8

which is called the value of the tree θ.

We can define also the reduced value of the tree θ as

Val′(θ) = F̃v0

(

∏

v∈V (θ)\v0

Fv

)(

∏

v∈L(θ)
Lv

)(

∏

ℓ∈Λ(θ)\ℓ0

Gℓ

)

, (A1.9)A1.9

where, as usual, ℓ0 denotes the root line, and F̃v0 is defined as

F̃v0 = δjv0 ,1 (miνv0 − q∂β)
1

rv0 !

1

sv0 !
(iνv0)

rv0∂
sv0
β fνv0 (β0); (A1.10)A1.10

then, by setting Θ∗
k,0,γ ≡ Θk,0,γ \ θ0, where θ0 is the tree given in figure A1.2, one can define the

leaf factor (A1.5) as

b
(k)
0 = −

[

∂2βf0(β0)
]−1 ∑

θ∈Θ∗
k+1,0,γ

Val′(θ), (A1.11)A1.11

where the quantity ∂2βf0(β0) is nonvanishing by the second condition in (2.12). Note that in (A1.11)

the value of the label γ is irrelevant as Val′(θ) does not depend on ℓ0.
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θ0 =
r v0 v

νv0 = 0 κv= k

Fig. A1.2. The tree θ0 with one node v0 and one leaf v. One has rv0 = 0
and sv0 = 1. The order k of the tree is given by k = 1 + κv, and the
momentum is vanishing, so that νv0 = 0.

Then it is straightforward to prove by induction that the following tree expansion holds for the

coefficients in (2.10) of the periodic solution (2.9):

a(k)ν =
∑

θ∈Θk,ν,α

Val(θ), b(k)ν =
∑

θ∈Θk,ν,β

Val(θ), (A1.12)A1.12

for k ∈ N and ν ∈ Z \ {0}, while b(k)0 is given by (A1.11) and a
(k)
0 ≡ 0 has to be fixed in such a

way that the identity a(α0, β0; ε) = −mb(α0, β0; ε)/q is satisfied to all orders.

p.A1.2 A1.2. Bounds. It is easy to realize that, for b
(k)
0 fixed as in (A1.11) no line ℓ ∈ Λ(θ) can have

νℓ = 0, except for the lines exiting from the leaves; but for them the propagator has no divisor (see

(A1.7)) and it is replaced by ∂2βf0(β0).

By using (A1.11) we can decompose iteratively the leaves into trees, so that at the end only trees

without leaves appear. For such trees (A1.1) has to be replaced with k = |V (θ)|; we can write

k = k1 + k2, where k1 is the number of nodes v with jv ∈ {1, 2} and k2 is the number of nodes v

with jv = 3.

Then, by using that
∣

∣

∣

∣

1

sv!
∂sv+1fνv (β0)

∣

∣

∣

∣

≤ FDsve−κ|νv|,

∣

∣

∣

∣

1

rv!
(iνv)

rv+1

∣

∣

∣

∣

≤ (rv + 1)

(

8

κ

)rv+1

eκ|νv|/8,

∑

v∈V (θ)

(rv + sv) = k − 1,

(A1.13)A1.13

for some positive constants F,D, κ, one obtains easily

∣

∣

∣

∏

v∈V (θ)

Fv

∣

∣

∣
≤ e−κ|ν|/2Bk11 |C|k2 ,

∣

∣

∣

∏

ℓ∈Λ(θ)

Gℓ

∣

∣

∣
≤

(

1

ω2
0

)k1 ( 1

ω0

)k2

, (A1.14)A1.14

for a suitable constant B1. If we take into account also the leaves we have no propagator to

associate to the root line, but we have to take into account the factor before the sum in (A1.11),

so that (3.9) follows.

A better bound can be found in the case in which f0 contains only one harmonic, as in the

case (4.4) and as in Section 5; in such cases given the resonance j0 of type p : q (i.e. ω = p
q ) we

consider the corresponding m,n, see (2.4), and set ν = 2p− jq, µ = (2n− jm) for j = 1, . . . , 7 then

convergence occurs for

ε <
(

max{a, c} · b · d
)−1

, with

a
def
= max{m, q} ·max{m|ν|, q|µ|} · max

j=1,...,7
{|ν||aj |, |µ||aj |},

b = max{q2, 1/((2n− j0m)2|aj0 | cos(β0))},

c = Cmax
{

max
{

1,
m|p− q|

q

}

,max{1, p}
}

,

d = 3 · 2 · 2 · 4 = 48,

(A1.15)A1.15
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where the first term in a arises from the quantity in the first parenthesis in (A1.4), the second

and third arise from the next two factors; the c arises from the term proportional to C in (A1.4);

the factor b is due to the propagators attributed to the lines (using ω0 = 1
q for the first term

in the maximum, coming from the lines with label γ = α, β, while the second term comes from

the leaves); the factors in d are due to the choices of the values of jv (3), choices of the labels γ

(i.e. 2), choices of the nodes representing leaves (2) and choices of the tree structures (4), see [9].

The (A1.15) leads to the table 5.3 (for j0 6= 2) which is evaluated at C equal to 1
2Cj0 if Cj0 is the

maximal value estimated below which the resonance in question is stable (see Table 5.2 and (5.5)).

p.A1.3 A1.3. About the proof of the other theorems. The technical parts of the proofs of theorems 2.6

and 2.9 (and of theorem in Appendix A5) can be dealt with in the same way, up to slight changes

which we leave to the reader.

Appendix A2. Stability of periodic solutionsapp.A2

p.A2.1 A2.1. Linearization around the periodic solutions. The periodic orbits for our system appear in

pairs of stable and unstable orbits: this is a consequence of Poincaré-Birkhoff’s theorem [1]. To

detect the stable solutions from the unstable ones a first order computation is enough.

Let us consider the case dealt with through theorem 2.3. The corresponding equations of motion,

in the original variables, are

{

θ̇ = ω +Θ,
ṫ = 1,

{

Θ̇ = −ε∂θg − εC (ω +Θ) ,
Ṫ = −ε∂tg.

(A2.1)A2.1

It is clear that for a study of the stability it is enough to consider the first and third equation,

i.e. the system

θ̇ = ω +Θ, Θ̇ = −ε∂θg − εC (ω +Θ) . (A2.2)A2.2

The variable T indeed does not enter in the other equations. On the other hand we can study the

stability of a periodic orbit by looking at the corresponding periodic point for the Poincaré map

defined by t ∈ 2πZ. This allows us to disregard variations in the inial value of t.

The linearization of (A2.2) around the periodic solution X(t) = (θ(t),Θ(t)) given by the theorem

2.3, leads to

Ξ̇ = L(t) Ξ, Ξ = (δθ, δΘ) , (A2.3)A2.3

where

L(t) =

(

0 1
−ε∂θθg(θ(t), t) −εC

)

, L(t) =

∞
∑

k=0

εkL(k)(t), (A2.4)A2.4

with

L(0)(t) ≡ L(0) =

(

0 1
0 0

)

, L(1)(t) =

(

0 0
−∂θθg(θ0 + ωt, t) −C

)

, (A2.5)A2.5

and so on.

p.A2.2 A2.2. Wronskian matrix. Let us denote by W (t) =
∑∞
k=0 ε

kW (k)(t) the Wronskian matrix, that

is the matrix whose columns are two independent solutions of the linearized system (A2.3) (so that

Ẇ (t) = L(t)W (t)). Then one has

W (0)(t) = exp
[

tL(0)
]

=

(

1 t
0 1

)

, (A2.6)A2.6
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while W (1)(t) is obtained by solving the system Ẇ (1) = L(0)(t)W (1)(t) + L(1)(t)W (0)(t), i.e.

W (1)(t) =W (0)(t)

[

W (1)(0) +

∫ t

0

dτ
(

W (0)(τ)
)−1

L(1)(τ)W (0)(τ)

]

, (A2.7)A2.7

where one has to take W (1)(0) = 0 in order to have W (0) = 11.

A trivial computation shows that in (A2.7) one has

W (0)(τ)−1L(1)(τ)W (0)(τ) =
(

1 −τ
0 1

)(

0 0
x(τ) −C

)(

1 τ
0 1

)

=
(−τx(τ) −τ2x(τ) + Cτ

x(τ) τx(τ) − C

)

,

(A2.8)A2.8

where we have set x(t) = −∂θθg(θ0+ωt, t). Denote by xk(t) the kth primitive of x(t) with xk(0) = 0

(so that ẋk(t) = xk−1(t), with x0(t) = x(t)). Then, by using that
∫ T

0

dτ x(τ) = x1(T ),

∫ T

0

dτ τx(τ) = Tx1(T )− x2(T ),

∫ T

0

dτ τ2x(τ) = T 2x1(T )− 2Tx2(T ) + 2x3(T ),

(A2.9)A2.9

we obtain
∫ T

0

dτ
(

W (0)(τ)
)−1

L(1)(τ)W (0)(τ) =

=

(

−Tx1(T ) + x2(T ) −T 2x1(T ) + 2Tx2(T )− 2x3(T ) + CT 2/2
x1(T ) Tx1(T )− x2(T )− CT

)

,

(A2.10)A2.10

so that

W (1)(T ) =

(

x2(T ) Tx2(T )− 2x3(T )− CT 2/2
x1(T ) Tx1(T )− x2(T )− CT

)

. (A2.11)A2.11

p.A2.3 A2.3. Floquet (or Lyapunov) multipliers. The Floquet multipliers around the periodic solution

are the eigenvalues of the Wronskian matrix, computed at time T . Hence, for ε = 0, W (0)(T ) =
(

1 T
0 1

)

, and the corresponding Floquet multipliers are equal to 1. To first order one has

W (T ) =W (0)(T ) + εW (1)(T ) +O(ε2)

=

(

1 + εx2(T ) T + εTx2(T )− 2εx3(T )− εCT 2/2
εx1(T ) 1 + εTx1(T )− εx2(T )− εCT

)

+O(ε2).
(A2.12)A2.13

so that, by neglecting the terms O(ε2) in the Wronskian matrix, the corresponding multipliers are

λ1 = λ+, λ2 = λ−, where λ± are the roots of the equation λ2 − 2bλ+ c = 0 with

2b
def
= [2 + εT (x2(T )− C)]

c
def
=

[

1− εCT + εx2(T )ε
2
(

2x1(T )x3(T )− x22(T )− CTx2(T ) + CT 2x1(T )/2
)]

.
(A2.13)A2.15

Taking the divergence of (A2.2) it is easy to see that the phase space contraction in one period

is given by εC. This implies that we must have λ−λ+ = 1 − Cε + O(ε2), as it can be checked.

Therefore the two Floquet multipliers λ± are given by

λ± = 1 +
εT

2
(x1(T )− C)± (A2.14)A2.17

±
√

εTx1(T ) +
ε2

4
(T 2C2 + T 2x21(T ) + 4x22(T ) + 4CTx2(T )− 8x1(T )x3(T )− 4T 2x1C)

= 1±
√

εTx1(T ) +
εT

2
(x1(T )− C) +O(ε3/2).
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Appendix A3. Andoyer-Deprit angles trigonometry and rigid bodiesapp.A3

p.A4.3 A3.1. The spin-orbit model. The potential energy of a body B of ellipsoidal shape with polar

radius Rp and equatorial radius R0 and density ν, attracted by a center of mass M0 at distance a

from its center is, up to irrelevant (time dependent) additive quantities,

−ν
∫

B
ρ2dρ sin θ dθ dϕ

κM0

a

(ρ

a

)2

P2(sinα sin θ cosϕ+ cosα cos θ), (A3.1)A3.1

where κ is the universal gravitation constant, P2 is the second Legendre polynomial, P2(z) =

(3z2− 1)/2, ρ, θ, ϕ are the polar coordinates of the point x in the body B of density ν and α is the

angle between the polar axis of the ellipsoid and the radius from the center of the ellipsoid to the

center of attraction; one has a = a0(1− e2)/(1− e cosλT ), if e is the eccentricity of the body orbit,

λT is its true anomaly on the orbital plane measured from the apocenter and a0 is the orbital

semiaxis. Therefore we get that aside from an additive periodic term (depending only on a) the

potential energy of the body is, using cilindrical coordinates r, z, ϕ instead of the polar ρ, θ, ϕ,

− (2πν)
3

2

κM0

a3

∫ Rp

−Rp

dz

∫ R0

√
1−(z/Rp)2

0

r dr ρ2
(1

2
sin2 α sin2 θ + cos2 α cos2 θ

)

= −3

2

κM0

a3

[

(2πν)R2
0Rp 2 cos2 α

∫ 1

0

dz

∫

√
1−z2

0

r dr
1

2
(2z2 − r2)

]

.

(A3.2)A3.2

Since the term in square brackets equals the difference between the moments of inertia I and J

with respect to the x–axis (or y–axis) and with respect to the z axis, respectively, we get

3

2
J
κM0

a30
δ

(

1− e cosλT
1− e2

)3

cos2 α, δ =
J − I

J
. (A3.3)A3.3

More generally in the case of an ellipsoid with axes Rz < Rx < Rx (note that in such a case

the moments of inertia satisfy Iz > Iy > Ix), if β is the angle between the comoving axis i1 of the

ellipsoid and the radius from the center of the ellipsoid to the center of attraction, we get, instead

of (A3.3),
3

2
Jω2(λT )

(

δ1 cos
2 α+ δ2 sin

2 α cos2 β
)

. (A3.4)A3.4

where

ω(λT ) =

(

1− e cosλT
1− e2

)
3
2

ωT , ω2
T
def
=
κM0

a30
, (A3.5)A3.5

with J ≡ Iz , δ1
def
= (Iz − Ix)/J , and δ2

def
= (Iy − Ix)/J .

Define: m the line of intersection between the plane orthogonal to the angular momentum A

and the orbit plane, n the line of intersection between the plane orthogonal to the symmetry axis

and the orbit plane, n the line of intersection between the planes orthogonal to the symmetry axis

and to the angular momentum axis; and call i the x axis on the orbit plane (arbitrarily prefixed

and from which the true anomaly λT is measured). Let

ϕ= angle between m and n,

ψ= angle between n and i1,

γ= angle between m and i,

then the pairs (K, γ), (A,ϕ) and (L,ψ) are canonically conjugated variables, cf. p. 318 in [7], and

the Hamiltonian for the system becomes

A2

2Ix
− δ′

L2

2J
− 1

2
δ2

Iz
IxIy

(A2 − L2) cos2 ψ +
3

2
Jω2(λT )

(

δ1 cos2 α+ δ2 sin
2 α cos2 β

)

, (A3.6)A3.6
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where we recall the definitions J = Iz , δ1 = (Iz − Ix)/Iz , and δ2 = (Iy − Ix)/Iz, and define

δ′ = (J − Ix)/Ix.

To proceed one needs to express λT in terms of the mean anomaly λ = ωT t = t in our units and

cosα, sinα cosβ in terms of the canonical variables. This can be based upon the identities

cosα = − sin θ sin(λT − ϕ),

sinα cosβ = cosψ cos(λT − ϕ) + cos θ sinψ sin(λT − ϕ),

sinα sinβ = − sinψ cos(λT − ϕ) + cos θ cosψ sin(λT − ϕ),

(A3.7)A3.7

expressing the polar angles of the line joining the center of attraction S to the center of the planet,

i.e. its the declination α and the longitude β, in the comoving frame, if the latter is determined by

its Euler angles (ϕ, ψ, θ) with respect to the fixed frame. The algebraic work is discussed below.

p.A4.1 A3.2. Spherical trigonometry and Andoyer-Deprit angles. We refer here to figures A3.1, A3.2 and

A3.3 below (see also [7], p. 321÷323) and to the well known spherical triangles trigonometrical

identities (see figure A3.1):

sinA

sinα
=
sinB

sinβ
=

sinC

sin γ
, “sine rule”

cosA =cosB cosC + sinB sinC cosα, “cosine rule”

sinC cosβ =cosB sinA− sinB cosA cos γ, “analogue rule”

cosA cos γ =sinA cotB − sin γ cotβ, “four parts rule”

(A3.8)A3.8

αγ

β

A

B

C

Fig. A3.1. Spherical triangle with sides A,B, C and angles α, β, γ.

The above rules become well known trigonometric properties of a triangle with sides a, b, c if the

spherical triangle is imagined drawn on a sphere of radius R so that the A,B,C are respectively

a/R, b/R, c/R. The third relation is analogous to the statement that a side is the sum of the

orthogonal projections on it of the other two sides and the last rule follows by combining the sine

rule and the analogue rule. Other other identities can be obtained by “duality” by remarking the

if (α, β, γ;A,B,C) is a spherical triangle also (A,B, π − C;α, β, π − γ) is a spherical triangle.
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The Andoyer-Deprit angles are represented in figure A3.2, where (i, j,k) is the “fixed reference

system”, with k axis orthogonal to the orbital plane, (i, j,k) is the reference system with k axis

parallel to the angular momentum A and i axis on the line between the orbit plane and the plane

orthogonal to the angular momentum, and (i1, i2, i3) is the reference frame with i3 axis parallel to

the symmetry axis of the body and i1 axis fixed on the equatorial plane of the body.

i

ϕ

γ

i ≡ m n

ϕ

ψ

n

i1ψ

i2

ki3

A

θ

ζθ

O
j

Fig. A3.2. Andoyer-Deprit angles: here n is the node line (i, j) ∩ (i1, i2), n
is the node line (i1, i2) ∩ (i, j) and m ≡ i is the node (i, j) ∩ (i, j). j axis not
drawn. The axis i1 has to be thought below the (i, j) plane (for a drawing
consistent with the notations used here.

The above trigonometrical identities imply, see figure A3.3, the following relations

cos ζ =
K

A
, cos θ =

L

A
,

cot(ϕ− γ) =(cosϕ cos ζ − sin ζ cot θ)/ sinϕ,

cot(ψ − ψ) =(cosϕ cos θ − sin θ cot ζ)/ sinϕ,

sin θ =sin θ
sinϕ

sin(ϕ− γ)
= − sin ζ

sinϕ

sin(ψ − ψ)
,

(A3.9)A3.9

immediately from the definitions, see [7], p. 323.

θ
ζ

θ

ϕ

ϕ− γ

ψ − ψ

Fig. A3.3. The spherical triangle associated with the Andoyer-Deprit an-
gles.
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Therefore writing λ − ϕ ≡ (λ − γ) − (ϕ − γ) and ψ = ψ + (ψ − ψ) the relations (A3.9) lead to

expressing cosα and sinα cosβ, sinα sinβ in terms of the Andoyer-Deprit angles.

This is interesting because the pairs (A,ϕ), (L,ψ), (K, γ) are canonically conjugated pairs of

action–angle coordinates. However it is clear that several square roots will appear involving quan-

tities like 1 − K2/A2 or 1 − L2/A2, which in the interesting cases will be close to 0, and their

reciprocals. Therefore the resulting equations of motion will be difficult to discuss unless we can

show that such a priori singular expressions do not really appear. We call this the “rationalization”

of the Hamiltonian and to show it we study a few identities relating the angles introduced above.

Appendix A4. Rationalizationapp.A4

p.A4.x A4.1. Rationalization: L ≃ K ≃ A symmetric case. Let cx ≡ cosx, sx ≡ sinx, J = Iz , I = Ix =

Iy. Then cosα can be written as
(

sλT−γ(cϕcζsθ − sζcθ)− cλT−γsθsϕ
)

=
(

sλT−γ(cϕ(cζ − 1)sθ − sζcθ) + sλT −ϕ−γsθ
)

. (A4.1)A4.1

Define canonically

(µ, γ) =

(

1 1
0 1

)(

ϕ
γ

)

, (A, T ) =

(

1 0
−1 1

)(

A
K

)

,

p =
√
−2T cos γ, q =

√
−2T sin γ,

(A4.2)A4.2

and

(ξ, µ) =

(

1 1
0 1

)(

ψ
µ

)

, (L,G) =

(

1 0
−1 1

)(

L
A

)

,

π =
√
2G cosµ, κ =

√
2G sinµ.

(A4.3)A4.3

If we set sθ = (2G/L)
1
2σθ, sζ = (−2T/L)

1
2σz , thus defining σz , σθ, and use cζ−1 ≡ − 1

2
(−2T )
L cθ, cθ−

1 ≡ − 1
2
(2G)
L then cosα becomes

σθ

L
1
2

(sλT π − cλT κ)−
σζcθ

L
1
2

(sλT p− cλT q)−
σθcθ

2L
1
2

(pπ + qκ)

L
(sλT p− cλT q), (A4.4)A4.4

and, since 2G = π2 + κ2 and −2T = p2 + q2 and therefore σθ, σζ , cθ, cζ are analytic at the origin

and have value 1 there we have achieved complete rationalization of the Hamiltonian for T,G close

to 0. Since there is no singularity at 0 a simplified Hamiltonian could be

H =
L

2I
(π2 + κ2) +

3Jω2(λT )

2L
δ1
(

(π − p) sλT − (κ− q) cλT

)2
. (A4.5)A4.5

Note that L is rigorously a constant of motion.

The equation is not useful to study the tidal capture into resonance phenomena in heavenly

bodies because the evolution takes place on a time scale proportional to δ−1
1 i−1 if i is the tilt

angle: the latter is very small in most cases (except perhaps the Moon and a few other large

satellites) and of the order of δ1 so that the effects that we study become relevant on time scales

much longer than the ones due to even slight equatorial asymmetry. Therefore the interesting

model for our cases is the model with A ≃ L ≃ K and equatorial asymmetry (i.e. Iy < Ix): this is

much harder and is discussed below.

p.A4.4 A4.2. Rationalization: L ≃ A 6= K symmetric case. In this case define canonically

(ξ, ϕ) =

(

1 1
0 1

)(

ψ
ϕ

)

, (L,G) =

(

1 0
−1 1

)(

L
A

)

,

π =
√
2G cosϕ, κ =

√
2G sinϕ,

(A4.6)A4.6
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and cosα becomes

sλT−γ(π
cζσθ

L
1
2

− sζcθ)− cλT−γ
σθ

L
1
2

κ. (A4.7)A4.7

And calling f0(π, κ, L,K, γ) the function in (A4.7) and H0 = 1
2I (L+(12 (π

2+κ2))2) the Hamiltonian

H = H0 +
3
2δ1 Jω

2(λT )f
2
0 can be simplified for G ≃ 0 into

H =
L

2I
(π2 + κ2) +

3

2
δ1 J ω

2(λT )
(

sλT −γ
(

− sζ +
cζ

L
1
2

π
)

− cλT−γ
1

L
1
2

κ
)2

. (A4.8)A4.8

The equations above can be used to study the corrections to the cruder approximation consisting

in considering the Hamiltonian 1
2JA

2+ 3
2δ1Jω(λT )

2(sλT−γsζ)2 (i.e. neglecting sθ = (1−L2/A2)
1
2 )

and subsequently assuming that the adiabatic invariant K is constant. Since sζ = (1 −K2/A2)
1
2

this leads to the nodal precession model γ̇ = 3δ1
ω(λT )2

ωD
cθs

2
λT−γ which is a model used in simple

theories of the lunar node precession (with ζ identified with the tilt angle, i.e. cζ = K
A of the

symmetry axis over the normal to the orbit and A/J identified with the rotation velocity) which

originated the theory of the rotation numbers by Poincaré, see [14], [13].

p.A4.4a A4.3. Rationalization: L ≃ A 6= K asymmetric case. The nonsymmetric case, which is the only

one that interests us in our applications, requires understanding the rationalization of sinα cosβ.

Algebraic analysis shows that H will take the form, if G ≡ 1
2 (π

2 + κ2) and ψ ≡ µ − ϕ, so that

G cos2 ψ ≡ 1
2 (π cosµ+ κ sinµ)2,

H =
1

2Ix
(L+

1

2
(π2 + κ2))2 − δ′

L2

2Iz
− δ2

Iz
IxIy

(LG+
1

2
G2) cos2 ψ+

+
3

2
Jω2(λT ) ·

(

δ1f0 + δ2f1

)

,

(A4.9)A4.9

where f0, f1 are analytic (see below) in their arguments (p, q), (K, γ), (L, ξ) and nonsingular near

π, κ = 0, 0 ≤ K < L. To check the statement we express sinα cosβ from the second of (A3.7).

Setting cotϕ−γ = (cϕcζsθ− sζcθ), so that cotϕ−γ = cot(ϕ−γ) sθsϕ, and cotψ−ψ = (cϕcθsζ − sθcζ),
so that cotψ−ψ = cot(ψ − ψ) sζsϕ, we find

sinα cosβ =
1

s2
θ

(

(cotϕ−γcλT−γ + sλT−γsθsϕ)(cotψ−ψcψ − sψsζsϕ)+

+ cθ(cotϕ−γsλT−γ − cλT −γsθsϕ)(cotψ−ψsψ + cψsζsϕ)
)

,

(A4.10)A4.10

which is rewritten as

1

s2
θ

(

(

(cϕcζsθ − sζcθ)cλT−γ + sλT −γsθsϕ
)(

(cϕcθsζ − sθcζ)cψ − sψsζsϕ
)

+ cθ

(

(

(cϕcζsθ − sζcθ)sλT −γ − cλT−γsθsϕ
)(

(cϕcθsζ − sθcζ)sψ + cψsζsϕ
)

))

,

(A4.11)A4.11

which, by (A3.9), is (sin θ)−2(a+ b cos θ), with

a =((cϕ(cζ − 1)sθ − sζcθ)cλT −γ + cλT−γ−ϕsθ)((cϕ(cθ − 1)sζ − sθcζ)cξ−ϕ + cξsζ),

b =((cϕ(cζ − 1)sθ − sζcθ)sλT −γ + sλT−γ−ϕsθ)((cϕ(cθ − 1)sζ − sθcζ)sξ−ϕ + sξsζ),
(A4.12)A4.12
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where ξ = ψ + ϕ according to (A4.6). Furthermore cosα is given by (A4.7) and cos θ, sin θ are

cos θ =
(

1− s2θs
2
ϕ/s

2
ϕ−γ

)
1
2

= (1 − s2θs
2
ϕ(1 + cot2(ϕ− γ))) = cθcζ + sθsζcϕ,

(sin θ)2 = s2ζ + s2θ − (1 + c2ϕ) s
2
θs

2
ζ − 2sθcθsζcζcϕ,

(A4.13)A4.13

and (A4.13) show analyticity because only cϕ, sϕ appear multiplied by the appropriate power of

(2G)
1
2 . Collecting the above algebraic relations we get

sinα cosβ =cλT−γ−ξ + L− 1
2 (C1π + C2κ) +O(π2 + κ2),

cosα =sζsλT−γ − cζL
− 1

2 (πsλT−γ − κ cλT−γ) +O(π2 + κ2),
(A4.14)A4.14

where C1, C2 are (simple) analytic functions of ξ, λT − γ and analytic terms of second order in p, q

are neglected, while no nonanalytic terms appear (to any order in π, κ).

The squares of the r.h.s.of the second in (A4.14) is f0 and the r.h.s. of the first equation is f1.

f0 in (A4.9). The above analysis requires |K|/L < 1 and it is not uniform as K → ±L.

p.A4.5 A4.4. Rationalization: L ≃ A ≃ K asymmetric case. In this case we canonically set

(

µ
γ

)

=

(

1 1
0 1

)(

ϕ
γ

)

,

(

A
T

)

=

(

1 0
−1 1

)(

A
K

)

, (A4.15)A4.15

and then
(

ξ
µ

)

=

(

1 1
0 1

)(

ψ
µ

)

,

(

L
G

)

=

(

1 0
−1 1

)(

L
A

)

, (A4.16)A4.16

so that (T, γ), (L, ξ), (G,µ) are canonically conjugated variables:

T = K −A, G = A− L, L = L,

γ = γ, µ = ϕ+ γ, ξ = ϕ+ γ + ψ.
(A4.17)A4.17

We define canonically also the pairs (p, q) and (π, κ)

p =(−2T )
1
2 cos γ,

q =(−2T )
1
2 sin γ,

π =(2G)
1
2 cosµ,

κ =(2G)
1
2 sinµ.

(A4.18)A4.18

The rationalization, i.e. the absence of the square roots of p2+q2 and of π2+κ2 in the remainders,

is seen by going back to the original expression for sinα cosβ in (A4.12) and change the name of

the variables to adapt it to the new definitions in (A4.19).

In this case, however, we cannot achieve an analytic expression: the elimination of the square

roots is not sufficient because the division by (sin θ)2 introduces denominators which vanish at the

origin. Even though whenever the denominators vanish also the numerators do (because sinα cosβ

is bounded) a singularity of the generic type xy/(x2 + y2) cannot be excluded: and therefore the

leading term in the Hamiltonian might not necessarily be the leading term in the equations of

motion and this makes perturbation analysis very difficult.

Let R(ρ) be a rotation by an angle ρ in a plane, then sinα cosβ, by (A3.7), becomes the scalar

product

R(ψ)

(

cψ−ψ
sψ−ψ

)

·
(

1 0
0 cos θ

)

R(λT − γ)

(

cϕ−γ
−sϕ−γ

)

. (A4.19)A4.19
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In fact the expression s−2

θ
(cθ − 1) is analytic near the origin so that we only have to study the

scalar product in (A4.19) with cθ replaced by 1. This is

−s−2

θ

(

cotψ−ψ
sζsϕ

)

· R(λT − γ − ψ)

(

cotϕ−γ
−sθsϕ,

)

(A4.20)A4.20

where it is should be noted that sθ is the common value of the length of the vectors. The latter

scalar product is

−s−2

θ
R(−ϕ)

(

cϕcθsζ − sθcζ
sζsϕ

)

·R(λT − ξ)

(

cϕcζsθ − sζcθ
−sθsϕ

)

(A4.21)A4.21

having applied a rotation R(−ϕ) to both sides of the scalar product.

Let us denote A,B and C,D the components of the two vectors:

A =cϕ (cϕcθsζ − sθcζ) + sϕsζsϕ,

B =− sϕ (cϕcθsζ − sθcζ) + cϕsζsϕ,

C =(cϕcζsθ − sζcθ),

D =− sθsϕ,

(A4.22)A4.22

and one has, by our construction and by the unitarity of the rotations, s2
θ
= A2 + B2 = C2 +D2.

Therefore sinα cosβ is such that

− sinα cosβ = cλT −ξ
2(AC +BD)

A2 +B2 + C2 +D2
+ sλT −ξ

2(BC −AD)

A2 +B2 + C2 +D2
, (A4.23)A4.23

where the ratios depend only on π, κ, p, q, L, ξ but they are λT -independent; furthermore by the

above analysis the combinations of the functions A,B,C,D appearing in the numerators and

denominators of the above expression are analytic at the origin. One has also

2(AC +BD)

A2 +B2 + C2 +D2
= −1 + Ω2(p, q, π, κ),

2(BC −AD)

A2 +B2 + C2 +D2
= Ω′

2(p, q, π, κ),

(A4.24)A4.24

where Ω2,Ω
′
2 denote functions analytic outside the region θ = 0 (which coincides with A2 +B2 +

C2 +D2 = 0) and with bounded second derivatives, possibly discontinuous on the surface θ = 0.

That the leading term near the origin is given by the r.h.s. of (A4.24) can realized by staring at

figure 4 above and remarking that θ → 0 implies ϕ→, θ− ζ → 0, (ϕ− γ)− (ψ−ψ) → 0. That the

corrections are of “second order” in the sense of (A4.24) follows from the fact that the analyticity

of the expressions like (A4.12) gives as a result a low degree polynomial in p, π, q, κ with coefficients

which are analytic in T/L and G/L, i.e. in p2 + q2, π2 + κ2.

A straightforward calculation yields, in fact, the values of the quantities in (A4.24). For instance

introducing the further abbreviation s2xS
2
x
def
= (cx − 1 + 1

2s
2
x) the coefficients of cλT−ξ and sλT−ξ in

(A4.23) are, respectively, the (manifestly rational) expressions

AC +BD

C2 +D2
=−

(

1 +
s2ϕs

2
θs

2
ζ

s2
θ

(1 − cζ)(1− cθ)

s2θs
2
ζ

(

sθsζcϕ +
s2ζs

2
θ

(1− cζ)(1 − cθ)
(S2
θ + S2

ζ )
)

)

, (A4.25)A4.25

BC −AD

C2 +D2
=

1

s2
θ

(

sϕsθsζ(1 − cζcθ)− sϕcϕ
(

s2θs
2
ζ(1 + S2

ζ + S2
θ ) + cϕsθsζ(cθ − 1)(cζ − 1)

)

)

,
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which has the form in (A4.24). This can be seen to be not analytic at the origin: for instance the

second derivative of the first in (A4.22) in the direction p0, q0, π0, κ0 evaluated at the origin is 0 if

(p0 − π0)
2 + (q0 − κ0)

2 6= 0 but on the latter 2–dimensional plane it is bounded and in general not

0. Therefore the Laplacian is bounded and it has a bounded normal limit to the singularity surface

and the function in (A4.20) is of class Cc for all c < 2 but it is not more regular (in particular it

is not even C2): roughly in the variables x = (p − π)a, y = (q − κ)b, z = (p+ π)c, w = (q + κ)d it

is a sum of terms similar to the following

(xy)2(x2 + y2 + z2 + w2)

x2 + y2 + (x2 + y2)(z2 + w2)
(A4.26)A4.26

if the constants a, b, c, d > 0 are suitably defined.

Note that the (A4.24) implies that the corrections to the equations of motion due to the terms

of higher order in π, κ, p, q are also small in the latter quantities and of almost the first order.

Retaining only the lowest orders a simplified Hamiltonian is

H =
1

2J
L2 +

3

2
Jω2

T (λT )δ2 cos
2(λT − ξ), (A4.27)A4.27

with δ2 = (Iy − Ix)/Iz. Therefore the equations of motion are rather simple in the considered

approximation and become ξ̇ = L/J and L̇ = − 3
2Jω

2
T (λT )δ2∂ξ cos

2(λT − ξ) because L, ξ are pairs

of conjugated coordinates. Or

ξ̈ = −3

2

ω2(λT )

ω2
T

δ2
∂

∂ξ
cos2(λT − ξ), (A4.28)A4.28

in dimensionless units (i.e. time is measured in units of ω−1
T ). Expanding λT in powers of the

eccentricity e via Kepler’s law λ = (1− e2) 3
2

∫ λT

0
(1− e cos ζ)−2dζ and setting λ = t (as in our units

the average anomaly of the planet and the time coincide) then, once also the friction contribution

is taken into account, (A4.26) gives (5.3) if the expansion is truncated to the fifth degree in e. The

coefficients aj in (4.4) are computed in table 4.1.

The singularity that remains at the origin of the new variables is much weaker that the one

in the original variables (i.e. it is algebraic rather than of square root type and it vanishes to

order almost 2). This gives some grounds to argue in favor of the statement that the model

might be a good approximation as its widespread use in Celestial Mechanics shows. However the

rigorous perturbation analysis necessary to substantiate more quantitatively the statement would

pose serious problems. For instance C2–regularity in a three and half degrees of freedom, like the

asymmetric model considered here, is not enough (in general) to prove any type of KAM stability

result.

Finally it should be stressed that, of course, the (A4.21) are the same equations that one would

obtain by studying an asymmetric rigid body constrained to rotate around an axis which moves

orthogonally to the orbit plane and intersecting it on a Keplerian elliptic orbit. The point of our

analysis has been to check in which cases no nonanalytic terms arise in the corrections of higher

orded in sζ , sθ in a proper system of coordinates.

Appendix A5. Some Generalizationsapp.A5

p.A5.1 A5.1. More general forms for the friction. In the applications to Celestial Mechanics the friction

takes often rather elaborated forms: therefore it is of some interest to study how strongly the

analysis in this paper depends on the simple forms assumed for the friction.

19/novembre/2010; 10:26 29



So (2.1) will be replaced by

θ̈ + εG(θ, t) + γθ̇r(θ, θ̇, t) + γ′ = 0, (A5.1)A5.1

where r(θ, θ̇, t) > 0 is 2π-periodic in (θ, t), analytic in each variable, and ε, γ, γ′ are parameters.

For instance the tidal torque should be proportional to the sine of the phase shift τ and τ is

proportional to ξ̇ − 1 only for ξ̇ small. Hence (A5.1) provides flexibility for a rather general class

of interesting friction models and it is desirable to extend the theory t such cases.

For γ = γ′ = 0 we can still derive (A5.1) as the Hamilton equations of the system described by

the Hamiltonian (2.2). For γ, γ′ 6= 0, (A5.1) can be seen as a Hamiltonian system with friction

given by the equations of motion 5

{

θ̇ = ω +Θ,
ṫ = 1,

{

Θ̇ = −ε∂θg(θ, t)− γ(Θ + ω) r(θ,Θ + ω, t)− γ′,
Ṫ = −ε∂tg(θ, t).

(A5.2)A5.2

Likewise (2.5) is replaced by

{

α̇ = 1/q +mP,
β̇ = −qP,

{

Ȧ = −ε∂αf(α, β) − pγP u(α, β, P )− p2γ/q u(α, β, P )− pγ′,
Ḃ = −ε∂βf(α, β)− nγP u(α, β, P )− npγ/q u(α, β, P )− nγ′ ,

(A5.3)A5.3

where f(α, β) = g(θ(α, β), t(α, β)) as in (2.5), and

P ≡ Θ = mA− qB = (α̇− 1/q)/m = −β̇/q,
u(α, β, P ) = r(θ(α, β), θ̇(A,B), t(α, β)) = r(pα + nβ, p/q + P, qα+mβ);

(A5.4)A5.4

for γ = γ′ = 0 the corresponding Hamiltonian is given by (2.6), and, for ε = 0, the periodic solution

X(t) is still transformed into X0(t) = CX(t) = (α0 + t/q, β0, 0, 0), with qα0 +mβ0 = 0.

In terms of the only (α, β) variables, by using that

Ṗ = −ε (m∂αf − q∂βf)− γPu− p

q
γu− γ′, (A5.5)A5.5

we can rewrite (A5.3) as

{

α̈ = −mε (m∂αf − q∂βf)− γα̇u(α, β, (α̇− 1/q)/m)− nγu(α, β, (α̇− 1/q)/m)−mγ′,

β̈ = qε (m∂αf − q∂βf)− γβ̇u(α, β,−β̇/q) + pγu(α, β,−β̇/q) + qγ′.
(A5.6)A5.6

As in Section 2 it will be convenient to write

f(α, β) =
∑

ν∈Z
eiναfν(β), u(α, β, P ) =

∞
∑

N=0

PNuN(α, β) =

∞
∑

N=0

PN
∑

ν∈Z
eiναuN,ν(β), (A5.7)A5.7

where, for all ν ∈ Z and N ∈ Z+, the coefficients fν(β) and uN,ν(β) are 2π-periodic in β.

We want to study the possibility of continuing some of the periodic solutions X0(t) when ε 6= 0

and γ, γ′ 6= 0.

We shall fix γ = Cε and γ′ = Cε, with C and C′ parameters to be varied, and we shall look for

a solution which is analytic in ε for ε small enough. This means that we shall write, formally, α(t)

and β(t) as in (2.9), with the functions a(ψ, β; ε) and b(ψ, β; ε) given by (2.10).

5 It would be also possible to generalize such equations by considering a potential g depending also on T,Θ and by

adding friction terms to all components of the vector field appearing in (A5.2).
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Observe that a solution (2.9) of (A5.6) is not necessarily a periodic orbit of (A5.3). In fact α̇

and β̇ do not determine A and B but only P = mA− qB. In term of the original variables this is

due to the fact that θ, Θ and t are independent of T , so that (2.9) describes a periodic orbit only

if the friction terms do not work in the average; but this would impose conditions on C and C′.

For the model (A5.1) a result analogous to theorem 2.3 holds. More precisely one has the

following result (reducing to theorem 2.3 for C′ = 0 and u(α, β, P ) = 1). The proof is entirely

analogous to the one in Section 3.

p.A5.2 A5.2. Theorem. Fix ω = p/q. If C and C′ are so fixed that there exists β0 such that

∂βf0(β0) =
p

q2
Cu0,0(β0) +

1

q
C′, ∂2βf0(β0)−

p

q2
C∂βu0,0(β0) 6= 0, (A5.8)A5.8

then for ε small enough there is a periodic solution of the equation of motions of the form (2.9).

p.A5.3 A5.3. Remarks. (1) Even if ∂βf0(β) is identically vanishing the condition (A5.8) can be still

verified, provided that one chooses C and C′ such that

p

q2
Cu0,0(β0) +

1

q
C′ = 0, C∂βu0,0(β0) 6= 0; (A5.9)A5.9

in particular the function u0,0(β) cannot be identically constant. Note however that such a choice

of the constants C and C′ has no particular physical meaning, and it has to be considered just as

a mathematical curiosity.

(2) If we are interested in positive values for C and C′, and u0,0(β) is a function weakly varying

around its positive average value, then a (reasonable) sufficient condition for the first equation in

(A5.8) to be satisfied is to require that one has

p

q2
C max
β∈[0,2π]

u0,0(β) +
1

q
C′ ≤ max

β∈[0,2π]
∂βf0(β), (A5.10)A5.10

note that such a condition reduces to (2.11) for r(θ, θ̇, t) ≡ 1 (so that u0(β) ≡ 1) and γ′ = 1 (so

that C′ ≡ 0) in (A5.1).

(3) Of course we could also consider if and how theorems 2.6 and (2.9) extend to the more general

case: we leave their formulation to the reader.
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Momenti d’inerzia di un ellissoide con assi c < b < a e densità ρ:

C =
ρV

5
(a2 + b2), B =

ρV

5
(c2 + a2), A =

ρV

5
(c2 + b2)

where V = 4π
3 a b c and ρ is the density. It is C > B > A.

Assi solidali si ottengono applicando le rotazioni Rz(ϕ)Rx(θ)Rz(ψ) agli assi fissi. Si ha





cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1









1 0 0
0 cos θ − sin θ
0 sin θ cos θ









cosψ − sinψ 0
sinψ cosψ 0
0 0 1





e quindi





(cosϕ cosψ − sinϕ sinψ cos θ) (− cosϕ sinψ − sinϕ cosψ cos θ) sin θ sinϕ
(sinϕ cosψ + cosϕ sinψ cos θ) (− sinϕ sinψ + cosϕ cosψ cos θ) − sin θ cosϕ

sinψ sin θ cosψ sin θ cos θ





e le colonne sono i vettori i1, i2, i3.

Trigonometria sferica: Sia (A,B,C, α, β, γ) un triangolo sferico; allora

cosα = − cosβ cos γ + sinβ sin γ cosA

Posto: P
def
= 1

2 (A+B + C) si trova

sin
1

2
α =

(

sin(P −B) sin(P − C)/(sinB sinC)
)

1
2

cos
1

2
α =

(

sinP sin(P −A)/(sinB sinC)
)

1
2

tan
1

2
α =

(

sin(P −B) sin(P − C)/(sinP sin(P −A))
)

1
2

Se σ
def
= 1

2 (α+ β + γ)

sin
1

2
A =

(

− cosσ cos(σ − α)/(sinβ sin γ)
)

1
2

cos
1

2
A =

(

cos(σ − β) cos(σ − γ)/(sinβ sin γ)
)

1
2

tan
1

2
α =

(

− cosσ cos(σ − α)/(sin(σ − β) sin(σ − γ))
)

1
2

Inoltre (regole di Nepero)

sin 1
2 (α + β)

sin 1
2 (α − β)

=
tan 1

2C

tan 1
2 (A−B)

,
sin 1

2 (A+B)

sin 1
2 (A−B)

=
cot 1

2γ

tan 1
2 (α − β)

cos 1
2 (α+ β)

cos 1
2 (α− β)

=
tan 1

2C

tan 1
2 (A+B)

,
cos 1

2 (A+B)

cos 1
2 (A−B)

=
cot 1

2γ

tan 1
2 (α+ β)

Infine se ε
def
= α+ β + γ − π l’area del triangolo è πε e

tan
1

4
ε =

(

tan
1

2
P tan

1

2
(P −A) tan

1

2
(P −B)

1

2
tan(P − C)

)
1
2
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Altre identità

sin
1

2
(α+ β) cos

1

2
C = cos

1

2
(A−B) cos

1

2
γ cos

1

2
(α+ β) cos

1

2
C = cos

1

2
(A+B) sin

1

2
γ

sin
1

2
(α− β) sin

1

2
C = sin

1

2
(A−B) cos

1

2
γ cos

1

2
(α − β) sin

1

2
C = sin

1

2
(A+B) sin

1

2
γ

tan
1

4
ε =

sin 1
2 (α+ β)− sin 1

2 (π − γ)

cos 1
2 (α+ β) + cos 1

2 (π − γ)

e inoltre se

r
def
=

(

sin(P − A) sin(P −B) sin(P − C)/ sinP
)

1
2

ρ
def
=

(

− cosσ
cos(σ−α) cos(σ−β) cos(σ−γ)

)
1
2

si trova

tan
1

2
α =

r

sin(P −A)
, tan

1

2
A = ρ cos(σ − α)

Da: [CS] Carmichael, R.D., Smith, E.R.: Plane and spherical trigonometry, Ginn, Boston, 1930.

Teorema (dualità sferica) Se (α, β, γ;A,B,C) è un triangolo sferico anche (A,B, π−C;α, β, π−γ)
e’ un triangolo sferico.
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